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ATTRACTORS FOR RANDOM LATTICE
DYNAMICAL SYSTEMS WITH INFINITE

MULTIPLICATIVE COLORED NOISE
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Abstract In this paper, we establish the existence and uniqueness of random
attractor for the first-order random lattice differential equation with a non-
linear colored noise at each node. We first rewrite the equation as a random
evolution system and then prove the existence of a unique weak solution. Fi-
nally, we obtain the existence of a unique random attractor for the underlying
random dynamical system.
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1. Introduction
Lattice systems can be considered as the spatial discretation of partial differential
equations or be coupled of infinite ordinary differential equations or difference equa-
tions. These lattice models have been applied in many fields, such as image process-
ing, pattern recognition, neural pulse and material science, see, e.g., [10,11,15,17,18].
There are many related studies of the deterministic lattice dynamical systems, see,
e.g., [3, 9, 24] and the references therein. Also, lattice systems are often subject
to random influences, see e.g., [4, 5, 7, 8, 13, 23] and the references therein for the
stochastic (random) lattice dynamical systems.

In this paper, we consider the long-term behavior for the following random lat-
tice differential equation with a diffusive nearest neighbor interaction, a dissipative
nonlinear reaction term and a different multiplicative colored noise at each node:

dui(t)

dt
= (ui−1 − 2ui + ui+1)− fi(ui) + η(θtω)gi + σi(ui)ζδ(θtωi), i ∈ Z, (1.1)

where Z denotes the integer set, ui ∈ R, gi ∈ R, η is a random variable, fi and σi
are smooth nonlinear functions that satisfy some growth and dissipative conditions,
ζδ is the colored noise with correlation time δ > 0.

There are two features involved in system (1.1). One is that the nonlinear func-
tions σi appear in the diffusion term. As we all know that the studying of the
long-term dynamics for Itô-type stochastic partial differential equations driven by
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a nonlinear noise term is still open. The main reason is that Kolmogorov’s test the-
orem fails for random fields parameterized by infinite-dimensional Hilbert spaces.
Recently, several methods such as replacing the white noise by the additive frac-
tional noise [5] or by some smooth approximations [13,23] are implemented to partly
give an answer to the counterpart problem in lattice differential equations. Here,
we use the colored noise, which was originally constructed in [21, 22] to approxi-
mately describe the stochastic behavior of the velocity and hence it can be further
used to determine the position of the particle. The other feature is that there are
different multiplicative noises at each node, which is different from the stochastic
models first considered in [4], [8] and even in [5] and [13]. Only when lattice system
perturbed by additive white noise, there should be different noises at each node.
When the system driven by the multiplicative one, the problem was first proposed
in [8] and then was solved in [7]. In [7], due to the linear diffusion term, the classical
Doss-Sussmann-type transformation relied on Ornstein-Uhlenbeck (OU) process are
used to transform the stochastic lattice differential equations into a random lattice
system, which can be reformulated as an abstract random evolution equation over
a Gelfand evolution triplet.

In order to study the long-term dynamics of the lattice differential equations
driven by the nonlinear noise term, we introduce the colored noise (see [14, 19, 21,
22]). Let ζδ : Ω → R be a random variable given by ζδ(ω) =

1
δ

∫ 0

−∞ e
s
δ dW (∀ω ∈

Ω), then ζδ(θtω) is a special stationary Gaussian OU process, which satisfies the
stochastic differential equation dζδ + 1

δ ζδ = 1
δdW . Here W is a two-sided real-

valued Wiener process defined on the classical Wiener space (Ω,F ,P) with Ω =
{ω ∈ C(R,R) : ω(0) = 0}. The Wiener shift θt : Ω → Ω for t ∈ R is given by
θtω(·) = ω(·+ t)− ω(t), ∀ω ∈ Ω. Note that ζδ(θtω) ∈ C1(R,R), we can release the
nonlinear functions σi to be global Lipschitz continuous with small enough Lipschitz
constants. Based on [7] and [13], we first reformulate the random system (1.1) as
an abstract evolution equation, and then use its abstract theory on the existence of
weak solutions of general random differential equations defined in Gelfand triples
in Hilbert spaces to prove that the system possesses a global random attractor.

The structure of this paper is as follows. In Section 2, we introduce some basic
concepts related to random dynamical systems and global random attractors. We
also deal with the noise term and give some properties of the colored noise. In
Section 3, we recall the theorem on the existence and uniqueness of weak solutions
for general abstract random evolution equations. Later, we prove that system (1.1)
generates a continuous random dynamic system, and then the existence of the global
random attractor for (1.1) is obtained in Section 4.

2. Random Dynamical Systems and Preliminaries
In this section, we first recall some basic concepts related to random attractors for
random dynamical systems (see more in [2, 6, 12]). Let (H, ‖ · ‖H) be a separable
Banach space and (Ω,F ,P) be a probability space.

Definition 2.1. We call (Ω,F ,P, (θt)t∈R) a metric dynamical system if

(i) θ : R× Ω → Ω is (B(R)⊗ F ,F )-measurable,
(ii) θ0 = id,
(iii) θt+s = θt ◦ θs, ∀s, t ∈ R,
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(iv) θtP = P, ∀t ∈ R.
Let (Ω,F ,P) = (C0,B(C0),P), where Ω = C0 = {ω ∈ C(R,R) : ω(0) = 0}

with the open compact topology, P is the Wiener measure on B(C0). Consider
the measure-preserving transformation θt on Ω by θtω(·) = ω(· + t) − ω(t) for
(ω, t) ∈ Ω× R, then (C0,B(C0),P, (θt)t∈R) is a metric dynamical system.

