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STABILIZATION OF FIXED POINTS IN
CHAOTIC MAPS USING NOOR ORBIT WITH
APPLICATIONS IN CARDIAC ARRHYTHMIA

Ashish1,†, Jinde Cao2,3 and Muhammad Aslam Noor4

Abstract Controlling chaos through stability in fixed and periodic states is
used in various engineering problems such as heat convection, reduction con-
trol, spine-wave instability, traffic control models, cardiac arrhythmia, chemi-
cal chaos, etc. Traditionally, this process is done in the coordination of chaos
and stability in fixed and periodic points by using fixed point iterative proce-
dures. Therefore, this article deals with a novel alliance between stabilization
in one-dimensional discrete maps and Noor fixed point iterative procedure.
The procedure contains α, β, γ and r, as its four new control parameters
due to which the stability rate increases more rapidly than the other existing
procedures. The stability theorems and a few time varying examples for fixed
and periodic points are studied using Noor control system. Further, the Lya-
punov exponent property is also described and the maximum Lyapunov value
is determined to examine the stability in fixed and periodic points. Moreover,
an improved control-based cardiac arrhythmia model is discussed in the Noor
control system. Surprisingly, it is noted that the added new parameters α, β,
and γ may increase the stability in chaotic arrhythmia rapidly.

Keywords Chaos, stability, lterative procedure, difference maps, Lyapunov
exponent.
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1. Introduction
The chaotic phenomena generated by discrete difference maps and ordinary differ-
ential equations have played a vital role in every branch of science, such as physics,
chemistry, biology, economics, electronic circuits, and engineering. Among the
problems related to chaotic phenomena is chaos control that stabilizes the irregu-
lar fixed and periodic points in nonlinear one-dimensional maps. In the last two
decades, the chaos control and the stability in aperiodic and irregular system using
fixed-point methods applied to control parameters as well as system variables have
dominated the researchers and academicians in chaos theory [28]. As far as is con-
cerned, such methods were first established to solve the discrete dynamical systems
by Ott et al. [27] and Ushio et al. [43]. Afterward, the study of the stability of fixed
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and periodic points was extended by Vieira et al. [14] in 1996 through a delayed
feedback control system. But the modern study of stability and control fully trust
on the mathematical as well as computational work established by Pyragas [33] in
1992 through difference and differential equations. Later on, several methods were
presented to stabilize the chaos such as nonlinear dynamical inversion [23], oscil-
lating control system [39], constant proportional system [11, 30], predictive control
system [32], delayed feedback control [13, 37], entropy control technique [38] and
active control technique [34].

In the last few decades, the theory of control is considered at the top of the
modern study of nonlinear systems and is used in the processing and modeling of
various scientific advancements. In 1991, Ditto et al. [17] established the control
of chaos through stability in periodic fixed points of orders one and two. In 1992,
Gerfinkel et al. [19] using chaos control property examined the stability in cardiac
arrhythmias of rabbit ventricular. Further, Singer and Bau [42] studied theoreti-
cally that the control feedback system can be used to examine the change in the
properties of the thermal convection in a toroidal loop and also found that the
chaos can be suppressed using feedback control. In 1991, Peng et al. [31] studied
the isothermal chaos and tried to control it using aperiodic orbits of order 1, 2,
and 3. In 1997, Sinha [41] introduced various methods to stabilize the dynamical
behavior in nonlinear systems and stabilized the regular as well as chaotic trajec-
tories rapidly to the desired state. Moreover, due to the presence of irregularity in
traffic models Jarett and Zhang [21] analyzed the evidence of chaotic phenomena
in trip distribution. All the results on traffic control models are influenced by the
methodology to detect the irregular motion given by Disbro and Frame [16]. In
2012, Grether et al. [20] demonstrated an efficient transportation problem that de-
pends on two control parameters. In 2014, Ashish et al. [1] introduced an escape
criteria for one-dimensional maps using Noor orbit and generated interesting fractal
images (see also [12]). Also, for more scientific advancements in the stability and
control researchers can follow Noor et al. [25, 26], Jiang et al. [22], Boccaletti et
al. [10], Shang et al. [40], Elaydi [18], etc.

In 2017, Baleanu et al. [9] examined the monotonicity and asymptotic stability
in the fractional type chaotic maps with Caputo delta property and also proved
the stability using the Lyapunov direct method. The minimum entropy control,
another interesting property to control the chaotic behavior in chaotic maps was
illustrated by Sadeghian et al. [36] using fuzzy algorithm. In 2018 and 2019, in a
series of papers, Ashish et al. [2–4] established the chaotic phenomena in chaotic
maps using superior control technique and also demonstrated a chaos-based im-
proved application in traffic control system. Recently, in 2021 they also examined
the dynamics in modulated chaotic maps in Ashish et al. [5] and discrete hyperbol-
icity in Ashish et al. [6]. In 2022, Renu et al. [35] studied the dynamical properties
of a novel difference equation using the Mann procedure. The dynamical properties
like periodicity, fixed-point evolution and Lyapunov exponent were examined using
analytical and geometrical interpretations. Further, the dynamic performance for
a generalized cubic equation was carried out in [7,8]. Recently, Panigoro et al. [29]
established a Caputo fractional order logistic model to study the preservation of a
population with the Allee effect and proportional harvesting. Also, they examined
the dynamic property of the model such as fixed points, stability, saddle node and
period-doubling bifurcation followed by Cobweb, maximum Lyapunov exponent and
bifurcation.
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This article shows an advancement in the study of chaos control using the Noor
fixed-point feedback procedure, a four-step feedback approach. This article is or-
ganized into four sections. Section 1 presents a brief literature review on chaos
control and their applications. In Section 2, a few basic definitions and notions
are discussed. Further, the main outcomes of the article are presented in Section 3
using the Noor control system. At last, the whole paper is concluded in Section 4.

2. Preliminaries
For the sake of convenience, the several famous definitions and results of the study
that plays an important role in further sections are assembled in this region.

Definition 2.1. Let ϕr be a self-map defined on a non-empty set V . If ϕr(v) = v,
for some v ∈ V , then v is known as a regular point for the map ϕr. Also, v is called
periodic point of period-p if ϕp

r(v) = v, where p ∈ Z+ [15].

Definition 2.2. Let ϕr be a self-map defined on V and let ϕ′
r(v) be the first order

derivative of the map ϕr, where v is a regular fixed point for the map ϕr. Then,
for the condition |ϕ′

r(v)| < 1, v is stable and for the condition |ϕ′
r(v)| > 1, v is

unstable [15].

Surprisingly, the fixed point feedback procedures are assumed as the backbone
of the chaos theory in nonlinear dynamics, which are used to solve the dynamical
properties in the difference and differential equations. Following is a more efficient
feedback procedure:

Definition 2.3. Let {vn}n∈N be a sequence of recursive outcomes of the following
system depending on the parameters α, β, γ ∈ (0, 1) :

zn = (1− γ)vn + γϕr(vn),

yn = (1− β)vn + βϕr(zn),

and vn+1 = (1− α)vn + αϕr(yn),

where ϕr : V → V is a one-dimensional chaotic map. Then, the whole arrangement
is called as Noor feedback procedure [24]. Since the relation contains α, β, γ and
r, as its four new control parameters, therefore, it is used as a controlling system
in our study. Further, it is seen that for α = 1, β = 0 = γ it reduces into Picard
procedure, for β = 0 = γ it reduces into Mann procedure and for γ = 0 it reduces
into Ishikawa iterative procedure. In further section, we deals with the stability in
various orbits using the Noor procedure.

3. Stabilization via Noor Orbit
3.1. Stability in fixed points
Throughout, this section we deal with the stabilization in unstable fixed points,
periodic points and chaos using Noor control system. Among the difference and
differential dynamical systems that exhibit fixed state, periodic state, and chaos, a
well-known one-dimensional family is given by

vn+1 = ϕr(vn), n ∈ N. (3.1)
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In particular, a few one-dimensional maps which are used in the nonlinear dy-
namics are logistic map rv(1− v), quadratic map 1− rv2, cubic map rv3− (1− r)v,
Ricker map ve(1−v)r and the generalized map rv(1 − v)α, where r is a control pa-
rameter. Therefore, the following control system is proposed to control the chaos by
stabilizing fixed and periodic points embedded into chaos by introducing external
parameters. From Definition 2.3, for v0 ∈ [a, b], let v1 be the first output, then, we
have

z0 = (1− γ)v0 + γϕr(v0),

y0 = (1− β)v0 + βϕr(z0),

and v1 = (1− α)v0 + αϕr(y0).

Inductively, we can say

vn+1 = (1− α)vn + αϕr(yn),

yn = (1− β)vn + βϕr(zn),

and zn = (1− γ)vn + γϕr(vn) = Nα,β,γ(vn) (say), (3.2)

where n ∈ N . The relation (3.2) contains α, β, γ and r, as its four new control
parameters and hence the relation is called as Noor control system. Further, we
notice that for β = 0 = γ the Noor control system reduces into Mann control system
given by Ashish et al. [4]. Throughout this article, it is proposed to examine the
experimental as well as mathematical analysis for chaos into stability for an efficient
range of control parameters α, β and γ. The following results are derived:

Theorem 3.1. Let Nα,β,γ(v) be the Noor control system (3.2) with zn = yn = v∗

and ϕr be an original nonlinear dynamical system (3.1). Then, v∗ ∈ V is the
common fixed point for the system (3.1) and (3.2), that is, ϕr(v

∗) = v∗ if and only
if Nα,β,γ(v

∗) = v∗, for some v∗ ∈ V .

Proof. Let v∗ ∈ V be a regular fixed point for a nonlinear dynamical system ϕr.
Then, by using the Noor control system (3.2), we obtain

Nα,β,γ(v
∗) = αϕr(βϕr(γϕr(v

∗) + (1− γ)v∗) + (1− β)v∗) + (1− α)v∗,

= αϕr(βϕr(γv
∗ + (1− γ)v∗) + (1− β)v∗) + (1− α)v∗,

= αϕr(v
∗ − βv∗ + βϕ(v∗)) + (1− α)v∗,

= αϕr(v
∗ − βv∗ + βv∗) + (1− α)v∗, (∵ ϕr(v

∗) = v∗)

= αϕr(v
∗) + (1− α)v∗,

= αv∗ + (1− α)v∗, (∵ ϕr(v
∗) = v∗)

∴ Nα,β,γ(v
∗) = v∗.

Thus, the Noor control system Nα,β,γ(v) shares same set of fixed points v∗ of
the nonlinear dynamical system ϕr.

Conversely, let v∗ ∈ V satisfy Nα,β,γ(v
∗) = v∗ under the given condition zn =

yn = v∗, such that

αϕr(βϕr(γϕr(v
∗) + (1− γ)v∗) + (1− β)v∗) + (1− α)v∗ = v∗

αϕr(βϕr(γϕr(v
∗) + (1− γ)v∗) + (1− β)v∗)− αv∗ = 0

α[ϕr(βϕr(γϕr(v
∗) + (1− γ)v∗) + (1− β)v∗)− v∗] = 0
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ϕr(βϕr(γϕr(v
∗) + (1− γ)v∗) + (1− β)v∗) = v∗ (∵ α ̸= 0)

ϕr(βvr(γϕr(zn) + (1− γ)zn) + (1− β)yn) = v∗ (∵ zn = yn = v∗)

ϕr(βϕr(zn) + yn − βyn) = v∗

ϕr(βv
∗ + v∗ − βv∗) = v∗ (∵ zn = yn = v∗)

∴ ϕr(v
∗) = v∗.

Hence, the Noor control system Nα,β,γ(v) and the nonlinear dynamical system
ϕr shares same set of fixed points v∗. This completes the proof.