Definition 2.2. A stochastic process Φ(t) is called a continuous random dynamical
system over (Ω,F ,P, (θt)t∈R) if Φ is (B([0,∞))×F ×B(H),B(H))-measurable, and
for all ω ∈ Ω,

(i) the mapping Φ(t, ω, ·) : H → H is continuous for (t, ω) ∈ R+ × Ω,
(ii) Φ(0, ω, ·) is the identity on H,
(iii) Φ(s+ t, ω, ·) = Φ(t, θsω, ·) ◦ Φ(s, ω, ·) for all s, t ≥ 0 (cocycle property).

Definition 2.3. A set-valued map A : Ω → 2H \∅, ω 7→ A(ω), where A(ω) is closed
for all ω ∈ Ω, is called a random set if for each x ∈ H the map ω 7→ dist(x,A(ω))
is measurable.

Definition 2.4. A random bounded set B(ω) ∈ H is called tempered with respect
to (θt)t∈R if for ω ∈ Ω

lim
t→±∞

log+ d(B(θ−tω))

|t|
= 0,

where d(B) = supx∈B ‖x‖H .

Now let D denote the collection of random tempered sets in H.

Definition 2.5. A random set K ∈ D is called an absorbing set in D if for B ∈ D
and ω ∈ Ω there exists tB(ω) > 0 such that

Φ(t, θ−tω,B(θ−tω)) ⊂ K(ω) for all t ≥ tB(ω).

Definition 2.6. A random set A is called a global D random attractor for Φ if
the following conditions hold:
(I1) A ∈ D is compact set for ω ∈ Ω;
(I2) A is strictly invariant, i.e. for ω ∈ Ω and all t ≥ 0 it holds

Φ(t, ω,A (ω)) = A (θtω);

(I3) A attracts all sets in D, i.e., for all B ∈ D and a.e. ω ∈ Ω it holds

lim
t→∞

d(Φ(t, θ−tω,B(θ−tω)),A (ω)) = 0,

where d(X,Y ) = supx∈X infy∈Y ‖x − y‖H is the Hausdorff semi-metric (here
X ⊂ H,Y ⊂ H).

Now we give the abstract result of the existence of global random attractors for
continuous random dynamical systems.

Proposition 2.1 (see [12]). Let Φ(t) be a continuous random dynamical system
over (Ω,F ,P, (θt)t∈R). Suppose that Φ(t) has a random absorbing set K ∈ D, K(ω)
compact for ω ∈ Ω, then Φ possesses unique a D-random attractor A = {A (ω)}ω∈Ω

with its element given by

A (ω) =
⋂
τ≥0

⋃
t≥τ

Φ(t, θ−tω,K(θ−tω).
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Next, we give some properties of colored noise. Let P = (C0,B(C0),P) be a
Wiener space. Define the product space (Ω,F ,P) :=

∏
i P in a usual way. Since

C0 is a Polish space, F can also be generated by the product topology of C0

(see e.g. [16]). Also, Ω is a Fréchet-space, the convergence is understood in the
component-wise sense. Now we expand the Wiener-shift from R× C0 to R× Ω by

θtω = (. . . , θtωi, . . . ), ω = (ωi)i∈Z ∈ Ω.

Note that

t 7→ θtωi is continuous for any ωi ∈ C0,

ωi 7→ θtωi is continuous for any t ∈ R,

we obtain that the continuity of the mappings θt· on Ω with respect to the metric
of the Fréchet-space and θ·ω on R. By [1] we get the measurability of

θ : (R× Ω,B(R× Ω)) = (R× Ω,B(R)⊗ F ) → (Ω,F ).

The measures P obtained by the projections of P to B(C0) are still θ-ergodic.
Now we introduce the noise terms used in this paper. For δ > 0 and each i ∈ Z,

denote

ζδ(ωi) := ζδ,i(ω) = − 1

δ2

∫ 0

−∞
e

s
δωi(s)ds, ω ∈ Ω.

Then the process ζδ(θtωi) := ζδ,i(θtω) satisfies the one-dimensional stochastic equa-
tion:

dζδ +
1

δ
ζδdt =

1

δ
dwi(t), (2.1)

where wi(t)(ω) = wi(t, ω) = ωi(t) for any ω ∈ Ω and t ∈ R.
In addition, the colored noise ζδ has the following properties.

Lemma 2.1 (see [14]). Let 0 < δ ≤ 1. Then there exists a (θt)t∈R-invariant subset
of full measure (still denoted by Ω), such that for any ω ∈ Ω,

(i) for each i ∈ Z,

lim
t→±∞

|ωi(t)|
t

= 0;

(ii) for each i ∈ Z, the mapping (t, ω) 7→ ζδ(θtωi) is a stationary solution of (2.1)
with continuous trajectories satisfying

lim
t→±∞

|ζδ(θtωi)|
t

= 0 for every 0 < δ ≤ 1,

lim
t→±∞

1

t

∫ t

0

ζδ(θsωi)ds = 0 uniformly for 0 < δ ≤ 1;

(iii) for each i ∈ Z and arbitrary T > 0, ε > 0, there exists δ0 = δ0(ω, T, ε) > 0
such that for all 0 < δ < δ0 and t ∈ [0, T ],∣∣∣∣∫ t

0

ζδ(θsωi)ds− ωi(t)

∣∣∣∣ < ε.
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3. Abstract Theory on Weak Solutions to General
Random Evolution Equations

In this section, we recall the framework of the existence and uniqueness of weak
solutions for general random evolution equations with specific types of operators
in [7].

Let H be a separable Hilbert space with the inner product (·, ·) and the norm
‖ · ‖. Let V be a dense subspace of H with the inner product (·, ·)V and the norm
‖ · ‖V , and assume that V has a topological vector space structure, which includes
continuous mappings. And V ′ is the dual space of V with the norm ‖ · ‖V ′ . Define
〈·, ·〉 a duality map between V and V ′ by

〈u, v〉 = (u, v), ∀u ∈ V ⊂ H, v ∈ H = H′ ⊂ V ′.