Theorem 3.2. Let v∗ ∈ V be an unstable regular fixed point for a nonlinear dy-
namical system ϕr such that |ϕ′

r(v
∗)| > 1. Then, ∋ a specific range of parame-

ters α, β and γ such that α ∈ (αmin, αmax) = Λα, β ∈ (βmin, βmax) = Λβ and
γ ∈ (γmin, γmax) = Λγ in the Noor control system (3.2) such that |N ′

α,β,γ(v
∗)| < 1.

Proof. Let v∗ ∈ V be an unstable regular fixed point for a nonlinear dynamical
system ϕr such that |ϕ′

r(v
∗)| > 1. Then, we use the following first order derivative

statement of Devaney [15], a point v∗ ∈ V is stable or sink when |N ′
α,β,γ(v

∗)| < 1
and is unstable or stretch when |N ′

α,β,γ(v
∗)| > 1. Thus, we determine

N ′
α,β,γ(v

∗) = αϕ′
r[βϕr(γϕr(v

∗) + (1− γ)v∗) + (1− β)v∗].[βϕ′
r(γϕr(v

∗) + (1− γ)v∗)

+ (1− β)].[γϕ′
r(v

∗) + 1− γ] + (1− α),

= αϕ′
r[βϕr(γv

∗ + (1− γ)v∗) + (1− β)v∗].[βϕ′
r(γv

∗ + (1− γ)v∗)

+ (1− β)].[γϕ′
r(v

∗) + 1− γ] + (1− α),

= αϕ′
r[βϕr(v

∗) + (1− β)v∗].[βϕ′
r(v

∗) + (1− β)].[γϕ′
r(v

∗) + 1− γ]

+ (1− α),

= αϕ′
r(v

∗).[βϕ′
r(v

∗) + (1− β)].[γϕ′
r(v

∗) + 1− γ] + (1− α),

N ′
α,β,γ(v

∗) = αϕ′
r(v

∗).[1 + β(ϕ′
r(v

∗)− 1)].[1 + γ(ϕ′
r(v

∗)− 1)] + (1− α). (3.3)

Since v∗ is an unstable fixed-point, that is, |ϕ′
r(v

∗)| > 1. Therefore, two cases
arises for the Noor control system Nα,β,γ(v). Let’s prove one by one:

Case-I. When v∗ > 0 is not stable for the system ϕr, that is, ϕ′
r(v

∗) < −1.
Then, from equation (3.3) if N ′

α,β,γ(v
∗) < 1, where α, β, γ ∈ (0, 1), we can write

αϕ′
r(v

∗).[1 + β(ϕ′
r(v

∗)− 1)].[1 + γ(ϕ′
r(v

∗)− 1)] + (1− α) < 1,

αϕ′
r(v

∗).[1 + β(ϕ′
r(v

∗)− 1)].[1 + γ(ϕ′
r(v

∗)− 1)]− α < 0,

α[ϕ′
r(v

∗).[1 + β(ϕ′
r(v

∗)− 1)].[1 + γ(ϕ′
r(v

∗)− 1)]− 1] < 0,

ϕ′
r(v

∗).[1 + β(ϕ′
r(v

∗)− 1)].[1 + γ(ϕ′
r(v

∗)− 1)]− 1 < 0,

thus, α > 0 = αmin. (3.4)

On the other hand, we get

ϕ′
r(v

∗).[1 + β(ϕ′
r(v

∗)− 1)].[1 + γ(ϕ′
r(v

∗)− 1)]− 1 < 0,

ϕ′
r(v

∗).[1 + β(ϕ′
r(v

∗)− 1)].[1 + γ(ϕ′
r(v

∗)− 1)] < 1,

[1 + β(ϕ′
r(v

∗)− 1)].[1 + γ(ϕ′
r(v

∗)− 1)] <
1

ϕ′
r(v

∗)
. (3.5)

Solving (3.5), we obtain

β < βmax = max

{
1

ϕ′
r(v

∗)− 1

[
1

ϕ′
r(v

∗)

(
1

1 + γ(ϕ′
r(v

∗)− 1)

)
− 1

]}
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=
1

ϕ′
r(v

∗)− 1

[
1

ϕ′
r(v

∗)

(
1

1 + γmin(ϕ′
r(v

∗)− 1)

)
− 1

]
, (3.6)

and

γ < γmax = max

{
1

ϕ′
r(v

∗)− 1

[
1

ϕ′
r(v

∗)

(
1

1 + β(ϕ′
r(v

∗)− 1)

)
− 1

]}
=

1

ϕ′
r(v

∗)− 1

[
1

ϕ′
r(v

∗)

(
1

1 + βmin(ϕ′
r(v

∗)− 1)

)
− 1

]
. (3.7)

Now, if N ′
α,β,γ(v

∗) > −1, then, from (3.3), we can say

αϕ′
r(v

∗).[1 + β(ϕ′
r(v

∗)− 1)].[1 + γ(ϕ′
r(v

∗)− 1)] + (1− α) > −1,

αϕ′
r(v

∗).[1 + β(ϕ′
r(v

∗)− 1)].[1 + γ(ϕ′
r(v

∗)− 1)]− α > −2,

α[ϕ′
r(v

∗).[1 + β(ϕ′
r(v

∗)− 1)].[1 + γ(ϕ′
r(v

∗)− 1)]− 1] > −2. (3.8)

Solving (3.8) for the parameters α, β and γ, we obtain

α<αmax = max

{
−2

ϕ′
r(v

∗).[1 + β(ϕ′
r(v

∗)− 1)].[1 + γ(ϕ′
r(v

∗)− 1)]− 1

}
,

=
−2

ϕ′
r(v

∗).[1 + βmin(ϕ′
r(v

∗)− 1)].[1 + γmin(ϕ′
r(v

∗)− 1)]− 1
, (3.9)

β>βmin=min

{[
1

1 + γ(ϕ′
r(v

∗)− 1)

][
1

ϕ′
r(v

∗)− 1

(
1

ϕ′
r(v

∗)

(
1− 2

α

)
− 1

)
+ γ

]}
=

[
1

1+γmax(ϕ′
r(v

∗)−1)

][
1

ϕ′
r(v

∗)−1

(
1

ϕ′
r(v

∗)

(
1− 2

αmax

)
−1

)
+γmin

]
,

(3.10)

γ>γmin = min

{[
1

1 + β(ϕ′
r(v

∗)− 1)

][
1

ϕ′
r(v

∗)− 1

(
1

ϕ′
r(v

∗)

(
1− 2

α

)
− 1

)
+ β

]}
=

[
1

1+βmax(ϕ′
r(v

∗)−1)

][
1

ϕ′
r(v

∗)−1

(
1

ϕ′
r(v

∗)

(
1− 2

αmax

)
−1

)
+βmin

]
.