Let (ek)k∈N ∈ H be a complete orthonormal basis of H, and consider a sequence of
finite dimensional linear subspaces Hn ⊂ Hn+1 ⊂ V ⊂ H given by

Hn = span{e1, . . . , en}.

Define the projection Pn : V → Hn by

Pn =

n∑
j=1

(·, ej)ej ,

then Pn : H → H is an orthonormal projection. We assume that⋃
n

Hn

H
= H,

⋃
n

Hn

V

= V,

where · H and · V denote the closures in the norm topology of H and V , respec-
tively. Obviously, Pn can be extended to V ′.

Define a linear continuous operator Ã : V → V ′, which satisfies

〈Ãu, u〉 ≥ α‖u‖2V , ‖Ãu‖V ′ ≤ α′‖u‖, ∀u ∈ V.

We will study the following evolution system in a weak sense:

du(t)

dt
+ Ãu(t) = F̃ (θtω, u(t)) + G̃(θtω), u(0) = u0 ∈ H. (3.1)

Definition 3.1. The element u∈L2(0, T ;V ) has a weak derivative du
dt ∈L

2(0, T ;V ′)
and is called a weak solution of (3.1) if for every ξ∈V and ϕ ∈ C∞

0 (0, T ),

−
∫ T

0

(u(t), ξ)ϕ′(t)dt = −
∫ T

0

〈Ãu(t), ξ〉ϕ(t)dt+
∫ T

0

〈F̃ (θtω, u(t))+ G̃(θtω), ξ〉ϕ(t)dt.

In order to prove the existence of a weak solution to (3.1), we impose the fol-
lowing assumptions on the mappings F̃ : Ω× V → V ′ and G̃ : Ω → V ′:

(F1) (ω, t) 7→ 〈F̃ (ω, u(t)), ξ〉 is measurable for all u ∈ L2(0, T ;V ) and ξ ∈ V , and
for every ω ∈ Ω, ϕ ∈ C∞

0 (0, T ), ξ ∈ ∪m∈NHm, and any sequence u(n) such
that

u(n) → u strongly in L2(0, T ;H),
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we have

lim
n→∞

∫ T

0

〈F̃ (θtω, u(n)(t)), ξ〉ϕ(t)dt =
∫ T

0

〈F̃ (θtω, u(t)), ξ〉ϕ(t)dt.

(F2) Linear boundedness with respect to the V ′-norm: for any u ∈ V ,

‖F̃ (ω, u)‖2V ′ ≤ M̃1(ω) + M̃2(ω)‖u‖2H + M̃3‖u‖2V ,

〈F̃ (ω, u), u〉 ≤ K̃1(ω) + K̃2(ω)‖u‖2H +
α

2
‖u‖2V ,

where t 7→ M̃j(θtω), t 7→ K̃j(θtω) ∈ L1
loc(R), j = 1, 2, for all ω in a (θt)t∈R-

invariant set of full measure, and M̃3 > 0.
(F3) F̃ is semi-Lipschitz continuous: there exists a positive random variable M̃(ω)

such that

〈−Ã(x− y) + F̃ (ω, x)− F̃ (ω, y), x− y〉 ≤ M̃(ω)‖x− y‖2H for any x, y ∈ V,

where t 7→ M̃(θtω) ∈ L1
loc(R) for all ω in a (θt)t∈R-invariant set of full measure.

(F4) G̃ takes values in V ′, ω 7→ 〈G̃(ω), ξ〉 is measurable and satisfies

t 7→ ‖G̃(θtω)‖2V ′ ∈ L1
loc(R),

for all ω in a (θt)t∈R-invariant set of full measure.

The above conditions ensure that u ∈ L2(0, T ;V ) with its weak derivative in
L2(0, T ;V ′). Now, we give the main theorems of this section.

Theorem 3.1 (see [7]). Let Ã ∈ L(V, V ′) be the linear operator defined in (3.1),
and assume that F̃ and G̃ satisfy assumptions (F1)-(F4). Then

(i) For any ω in a (θt)t∈R-invariant set of full measure and u0 ∈ H, system
(3.1) possesses a unique global solution u such that, for any T > 0, we have u ∈
C([0, T ];H) ∩ L2(0, T ;V ) and its weak derivative du

dt ∈ L2(0, T ;V ′).
(ii) The solution of (3.1) generates a continuous random dynamical system.

4. Existence of Global Random Attractors for the
Random Lattice Dynamical Systems

In this section, we reformulate (1.1) to an evolution equation, and prove that it
generates a random dynamic system and hence possesses a unique global random
attractor.

Denote

H := ℓ2 =

{
u = (ui)i∈Z :

∑
i∈Z

u2i = ‖u‖2H <∞

}
with inner product

(u, v) :=
∑
i∈Z

uivi, for any u, v ∈ H.
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Let (λi)i∈Z be a sequence of positive numbers. Moreover, we assume that

i ∈ Z+ 7→ λi is increasing,

i ∈ Z− 7→ λi is decreasing,

and in addition that
∑

i∈Z λ
−1+κ
i < ∞ for some positive κ ∈ (0, 1), which implies

that
∑

i∈Z λ
−1
i <∞.

Denote

V =

{
u ∈ H :

∑
i∈Z

λiu
2
i := ‖u‖2V <∞

}
,

where ‖ · ‖V is associated with the inner product given by

(u, v)V :=
∑
i∈Z

λiuivi, for any u, v ∈ V.

Denote

V ′ =

{
u ∈ H :

∑
i∈Z

λ−1
i u2i := ‖u‖2V ′ <∞

}
,

which is exactly the dual space of V . Then (V,H, V ′) is a Gelfand triple.
Define A2 : V → V ′ by

(A2u)i = λiui, i ∈ Z,

then system (1.1) can be rewrite as

du(t)

dt
+Au(t) = F (θtω, u(t)) +G(θtω), (4.1)

where

A = A1 +A2, A1 = 2idH, (A2u) = (λiui)i∈Z,

F (ω, u) = (ui+1 + ui−1 + λiui − fi(ui) + σi(ui)ζδ(ωi))i∈Z , (4.2)
G(ω) = (η(ω)gi)i∈Z . (4.3)

In order to prove that these operators F and G satisfy the assumptions (F1)-(F4)
with α = 1

2 , we assume that fi, σi and gi satisfy the following conditions:
(A0) fi : R → R is continuous for each i ∈ Z.
(A1) There exists β = (βi)i∈Z ∈ H such that

f2i (s) ≤ λis
2 + β2

i , ∀s ∈ R.

(A2) There exists γ = (γi)i∈Z ∈ V such that

sfi(s) ≥ −γ2i +
3λi
4
s2, ∀s ∈ R.

(A3) For each i ∈ Z, there exists Lf > 0 such that

f ′i(s) ≥ −Lf , ∀s ∈ R.
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(A4) For each i ∈ Z, σi is a global Lipschitz continuous function with small
enough Lipschitz constant Lσ,i and Lσ = (Lσ,i)i∈Z ∈ ℓ∞. This further means that
there exist ψ = (ψi)i∈Z ∈ ℓ∞ with ‖ψ‖∞ < 1∗ and φ = (φi)i∈Z ∈ V1+κ (⊂ H) such
that

σ2
i (s) ≤ ψis

2 + φ2
i , ∀s ∈ R.

(A5) g = (gi)i∈Z ∈ H, and η(ω) ∈ L1(Ω) such that η(θtω) ∈ L1
loc(R).

Theorem 4.1. Suppose the assumptions (A1)-(A5) hold. Then for any u0 ∈ H
and T > 0, there exists a (θt)t∈R-invariant set of full measure such that system
(4.1) has a unique weak solution u = (ui)i∈Z ∈ C([0, T ];H) ∩ L2(0, T ;V ) on [0, T ],
with initial condition u(0) = u0 and its weak derivative du

dt ∈ L2(0, T ;V ′).

Proof. In order to check (F1)-(F4) in Theorem 3.1, we divide the proof into four
steps.

Step 1: For any u ∈ V , we have

‖F (ω, u)‖2V ′ =
∑
i∈Z

1

λi
[(ui−1 + ui+1) + λiui − fi(ui) + σi(ui)ζδ(ωi)]

2

≤ 4

λi

∑
i∈Z

(ui−1 + ui+1)
2 + 4

∑
i∈Z

λiu
2
i

+
∑
i∈Z

4

λi
f2i (ui) +

∑
i∈Z

4

λi
σ2
i (ui)ζ

2
δ (ωi). (4.4)

Now, we estimate each term in (4.4). First, we have

4
∑
i∈Z

1

λi
(ui−1 + ui+1)

2 ≤ 8‖u‖2H · sup
i∈Z

1

λi
, (4.5)

4
∑
i∈Z

λiu
2
i = 4‖u‖2V . (4.6)

By (A1) and (A4), we obtain∑
i∈Z

4

λi
f2i (ui) ≤ 4

∑
i∈Z

u2i +
∑
i∈Z

4

λi
β2
i ≤ 4‖u‖2H + 4 sup

i∈Z

1

λi
‖β‖2H, (4.7)

∑
i∈Z

4

λi
σ2
i (ui)ζ

2
δ (ωi) ≤

∑
i∈Z

4

λi
(|ψi|u2i + φ2

i )ζ
2
δ (ωi)

≤ 4 sup
i∈Z

ζ2δ (ωi)

λi
‖ψ‖∞‖u‖2H + 4 sup

i∈Z

ζ2δ (ωi)

λi
‖φ‖2H. (4.8)

Let
M1(ω) = 4 sup

i∈Z

1

λi
‖β‖2H + 4 sup

i∈Z

ζ2δ (ωi)

λi
‖φ‖2H,

M2(ω) = 8 sup
i∈Z

1

λi
+ 4 + 4‖ψ‖∞ sup

i∈Z

ζ2δ (ωi)

λi
.

Since ζδ(ωi) is an N (0, 1
2δ )-distributed Guassian random variable and

∑
i∈Z

1
λi
<

∞, we have that
∑

i∈Z
ζ2
δ (ωi)
λi

∈ L1(Ω). Then by ergodic theorem we obtain t 7→
∗We should remark here that the constant 1 is optional, which depends on the coefficient of

the Young inequality used in (4.31).
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Mi(θtω) ∈ L1
loc(R), i = 1, 2, on a (θt)t∈R-invariant set of full measure. Collecting

(4.5)-(4.8), we obtain the first inequality in (F2), that is,

‖F (ω, u)‖2V ′ ≤M1(ω) +M2(ω)‖u‖2H + 4‖u‖2V .

Let u ∈ L2(0, T ;V ), due to the continuity of fi,

t 7→ fi(ui(t)) ∈ R,

is measurable. Then the sum of measurable mappings∑
i∈Z

fi(ui(t))ξi, ξ = (ξi)i∈Z ∈ V,

is measurable. Also
(t, ωi) 7→ σi(ui)ζδ(θtωi) ∈ R

is measurable, and hence∑
i∈Z

σi(ui)ζδ(θtωi)ξi, ξ = (ξi)i∈Z ∈ V,

is measurable. Similarly, the other terms in 〈F (θtω, u(t)), ξ〉 are measurable. Thus
(ω, t) 7→ 〈F (θtω, u(t)), ξ〉 is measurable for all u ∈ L2(0, T ;V ) and ξ ∈ V . We get
that ‖F (θtω, u)‖V ′ is finite for almost all t and t 7→ F (θtω, u(t)) ∈ L2(0, T ;V ′) for
all ω ∈ Ω.