(3.11)

Then, from (3.4), (3.6), (3.7), (3.9), (3.10) and (3.11), we find an effective regime
Λα = (αmin, αmax), Λβ = (βmin, βmax) and Λγ = (γmin, γmax) for the control
parameters α, β and γ, respectively.

Case-II. When v∗ > 0 is not stable for the system ϕr, that is, ϕ′
r(v

∗) > 1.
Then, from (3.3) for N ′

α,β,γ(v
∗) < 1, where α, β, γ ∈ (0, 1), we have

αϕ′
r(v

∗).[1 + β(ϕ′
r(v

∗)− 1)].[1 + γ(ϕ′
r(v

∗)− 1)] + (1− α) < 1,

α[ϕ′
r(v

∗).[1 + β(ϕ′
r(v

∗)− 1)].[1 + γ(ϕ′
r(v

∗)− 1)]− 1] < 0,

thus, α < 0 = αmax. (3.12)

Also, if N ′
α,β,γ(v

∗) > −1, then, from (3.8), we get

α > αmin =
−2

ϕ′
r(v

∗).[1 + βmax(ϕ′
r(v

∗)− 1)].[1 + γmax(ϕ′
r(v

∗)− 1)]− 1
. (3.13)
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Thus, from (3.12) and (3.13) it clear that α ̸∈ (αmin, αmax) which a contradiction
because α ∈ (0, 1). Hence the intervals Λα = (αmin, αmax), Λβ = (βmin, βmax) and
Λγ = (γmin, γmax) determined in Case-I will stabilize the fixed point v∗ in an
original system under the condition ϕ′

r(v
∗) < −1.

Remark 3.1. In connection with an unstable regular point v∗ ∈ V and the sign of
derivative for ϕr(v), there exists a prescribed range of control parameters α, β and γ
in the form (αmin, αmax), (βmin, βmax) and (γmin, γmax), respectively through Noor
control system (3.2), where the fixed-point v∗ get stabilized, that is, |N ′

α,β,γ(v
∗)| <

1.

Remark 3.2. It is noticed that if we take β = 0 and γ = 0 in the Theorem 3.2,
then it reduces into the superior control system given by Ashish et al. [4].

Example 3.1. Let ϕr : [0, 1] → [0, 1] be a chaotic map given by ϕ4(v) = 4v(1− v),
where v ∈ [0, 1] having v1 = 0 and v2 = 3/4 as its two unstable fixed-point, that is,
ϕ′
4(v1) > 1 and ϕ′

4(v2) < −1. Then, using the Noor control system (3.2) examine
an effective range of α, β and γ for which the fixed points v1 and v2 are stable.

Solution. To examine the prescribed range for the control parameters α, β and
γ in the stabilization of the fixed points v1 and v2, let us start with the time-series
diagram of an original system 4v(1 − v). Figure 1(a) shows a complete irregular
behavior for an original system 4v(1−v), where v ∈ [0, 1]. Therefore, using Theorem
3.2, it is possible to determine a specific regime of the control parameters α, β and
γ in the system Nα,β,γ(v), where the fixed points v1 and v2 attains its complete
stability for an original system. For this, let us start with the derivative of the Noor
control system Nα,β,γ(v):

N ′
α,β,γ(v) = αϕ′

r(v).[1 + β(ϕ′
r(v)− 1)].[1 + γ(ϕ′

r(v)− 1)] + (1− α). (3.14)

Now, taking ϕ′
4(v2) = 4(1− 2v) and v2 = 3

4 in (3.14), we get

N ′
α,β,γ(3/4) = −2α(1− 3β)(1− 3γ) + (1− α). (3.15)

Since ϕ′
4(v2) = −2 < −1 at v2 = 3

4 . Then, the following two cases arises for the
stability condition |N ′

α,β,γ(v2)| < 1:

Case-I. When N ′
α,β,γ(v2) < 1 and ϕ′

4(v2) = −2 < −1, then, from (3.15) we get

− 2α(1− 3β)(1− 3γ) + 1− α < 1,

− 2α(1− 3β)(1− 3γ)− α < 0,

α[−2(1− 3β)(1− 3γ)− 1] < 0, (3.16)
thus, α > 0 = αmin. (3.17)

On the other hand from (3.16), we can say

β < max

{
1

3

(
1

2(1− 3γ)
− 1

)}
=

1

3

(
1

2(1− 3γmin)
− 1

)
, (3.18)

and, γ < max

{
1

3

(
1

2(1− 3β)
− 1

)}
=

1

3

(
1

2(1− 3βmin)
− 1

)
. (3.19)
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Taking γmin = 0 and βmin = 0 since β, γ ∈ (0, 1), we get

β < βmax =
1

2
, and γ < γmax =

1

2
. (3.20)

Case-II. When N ′
α,β,γ(v2) > −1 and ϕ′

4(v2) = −2 < −1, then, from (3.15) we
can write

− 2α(1− 3β)(1− 3γ) + 1− α > −1,

− 2α(1− 3β)(1− 3γ)− α > −2. (3.21)