For our purpose, we choose Rm,m ∈ N, as the finite-dimensional spaces Hm.
The complete orthonormal basis of H generating Hm is by

ek =

{
ε

k
2 , if k is even,
ε−

k−1
2 , if k is odd,

where εi (i ∈ Z) denotes the vector in H, whose i-th element is 1 and 0 otherwise.
Let (u(n))n∈N be a sequence, and u(n) → u strongly in L2(0, T ;H) as n→ ∞. Since
fi is continuous, we have that

fi(u
(n)
i (t)) → fi(ui(t)),

for all i, and almost all t. Let ξ ∈ ∪m∈NHm. For some m ∈ N, it is obvious that
ξ ∈ Hm. And without loss of generality, we can choose that m is even. According
to (A1), we get∣∣∣∣∣∣

m
2∑

i=−m
2 +1

fi(u
(n)
i (t))ξi

∣∣∣∣∣∣
2

≤
m
2∑

i=−m
2 +1

f2i (u
(n)
i (t))

m
2∑

i=−m
2 +1

ξ2i

≤

 m
2∑

i=−m
2 +1

λi(u
(n)
i (t))2 +

m
2∑

i=−m
2 +1

β2
i

 m
2∑

i=−m
2 +1

ξ2i

≤ C1,m

(∥∥∥u(n)(t)∥∥∥2
H

+ 1

)
,

for almost all t ∈ [0, T ] and all n.
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Since u(n) is convergent in L2(0, T ;H), by the Lebesgue theorem, we obtain for
every ϕ ∈ C∞

0 (0, T ) that

lim
n→∞

∫ T

0

 m
2∑

i=−m
2 +1

fi(u
(n)
i )ξi

ϕ(t)dt =

∫ T

0

 m
2∑

i=−m
2 +1

fi(ui)ξi

ϕ(t)dt.

Similarly, we have
σi(u

(n)
i (t)) → σi(ui(t)),

for all i and almost all t. Since ζδ(θtωi) is continuous with respect to t ∈ [0, T ], it
holds∣∣∣∣∣∣

m
2∑

i=−m
2 +1

σi(u
(n)
i (t))ζδ(θtωi)ξi

∣∣∣∣∣∣
2

≤ sup
i∈{−m

2
+1,··· ,m

2
}

t∈[0,T ]

ζ2δ (θtωi)

m
2∑

i=−m
2 +1

σ2
i (u

(n)
i (t))

m
2∑

i=−m
2 +1

ξ2i

≤ sup
i∈{−m

2
+1,··· ,m

2
}

t∈[0,T ]

ζ2δ (θtωi)

‖ψ‖∞

m
2∑

i=−m
2 +1

(u
(n)
i (t))2 +

m
2∑

i=−m
2 +1

φ2
i

 m
2∑

i=−m
2 +1

ξ2i

≤ C2,m

(∥∥∥u(n)(t)∥∥∥2
H

+ 1

)
for almost all t ∈ [0, T ] and all n. Then, we have

lim
n→∞

∫ T

0

 m
2∑

i=−m
2 +1

σi(u
(n)
i (t))ζδ(θtωi)ξi

ϕ(t)dt

=

∫ T

0

 m
2∑

i=−m
2 +1

σi(ui(t))ζδ(θtωi)ξi

ϕ(t)dt,

for every ϕ ∈ C∞
0 (0, T ).

In the same way, we have

u
(n)
i−1(t) + u

(n)
i+1(t) → ui−1(t) + ui+1(t),

for all i, and almost all t ∈ [0, T ], and hence∣∣∣∣∣∣
m
2∑

i=−m
2 +1

(
u
(n)
i−1(t) + u

(n)
i+1(t)

)
ξi

∣∣∣∣∣∣
2

≤
m
2∑

i=−m
2 +1

(
u
(n)
i−1(t) + u

(n)
i+1(t)

)2 m
2∑

i=−m
2 +1

ξ2i
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≤ 2

 m
2∑

i=−m
2 +1

(
(u

(n)
i−1(t)

)2
+

m
2∑

i=−m
2 +1

(
(u

(n)
i−1(t)

)2 m
2∑

i=−m
2 +1

ξ2i

≤ C3,m

∥∥∥u(n)(t)∥∥∥2
H
.

This indicates that

lim
n→∞

∫ T

0

 m
2∑

i=−m
2 +1

(
u
(n)
i−1(t) + u

(n)
i+1(t)

)
ξi

ϕ(t)dt

=

∫ T

0

 m
2∑

i=−m
2 +1

(ui−1(t) + ui+1(t)) ξi

ϕ(t)dt,

for every ϕ ∈ C∞
0 (0, T ).

Finally, for every ϕ ∈ C∞
0 (0, T ) we have

lim
n→∞

∫ T

0

 m
2∑

i=−m
2 +1

λiu
(n)
i (t)ξi

ϕ(t)dt = lim
m→∞

∫ T

0

(
u(n)(t), ξi

)
V
ϕ(t)dt

=

∫ T

0

(u(t), ξi)V ϕ(t)dt.

Now, collecting all these terms of F we have

lim
n→∞

∫ T

0

〈
F (θtω, u

(n)(t)), ξ
〉
ϕ(t)dt =

∫ T

0

〈F (θtω, u(t)), ξ〉ϕ(t)dt, (4.9)

for every ϕ ∈ C∞
0 (0, T ) and ξ ∈ ∪m∈NHm. Thus, (F1) holds.

Step 2: We first prove the second inequality in (F2). For any u ∈ V , we have∑
i∈Z

(ui−1 + ui+1 + λiui)ui = 2‖u‖2H + ‖u‖2V , (4.10)

−
∑
i∈Z

fi(ui)ui ≤
∑
i∈Z

γ2i −
∑
i∈Z

3λi
4
u2i ≤ ‖γ‖2V − 3

4
‖u‖2V . (4.11)

By (A4), we have∑
i∈Z

σi(ui)ζδ(ωi)ui ≤
1

2

∑
i∈Z

|ζδ(ωi)|(σ2
i (ui) + u2i )

≤ 1

2
sup
i∈Z

|ζδ(ωi)|
(
‖u‖2H +

∑
i∈Z

σ2
i (ui)

)
≤ 1

2
sup
i∈Z

|ζδ(ωi)|
(
‖u‖2H + ‖ψ‖∞‖u‖2H + ‖φ‖2H

)
. (4.12)

Let
K1(ω) := ‖γ‖2V +

1

2
sup
i∈Z

|ζδ(ωi)|‖φ‖2H,

K2(ω) := 2 +
1

2
sup
i∈Z

|ζδ(ωi)|(1 + ‖ψ‖∞).
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Since |ζδ(ω)| ∈ L1(Ω), by the ergodic theorem again we know that t 7→ Kj(θtω) ∈
L1
loc(R) for j = 1, 2 on a (θt)t∈R-invariant set of full measure. Collecting (4.10)-

(4.12), we have

〈F (θtω, u), u〉 ≤ K1(ω) +K2(ω)‖u‖2H +
1

4
‖u‖2V , ∀ u ∈ V. (4.13)

Now, (F2) holds.
Step 3: We need to prove (F3). For any x, y ∈ V we note that∑

i∈Z

[(xi−1 + xi+1)− (yi−1 + yi+1)](xi − yi) ≤ 2‖x− y‖2H, (4.14)

−
∑
i∈Z

(fi(xi)− fi(yi))(xi − yi) ≤ Lf‖x− y‖2H, (4.15)∑
i∈Z

‖σi(x)− σi(y)‖2 ≤ ‖Lσ‖2∞‖x− y‖2H. (4.16)

Then we have∑
i∈Z

ζδ(ωi)(σn,i(xi)− σn,i(yi))(xi − yi) ≤ ‖Lσ‖∞ sup
i∈Z

|ζδ(ωi)|‖x− y‖2H. (4.17)

Collecting (4.14)-(4.17), we obtain

〈−A(x− y) + F (ω, x)− F (ω, y), x− y〉

≤ −
∑
i∈Z

λi(xi − yi)
2 +

∑
i∈Z

(
[(xi−1 + xi+1)− (yi−1 + yi+1)](xi − yi)

+ λi(xi − yi)
2 − (fi(xi)− fi(yi))(xi − yi) + (σi(xi)− σi(yi))(xi − yi)ζδ(ωi)

)
≤ M3(ω)‖x− y‖2H, ∀x, y ∈ V,

where
M3(ω) := 2 + Lf + ‖Lσ‖∞ sup

i∈Z
|ζδ(ωi)|.

By the ergodic theorem again, we have that t 7→ M3(θtω) ∈ L1
loc(R) on a (θt)t∈R-

invariant set of full measure.
Step 4: Obviously,

‖G(ω)‖2V ′ = η2(ω)
∑
i∈Z

1

λi
g2i ≤ η2(ω)‖g‖2H sup

i∈Z

1

λi
:= K3(ω) ∈ L1(Ω), (4.18)

which implies that G satisfies (F4).
Now, by Theorem 3.1, we get the results.
In the rest of the section, we need the properties of the random variables K1

and K3.

Lemma 4.1. The random variables K1(ω) and K3(ω) are tempered.

Proof. In order to obtain the temperedness of Ki (i = 1, 3), we have to prove

E sup
t∈[0,1]

log+Ki(θtω) ≤ E sup
t∈[0,1]

Ki(θtω) <∞ for i = 1, 3.
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First we note that

E sup
t∈[0,1]

K1(θtω) = E sup
t∈[0,1]

(
‖γ‖2V +

1

2
sup
i∈Z

|ζδ(ωi)|‖φ‖2H
)

= ‖γ‖2V +
1

2
E sup

t∈[0,1]

|ζδ(θtωi)|‖φ‖2V .

We know that
ζδ(θtωi) = − 1

δ2

∫ 0

−∞
e

s
δ (ωi(s+ t)− ωi(t))ds

= − 1

δ2

∫ 0

−∞
e

s
δωi(s+ t)ds+

1

δ
ωi(t).

Then

E sup
t∈[0,1]

|ζδ(θtωi)| ≤ E

(
sup

t∈[0,1]

1

δ2

∫ 0

−∞
e

s
δ |ωi(s+ t)|ds

)
+ E

(
sup

t∈[0,1]

1

δ
|ωi(t)|

)

≤ E
(

1

δ2

∫ 0

−∞
e

s
δ |ωi(s)|ds

)
+ E

(
sup

t∈[0,1]

1

δ
|ωi(t)|

)
.

Since
∫ 0

−∞ e
s
δ |s|ds <∞,

E
(

1

δ2

∫ 0

−∞
e

s
δ |ωi(s)|ds

)
<∞.

Due to the properties of ωi(t) we have

E

(
sup

t∈[0,1]

1

δ
|ωi(t)|

)
≤ E

(
sup

t∈[0,1]

1

δ
ω2
i (t)

) 1
2

≤ sup
t∈[0,1]

1

δ
t
1
2 <∞, (4.19)

which shows that
E sup

t∈[0,1]

K1(θtω) <∞.

Next, we know that
∑
i∈Z

λ−1
i <∞ and η(θtω) ∈ L1

loc(R), then we have

E sup
t∈[0,1]

K3(θtω) <∞.

The proof is complete.
Furthermore, we obtain some useful estimates for the solution u for later purpose.