Now, solving (3.21), we obtain

α < max

{
2

2(1− 3β)(1− 3γ)− 1

}
=

2

2(1− 3βmin)(1− 3γmin)− 1
. (3.22)

Putting γmin = 0 and βmin = 0, we have

α < αmax =
2

3
. (3.23)

Similarly, solving (3.21) for β and γ, then, we can say

β > min

{(
1

1− 3γ

)[
1

−3

(
1

−2

(
1− 2

α

)
− 1

)
+ γ

]}
,

=

(
1

1− 3γmax

)[
1

−3

(
1

−2

(
1− 2

αmax

)
− 1

)
+ γmin

]
, (3.24)

and

γ > min

{(
1

1− 3β

)[
1

−3

(
1

−2

(
1− 2

α

)
− 1

)
+ β

]}
=

(
1

1− 3βmax

)[
1

−3

(
1

−2

(
1− 2

αmax

)
− 1

)
+ βmin

]
. (3.25)

Now, taking γmax = 1, γmin = 0, βmax = 1, βmin = 0 and αmax = 2
3 in (3.24)

and (3.25), we obtain

β > βmin = 0 and γ > γmin = 0. (3.26)

Thus, from (3.17), (3.20), (3.23) and (3.26) we obtain an effective regime of
control parameters: Λα = (0, 2

3 ), Λβ = (0, 1
2 ) and Λγ = (0, 1

2 ) in which the fixed
point v2 = 3

4 is stabilized globally. While the Figure 1(b) gives a time-series plot for
the values α ∈ (0, 2

3 ), β ∈ (0, 1
2 ) and γ ∈ (0, 1

2 ), where the fixed point v2 is always
stable. Figure 1(c) and 1(d) shows that bifurcation plot in which all the periodic
states and chaotic regime approaches to a stable fixed point v2 = 3

4 .
Similarly, for the fixed point v1 = 0, ϕ′

4(v1) = 4 > 1. Then, from Theorem 3.2,
we have

N ′
α,β,γ(0) = 4α(1 + 3β)(1 + 3γ) + (1− α). (3.27)

Since ϕ′
4(v1) = 4 > 1 at v1 = 0. Then, again for the stability condition

|N ′
α,β,γ(v1)| < 1 following two cases arises:
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Figure 1. (a) Unstable fixed point plot for an original map ϕ4(v) = 4v(1 − v), (b) Stable fixed point
plot for an original map ϕ4(v) = 4v(1 − v) when N = 50, (c) Bifurcation plot for stable fixed points at
α = 0.4, β = 0.3 and γ = 0.3, (d) Bifurcation plot versus stable fixed points at α = 0.4, β = 0.3 and
γ = 0.3

Case-I. When N ′
α,β,γ(v1) < 1 and ϕ′(v1) = 4 > 1, then, from (3.27) we get

4α(1 + 4β)(1 + 4γ) + 1− α < 1,

4α(1 + 4β)(1 + 4γ)− α < 0,

thus, α < 0 = αmax. (3.28)

Case-II. When N ′
α,β,γ(v1) > −1 and ϕ′(v1) = 4 > 1, then, from (3.27), we get

α > αmin = min

{
−2

4(1 + 3β)(1 + 3γ)− 1

}
=

−2

4(1 + 3βmax)(1 + 3γmax)− 1
. (3.29)

Substituting βmax = 1 and γmax = 1, we obtain

α > αmin = − 2

63
. (3.30)

Thus, from (3.28) and (3.30), we find that Λα = (αmin, αmax) = (− 2
63 , 0), which

is a contradiction since α ∈ (0, 1). Therefore, it is clear that the result can not be
applied for the fixed point v1 = 0.

Example 3.2. Let ϕr : [0, 1] → [0, 1] be a cubic map given by ϕ4(v) = 4v3 − 3v,
where v ∈ [0, 1] having v1 = 0, v2 = 1 and v3 = −1 as its three unstable fixed
points, that is, ϕ′

4(v1) < −1, ϕ′
4(v2) > 1 and ϕ′

4(v3) > 1. Then, using the Noor
control system (3.2) examine the specific range for the parameters α, β and γ for
which the fixed points v1, v2 and v3 are stable.

Solution. Let ϕ4(v) = 4v3 − 3v be an original cubic map, having three unstable
fixed point v1 = 0, v2 = 1 and v3 = −1. Then, using Theorem 3.2 and the Noor
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control system Nα,β,γ(v), let us determine the stability in v1, v2 and v3. Therefore,
we have

ϕ′
4(v1) = −3 < −1, ϕ′

4(v2) = 9 > 1 and ϕ′
4(v3) = 9 > 1. (3.31)

Now, first we examine the stabilization in the fixed point v1. Taking ϕ′
4(v1) = −3

at v1 = 0, we get

N ′
α,β,γ(0) = −3α(1− 4β)(1− 4γ) + (1− α). (3.32)

Since ϕ′
4(v1) = −3 < −1, therefore, for the stabilization of v1 two case arises,

that is, Case-I for N ′
α,β,γ(v1) < 1 and Case-II for N ′

α,β,γ(v1) > −1. Then, using
Theorem 3.2, we obtain the following conditions:

αmin = 0, βmin = 0, γmin = 0, (3.33)

αmax =
2

3(1− 4βmin)(1− 4γmin)− 1
=

2

3
, (3.34)

βmax =
1

−4

[
1

−3

(
1

1− 4γmin

)
− 1

]
=

1

3
, (3.35)

and, γmax =
1

−4

[
1

−3

(
1

1− 4βmin

)
− 1

]
=

1

3
. (3.36)

Then, from (3.33)-(3.36), we get the required intervals Λα = (0, 2
3 ), Λβ = (0, 1

3 ),
and Λγ = (0, 1

3 ), where the fixed point v1 = 0 get stabilized for the given original
system. Similarly, for the unstable fixed points v2 and v3 we get Λα = ( 23 , 0),
Λβ = ( 13 , 0), and Λγ = ( 13 , 0) which a contradiction since α, β, γ ∈ (0, 1). Thus, v2
and v3 can not be stabilized.