Lemma 4.2. Suppose (A1)-(A5) hold. For any ω ∈ Ω and T > 0, the solution u
satisfies

‖u‖C([0,T ],H) ≤M4(‖u0‖H, T, ω),
∫ T

0

‖u‖2V dt ≤M5(‖u0‖H, T, ω),

where M4(B, T, ω) and M5(B, T, ω) are bounded functions for any (B, T ) in bounded
sets.
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Proof. For i ∈ Z, we have

dui(t)

dt
+Aui(t) = F (θtω, ui(t)) +G(θtω).

Now, due to 〈A1u, u〉 = 2‖u‖2H, 〈A2u, u〉 = ‖u‖2V , 〈G(θtω), u〉 ≤ K3(θtω) +
1
4‖u‖

2
V

and the estimate of 〈F (ω, u), u〉 in (4.13) we have

1

2
‖u‖2H + 2

∫ t

0

‖u(s)‖2Hds+
∫ t

0

‖u(s)‖2V ds

≤ 1

2
‖u0‖2H +

∫ t

0

(K1(θsω) +K3(θsω)ds

+

∫ t

0

K2(θsω)‖u(s)‖2Hds+
1

2

∫ t

0

‖u(s)‖2V ,

that is

‖u(t)‖2H + 4

∫ t

0

‖u(s)‖2Hds+
∫ t

0

‖u(s)‖2V ds

≤ ‖u0‖2H + 2

∫ t

0

(K1(θsω) +K3(θsω)ds+ 2

∫ t

0

K2(θsω)‖u(s)‖2Hds.

Notice that

‖u(t)‖2H ≤− 4

∫ t

0

‖u(s)‖2Hds−
∫ t

0

‖u(s)‖2V ds+ ‖u0‖2H

+ 2

∫ t

0

(K1(θsω) +K3(θsω))ds+ 2

∫ t

0

(K2(θsω)‖u(s)‖2Hds. (4.20)

Let
J (ω) := −λ0 − 4 + 2K2(ω).

Obviously, the mapping t 7→ J (θtω) is locally integrable for any ω ∈ Ω. Then, by
the Gronwall Lemma, we get

‖u(t)‖2H ≤ e
∫ t
0
J (θrω)dr‖u0‖2H + 2

∫ t

0

e
∫ t
s
J (θrω)dr(K1(θsω) +K3(θsω))ds. (4.21)

Define

M4(‖u0‖H, T, ω) :=e
∫ T
0

|J (θrω)|dr‖u0‖2H + 2

∫ T

0

e
∫ T
s

|J (θrω)|dr(K1(θsω)+K3(θsω))ds.

Then, we have
‖u‖C([0,T ],H) ≤M4(‖u0‖H, T, ω).

By (4.20), we have that ∫ T

0

‖u(t)‖2V dt ≤M5(‖u0‖H, T, ω),

where

M5(‖u0‖H, T, ω) := ‖u0‖2H+2

∫ T

0

(K1(θsω)+K3(θsω)+C1(‖u0‖H, T, ω)K2(θsω))ds.
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The proof is complete.
So far, we prove the global existence and uniqueness solution of system (4.1).

Let u(t, ω, u0) be the solution of system (4.1) at time t ≥ 0 with initial condition
u0 ∈ H.

Theorem 4.2. (i) Suppose (A1)-(A5) hold. For all ω ∈ Ω, the solution of system
(4.1) generates a continuous random dynamical system Φ(t, ω, u0) in H given by

Φ(t, ω, u0) = u(t, ω, u0), u0 ∈ H, t ≥ 0, ω ∈ Ω.

(ii) A family K(ω) := BH(0, R(ω)) is a closed positively invariant tempered pullback
absorbing set in H for Φ, centered at 0 with radius

R(ω) :=

(
1 + 2

∫ 0

−∞
e
∫ 0
s
J (θrω)dr(K1(θsω) +K3(θsω))ds

) 1
2

.

Proof. (i) It obviously follows from Theorem 3.1.
(ii) According to (4.21) we have

‖Φ(t, ω, u0)‖2H ≤ e
∫ t
0
J (θrω)dr‖u0‖2H + 2

∫ t

0

e
∫ t
s
J (θrω)dr(K1(θsω) +K3(θsω))ds.

Replacing ω by θ−tω in Φ we obtain

‖Φ(t, θ−tω, u0)‖2H

≤ e
∫ t
0
J (θr−tω)dr‖u0‖2H + 2

∫ t

0

e
∫ t
s
J (θr−tω)dr(K1(θs−tω) +K3(θs−tω))ds

= e
∫ 0
−t

J (θrω)dr‖u0‖2H + 2

∫ 0

−t

e
∫ 0
s
J (θrω)dr(K1(θsω) +K3(θsω))ds.

Since EJ < 0, then for any u0 ∈ B(θ−tω),

lim
t→∞

e
∫ 0
−t

J (θrω)dr‖u0‖2H ≤ lim
t→∞

e
∫ 0
−t

J (θrω)drd(B(θ−tω))
2 = 0.

Then by the temperedness of K1 and K3 we have∫ 0

−∞
e
∫ 0
s
J (θrω)dr(K1(θsω) +K3(θsω))ds <∞.

Define
R2(ω) = 1 + 2

∫ 0

−∞
e
∫ 0
s
J (θrω)dr(K1(θsω) +K3(θsω))ds.

Then the ball K(ω) := BH(0, R(ω)) is a pullback absorbing set in H. Since EJ < 0
and K1 and K3 are tempered, we obtain that the temperedness of R(ω). It is easy
to prove that K(ω) is positive invariant.

Now consider some κ ∈ (0, 1) satisfying∑
i∈Z

λκ−1
i <∞.
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Introduce the space

Vκ =

{
u = (ui)i∈Z :

∑
i∈Z

λκi u
2
i := ‖u‖2Vκ

<∞

}

with the inner product

(u, v)Vκ =
∑
i∈Z

λκi uivi, u = (ui)i∈Z, v = (vi)i∈Z.

Then we obtain the compact embedding Vκ ⊂ H (see [20, page 94]). Next, we need
to prove the compactness of the random dynamic system Φ.

Lemma 4.3. There exists a full θ-invariant set (still denoted by Ω) of Ω such that
for any ω ∈ Ω, and there exists a function M6(K,ω), which is bounded for K ≥ 0
in a bounded set such that

‖Φ(1, ω, u0)‖2Vκ
≤M6(‖u0‖H, ω).

Proof. Notice that
d

dt

(
t‖u(n)(t)‖2Vκ

)
= ‖u(n)(t)‖2Vκ

+ t
d

dt
‖u(n)(t)‖2Vκ

= ‖u(n)(t)‖2Vκ
+ 2t

(
d

dt
u(n)(t), u(n)(t)

)
Vκ

. (4.22)

Integrating (4.22) over the interval [0, 1], we have

‖u(n)(1)‖Vκ
=

∫ 1

0

‖u(n)(t)‖2Vκ
dt+

∫ 1

0

2t

(
d

dt
u(n)(t), u(n)(t)

)
Vκ

dt. (4.23)

The first term on the right-hand side of (4.23) satisfies∫ 1

0

‖u(n)(t)‖2Vκ
dt ≤ λκ−1

0

∫ 1

0

‖u(n)(t)‖2V dt ≤ λκ−1
0 C2(‖u0‖H, 1, ω).

To estimate the second term on the right-hand side (4.23), we first have(
d

dt
u(n)(t), u(n)(t)

)
Vκ

=
(
−A1u

(n) −A2u
(n) + F (u(n)) +G, u(n)

)
Vκ

, (4.24)

where (
−A1(u

(n)), u(n)
)
Vκ

= −2‖u(n)‖2Vκ
, (4.25)(

−A2(u
(n)), u(n)

)
Vκ

= −‖u(n)‖2V1+κ
. (4.26)

By (4.2) we obtain(
F (u(n)), u(n)

)
Vκ

=
∑
i∈Z

λκi

(
(u

(n)
i−1 + u

(n)
i+1)u

(n)
i + λi(u

(n)
i )2

)
+
∑
i∈Z

λκi

(
−fi(u(n)i )u

(n)
i + σi(u

(n)
i )u

(n)
i ζδ(ωi)

)
. (4.27)
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Now, we estimate each term in the right hand-side of (4.27). By (A2), (A4) and
Young’s inequality, we have∑

i∈Z

λκi

(
(u

(n)
i−1 + u

(n)
i+1)u

(n)
i

)
= 2‖u(n)‖2Vκ

, (4.28)∑
i∈Z

λκi λi(u
(n)
i )2 = ‖u(n)‖2V1+κ

, (4.29)

−
∑
i∈Z

λκi

(
fi(u

(n)
i )u

(n)
i

)
≤
∑
i∈Z

λκi

(
γ2i − 3λi

4
(u

(n)
i )2

)
≤ sup

i∈Z

1

λ1−κ
i

‖γ‖2V − 3

4
‖u(n)‖2V1+κ

,

(4.30)

∑
i∈Z

λκi

(
σi(u

(n)
i )u

(n)
i ζδ(θtωi)

)
≤
∑
i∈Z

ζ2δ (θtωi)u
2
i

λ1−κ
i

+
1

4

∑
i∈Z

λ1+κ
i σ2

i (u
(n)
i )

≤ sup
i∈Z

ζ2δ (θtωi)

λ1−κ
i

‖u‖2H +
1

4
‖ψ‖∞‖u‖2V1+κ

+
1

4
‖φ‖2V1+κ

≤ sup
i∈Z

ζ2δ (θtωi)

λ1−κ
i

‖u‖2H +
1

4
‖u‖2V1+κ

+
1

4
‖φ‖2V1+κ

,

(4.31)(
G, u(n)

)
Vκ

≤ η2(θtω)
∑
i∈Z

g2i
2λ1−κ

i

+
1

2

∑
i∈Z

λ1+κ
i (u

(n)
i )2

≤ η2(θtω) sup
i∈Z

1

2λ1−κ
i

‖g‖2H +
1

2
‖u(n)‖2V1+κ

.

(4.32)

Collecting (4.24)-(4.32), we have(
d

dt
u(n)(t), u(n)(t)

)
Vκ

≤ K4(θtω)‖u‖2H +K5(θtω)

≤ K4(θtω)M4(‖u0‖H, 1, ω) +K5(θtω),

where
K4(ω) = sup

i∈Z

ζ2δ (ωi)

λ1−κ
i

,

K5(ω) = sup
i∈Z

1

λ1−κ
i

‖γ‖2V + η2(ω) sup
i∈Z

1

λ1−κ
i

‖g‖2H +
1

4
‖φ‖2V1+κ

.

Since the
∑

i∈Z λ
κ−1
i < ∞ and ζδ(ωi) is Gaussian random variable, we have that

EKj < ∞ for j = 4, 5. Then, we obtain that there exists a function M6(‖u0‖H, ω)
such that

‖u(n)(1)‖Vκ
≤M6(‖u0‖H, ω). (4.33)

Note that the right-hand side of (4.33) is independent of n, so we have

‖u(1)‖Vκ
≤M6(‖u0‖H, ω).

The proof is complete.
Finally, we obtain the following main result.
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Theorem 4.3. Let Φ be the continuous random dynamical system generated by
(4.1), then Φ has a unique random attractor.

Proof. From Theorem 4.2, we know that Φ is a continuous random dynamical
system with positive invariant absorbing set K ∈ D. Define

B(ω) := Φ(1, θ−1ω,K(θ−1ω))
H

⊂ K(ω).

This inclusion relationship ensures that B ∈ D. Then by Lemma 4.3, we obtain the
set B is a compact absorbing set. From Proposition 2.1, we know that Φ possesses
a random global attractor.
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