3.2. Stability in periodic fixed points
Theorem 3.3. Let v∗ ∈ V be an unstable periodic point for a nonlinear dynamical
system ϕr, that is, |ϕp′

r (v∗)| > 1. Then, ∋ a specific range of control parameters α,
β and γ such that α ∈ (αmin, αmax), β ∈ (βmin, βmax) and γ ∈ (γmin, γmax) in the
Noor control system (3.2) such that |Np′

α,β,γ(v
∗)| < 1.

Proof. Let v∗ ∈ V be an unstable periodic point for a nonlinear dynamical system
ϕr. For the stabilization of v∗ using Noor control system (3.2), let us start with the
derivative of pth iterate of Nα,β,γ(v) and the original system ϕr as follows:

Np′

α,β,γ(v) = αϕp′

r (v∗).[1 + β(ϕp′

r (v∗)− 1)].[1 + γ(ϕp′

r (v∗)− 1)] + (1− α). (3.37)

Since v∗ is an unstable periodic fixed-point, that is, |ϕp′

r (v∗)| > 1. Therefore,
two case arises using the Noor control system Nα,β,γ(v). In Case-I, for ϕp′

r (v∗) < −1

and −1 < Np′

α,β,γ(v
∗) < 1, we determine the following effective regime of control

parameters α, β and γ as proved in Theorem 3.2 by replacing ϕ′
r(v) into ϕp′

r (v) :

Λp
α = (αmin, αmax), Λp

β = (βmin, βmax), and Λp
γ = (γmin, γmax). (3.38)

Similarly, in Case-II, for ϕp′

r (v∗) > 1 and −1 < Np′

α,β,γ(v
∗) < 1, it is examined

that α ̸∈ Λp
α, β ̸∈ Λp

β and γ ̸∈ Λp
γ which is a contradiction as α, β, γ ∈ (0, 1). Thus,

the intervals Λp
α, Λp

β and Λp
γ established in Case-I will be used to determine the

stability in aperiodic point v∗ of an original system ϕr.
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Example 3.3. Let ϕr be an original one-dimensional map defined by ϕ4(v) =
4v(1−v), where v ∈ [0, 1]. Then, using the Noor control system N2

α,β,γ(v) determine
the stability in periodic fixed-points of order-2 for an effective regime of the control
parameters α, β and γ.

Solution. Let v1 = 5+
√
5

8 and v2 = 5−
√
5

8 be the two unstable periodic point for
the map ϕ4(v) = 4v(1−v), that is, |ϕ2′

4 (v)| > 1. Therefore, to examine the stability
of v1 and v2, let us start with the following Noor control system:

N2
α,β,γ(v) = αϕ2

4(v).[1 + β(ϕ2
4(v)− 1)].[1 + γ(ϕ2

4(v)− 1)] + (1− α). (3.39)

Since v1 and v2 are the two regular fixed point for the map ϕ2
4(v), that is,

ϕ2
4(v1) = v1 and ϕ2

4(v2) = v2. Therefore, let us consider

ϕ2
4(v) = 16v − 16v2 − 64v2(1− v)2,

then, ϕ2′

4 (v) = 16v − 32v − 128v(1− v)2 + 128v2(1− v). (3.40)

Substituting v1 = 5+
√
5

8 and v2 = 5−
√
5

8 in (3.40), we get ϕ2′

4 (v1) = −3.99 =

ϕ2′

4 (v2). Then, using Theorem 3.3, we obtain the following effective regime for α, β
and γ, where both the fixed points v1 and v2 will stabilize:
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Figure 2. (a) Unstable periodic point plot for an original map ϕ4(v) = 4v(1 − v), (b) Stable periodic
point plot for an original map ϕ2

4(v) when N = 50, (c) Bifurcation plot for stable periodic points at
α = 0.3, β = 0.2 and γ = 0.2, (d) Bifurcation plot versus stable periodic points at α = 0.3, β = 0.2 and
γ = 0.2

Λ2
α =

(
0,

2

5

)
, Λ2

β =

(
0,

1

4

)
, and Λ2

γ =

(
0,

1

4

)
. (3.41)

Figure 2(a) presents a time-series plot for unstable periodic fixed points v1 and v2
using an original system ϕr. While Figures 2(b)-2(d), shows the complete stability
behavior. Figure 2(b), represents that all the movement started with v0 ∈ [0, 1]
approaches to v1 and v2, respectively. While the bifurcation plot in Figure 2(d)
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gives a very interesting view of stability of periodicity for the parameter r ∈ [0, 4].
The irregularity and all the periodicity other then v1 and v2 reduces to stable
periodicity of order 2.

3.3. Maximum Lyapunov exponent
The Lyapunov exponent, a well-known characteristics of chaos theory is used to
determine the stability and unstability behavior of the fixed and periodic points in
nonlinear systems. It is well-known that the negative Lyapunov exponent measures
the stability in the system and the positive Lyapunov exponent shows unstability,
that is, chaos. In this section, we deal with the definition of maximum Lyapunov
exponent to study the stability in fixed and periodic points of chaotic maps using
Noor control system (3.2). Therefore, let us start with the following Noor system:

Nα,β,γ(v) = αϕr(βϕr(γϕr(v) + (1− γ)v) + (1− β)v) + (1− α)v,

where ϕr(v) denotes an original one-dimensional chaotic map. Now, for the initial
values v0 and v0 + h , where h ∈ (0, 1), the nth recursive difference in Nα,β,γ(v) is
given by

Nn
α,β,γ(v0 + h)−Nn

α,β,γ(v0) = h. expnθ,

that is,
Nn

α,β,γ(v0 + h)−Nn
α,β,γ(v0)

h
= expnθ .

Taking limit as n → ∞ on both side, we get

θ =
1

n
log |Nn′

α,β,γ(v0)|.

Then, from Devaney’s [15] Definition of derivative for periodic orbits, we obtain

θ =
1

n
log |N ′

α,β,γ(vn).N
′
α,β,γ(vn−1). . . . N

′
α,β,γ(v0)|,

that is, θ =
1

n

n∑
i=0

log |N ′
α,β,γ(vi)|, (3.42)

where α, β, γ ∈ (0, 1), n denotes the number iteration in the orbit and θ is known as
the maximum Lyapunov exponent in Noor fixed-point feedback system. Moreover,
it is noticed that for the fixed point orbit relation (3.42) reduces into

θ = log |N ′
α,β,γ(v0)| (3.43)

and for the periodic orbits of order-p it reduces into

θ =
1

p

p∑
i=0

log |N ′
α,β,γ(vi)|. (3.44)

Finally, it is observed that for the irregular orbits it is not possible to take all
the iteration of the system. Therefore, the finite number of terms of the iterative
orbit are taken at a time to determine the maximum Lyapunov exponent of the
orbit.
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Example 3.4. Let ϕr be an original one-dimensional map defined by ϕ4(v) =
4v(1 − v), where v ∈ [0, 1]. Then, determine the Lyapunov exponent value (θ) for
fixed and period-2 points and analyse the stability for a prescribed range of the
parameters α, β and γ.

Solution. Since ϕ4(v) = 4v(1 − v) is a given logistic map, therefore, let us
take v1 = 0 and v2 = 3

4 its unstable regular fixed points. Thus, to examine the
stabilization in fixed point v2 it is sufficient to solve the relation (3.43) of maximum
Lyapunov exponent. Let us consider

N ′
α,β,γ(v) = αϕ′

r(v).[1 + β(ϕ′
r(v)− 1)].[1 + γ(ϕ′

r(v)− 1)] + (1− α). (3.45)

Taking ϕ′
r(v) = 4(1− 2v) and v = 3

4 in (3.45), we get

N ′
α,β,γ(3/4) = −2α(1− 3β)(1− 3γ) + (1− α). (3.46)

Using the relation (3.43) and (3.46), we have

θ = log | − 2α(1− 3β)(1− 3γ) + (1− α)|. (3.47)

Then, for some particular values α ∈ (0, 2
3 ), β ∈ (0, 1

2 ) and γ ∈ (0, 1
2 ) in (3.47),

we get

θ = log | − 1(1− 0.9)(1− 0.9) + (1− 0.5)|,
θ = log |0.49| = −0.3098.

Thus, the maximum Lyapunov exponent is negative for v2 = 3
4 and hence from

the above Lyapunov definition the fixed point v2 attains its complete stability in
the prescribed range of control parameters α, β and γ.

Similarly, let us consider v1 = 5+
√
5

8 and v2 = 5−
√
5

8 be the two unstable periodic
fixed point for the map ϕ4(v) = 4v(1− v). Then, from (3.45), we get

N ′
α,β,γ(v1) = α(−3.236).[1 + β(−3.236− 1)].[1 + γ(−3.236− 1)] + (1− α),

N ′
α,β,γ(v2) = α(+1.236).[1 + β(+1.236− 1)].[1 + γ(+1.236− 1)] + (1− α).

Then, for some particular values α ∈ (0, 2
5 ), β ∈ (0, 1

4 ) and γ ∈ (0, 1
4 ), we get

N ′
α,β,γ(v1) = +0.618, and N ′

α,β,γ(v2) = +1.208. (3.48)

From (3.44) and (3.48), we obtain

θ =
1

2
[log |N ′

α,β,γ(v1)|+ log|N ′
α,β,γ(v2)|],

θ =
1

2
[log |0.618|+ log |1.208|],

θ =
1

2
[−0.2090 + 0.0821],

θ = −0.0635.

Thus, the maximum Lyapunov is negative for v1 and v2 and hence v1 and v2 are
completely stable for a specific range of controlled parameters α, β and γ.
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Figure 3. (a) Bifurcation plot for the Cardiac Arrhythmia model In = rIn−1(1 − In−1), (b) Regular
cardiac arrhythmia for model (3.50) when α = 0.4, β = 0.3 and γ = 0.3 and r ∈ [1, 4], (c) Bigeminal
stable cardiac arrhythmia for model (3.50) when α = 0.3, β = 0.2 and γ = 0.2 and r ∈ [3, 4]

Cardiac Arrhythmia Original System Noor Control System
Regular 1 < r ≤ 3 α ∈ (0, 2

3 ), β, γ ∈ (0, 1
2 ), r ∈ [1, 4]

Bigeminal 3 < r ≤ 3.45 α ∈ (0, 2
5 ), β, γ ∈ (0, 1

4 ), r ∈ [3, 4]

Quadrigeminy 3.45 < r ≤ 3.52 Bigeminal or regular state
Higher order 3.52 < r ≤ 3.57 Bigeminal or regular state

Chaotic 3.57 < r ≤ 4 Bigeminal or regular state

Table 1. Original cardiac arrhythmia versus controlled arrhythmia system when the parameters α, β
and γ varies in specific range

3.4. Application of stabilization in Cardiac Arrhythmia
The chaos control of nonlinear dynamical systems has a strong utilization in biology
[44]. The first research in biological applications using chaos control was confirmed
by Weiss et al. [44] in chaotic cardiac arrhythmia induced by the drug ouabain in
rabbit ventricular. But in the last few decades, the study on cardiac arrhythmia is
considered at the forefront of medical research because the heartbeat disorder has
become a common reason of death in human life. Therefore, we try to introduce an
improved chaos control method using the logistic map with a Noor control system
that may improve the stability in chaotic arrhythmia. The discussion about the
cardiac arrhythmia given by Weiss et al. [44] has properties analogous to the chaotic
characteristics of the logistic map. Therefore, the following control model was
demonstrated in [44]:

ϕr(In−1) = In = rIn−1(1− In−1), (3.49)

where In is the current interbeat interval, In−1 is the previous interbeat interval,
r ∈ [0, 4] stands for an intracellular Ca level and n is the number of beats during
the chaotic phase of cardiac arrhythmia. The intracellular Ca level induced by
the ouabain in ventricular tachycardia is taken as the critical parameter (r) of the



2466 Ashish, J. Cao & M. A. Noor

logistic map, that pushes the heart from fixed to periodic beating and then periodic
to irregular beating. Therefore, from this perspective the following assumptions
were made:

(i) When 1 < r ≤ 3, the current interbeat interval (In) against the previous
interbeat (In−1) are equal, that means, heart is beating with regular stable
rate.

(ii) When 3 < r ≤ 3.45, the heart beat begins to approach in bigeminal pattern
or period-2 fashion. That means, a bigeminal pattern with a long interbeat
interval followed by short interbeat interval in repeating ABABAB . . . ar-
rangement.

(iii) When 3.45 < r ≤ 3.57, the arrhythmia process develops higher order pat-
tern such as period-4 fashion or quadrigeminy repeating ABCDABCD . . .
arrangement.

(iv) When 3.57 < r ≤ 4, the cardiac arrhythmia process eventually approaches
to complete irregularity in interbeats with no repetition. At this stage, 85%
heart becomes fully chaotic without any repetition.

Figure 3(a), shows the complete cardiac arrhythmia behavior in which the in-
tracellular Ca level pushes the heart beating from fixed to periodic and periodic to
chaotic stage. In 2000, Noor [24] introduced a four-step feedback procedure and
proved that it converges speedily then Picard and Mann procedures. Therefore,
looking into the strong behavior of Noor control system, it is assumed to introduce
a more effective and efficient discrete control model that may reduce the sudden
irregularity in cardiac arrhythmia rapidly. Therefore, using the relation (3.2) and
the original cardiac arrhythmia model (3.49) the following control system is derived:

In = In−1 + α(In−1 + β(In−1 + γ(ϕr(In−1)− In−1)− In−1)− In−1), (3.50)

where ϕr(In−1) = rIn−1(1 − In−1) and r as an intracellular Ca level belongs to
[0, 4], In represents an interbeat interval in [0, 1] and the system (3.50) is known
as discrete cardiac arrhythmia control model with α, β and γ as its controlling
parameters. From the previous section it is clear that as the parameters α, β and γ
lies in a specific range, the system get stabilized into quadrigeminy, bigeminal and
regular states. In particular, When we take α ∈ (0, 2

3 ), β ∈ (0, 1
2 ) and γ ∈ (0, 1

2 ) at
r = 4, then the chaotic arrhythmia may be manipulated and reduced into a regular
fixed state. Similarly, when we take α ∈ (0, 2

5 ), β ∈ (0, 1
4 ) and γ ∈ (0, 1

4 ) in the
above control model (3.50), then the chaotic arrhythmia may also be reduced in to
bigeminal or period-2 state.

Figure 3(b) shows the chaos control in chaotic arrhythmia, which reduces into a
regular fixed state, where the current interbeat interval (In) is equal to the previous
interbeat interval (In−1) to the whole intracellular Ca level (r). While the Figure
3(c) represents the bigeminal stability in chaotic arrhythmia, that is, the long in-
terbeat interval (In) is followed by the short interbeat interval (In−1) in repeating
pattern. Moreover, Table 1, shows how the chaotic arrhythmia reduces into stable,
bigeminal, and other higher-order periodic orders such as quadrigeminy or period-4
pattern.
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4. Conclusion
By using the Noor control system to the chaotic maps, a few novel results on chaos
control, and the improved chaotic cardiac arrhythmia model is studied. Further, it
is observed that as compared to Picard (one-step system) and Mann iteration (two-
step system), the novel system generally admits four control parameters α, β, γ and
r. Especially, we concentrate on the four-step iterative procedure given by Noor [24]
in 2000. Further, due to the high convergence rate in the Noor iterative system the
stabilization in the fixed and periodic points take place in a more effective and
efficient way. Following outcomes are derived:

(i) Theorem 3.1 shows that an original chaotic system and the proposed Noor
feedback procedure share the same set of fixed points. Theorem 3.2 is intro-
duced to describe the stabilization in unstable regular points for a family of
chaotic maps using the Noor control system. Further, the stability of fixed
points in quadratic map 4v(1− v) and the cubic map 4v3 − 3v is studied. It
is also analyzed that the fixed point always remains in the stable equilibrium
state for a specific range of control parameters α, β and γ.

(ii) Theorem 3.3 is proved to examine the stability in unstable periodic fixed points
using Noor feedback procedure. Further, the stability in periodic points of
quadratic map 4v(1− v) is determined in Example 3.3 for a prescribed range
of α ∈ (0, 2

5 ), β ∈ (0, 1
4 ) and γ ∈ (0, 1

4 ) using the Noor control system.

(iii) Maximum Lyapunov exponent, another important characteristic of chaos con-
trol is used to examine the stability in chaotic maps. The statement of Lya-
punov exponent is derived using the Noor control system and in Example 3.4
the Lyapunov exponent value is established for the stability of the quadratic
map.

(iv) Further, an application of chaos control in cardiac arrhythmia is demonstrated
in subsection 3.4. The chaotic arrhythmia is first illustrated by using a bifur-
cation diagram for the logistic map and then the complete dynamical behavior
is studied through an interbeat-intracellular-ouabain model. Moreover, a su-
perior cardiac arrhythmia model is proposed using Noor control system and
the stability in chaotic arrhythmia is noted for a specific range of control
parameters α, β and γ.

It is strongly recommended that future research in chaos control may be ex-
pended on various applications in bio-sciences using the Noor control system. Fi-
nally, it is noticed that with an original chaotic system and the specific range of
control parameters α, β and γ, the chaotic arrhythmia can be stabilized against
an ouabain-intracellular-interbeat model. Further, it is observed that such type of
control technique may be used in other applications of science and engineering.
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