Journal of Applied Analysis and Computation Website:http://www.jaac-online.com
Volume 13, Number 5, October 2023, 2471-2486 DOI:10.11948/20220377

ON THE PROPAGATION OF REGULARITY
OF SOLUTIONS TO THE NONLINEAR FIFTH
ORDER EQUATION OF KDV TYPE

Boling Guo! and Ying Zhang?'

Abstract We investigate special regularity of solutions to the initial value
problem associated to the nonlinear fifth order equation of KdV type. The
main results show that for datum ug € H*(R), F(u) € C*T2(R) with s > 5,
whose restriction belongs to H'((zo,00)) and H'™2((xo,o0)) respectively, for
some | € Z* and xo € R, then the restriction of the corresponding solution
u(-, t) belongs to H'((b,00)) for any b € R and any ¢ € (0, 7). Thus, this type
of regularity travels with infinite speed to its left as time evolves. To a certain
extent, our results complement the previous studies on the related aspects,
and deepen the understanding of such properties for the dispersion equation.

Keywords Nonlinear fifth order equation, Sobolev space, propagation of reg-
ularity.
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1. Introduction

In this work we are concerned with the initial value problem (IVP) of the nonlinear
fifth order equation of KdV type, which can be written as:

OF (u) 0G (u, uy) 0G (u,uy) B
ut—ums—( P )I—< 0 m—&- 9u, M—O7 z,t € R,

u(z,0) = up(x),

(1.1)
where

G (u,uz) = Ny + Ny + N3 + Ny,
{ ( x) 1 2 3 4 (12)

2 2 2 3,2 3
N1 =ajuu;, Ny =agu-u;, N3=aszu’u,, Ni=asu;,

a;(i=1,2,3,4) are constants.

Many nonlinear higher order equations of KAV type have been proposed in
physical problem. In [1], Guo-Han-Zhou first considered such a model as (1.1),
and proved the existence of global smooth solutions with the periodic boundary
condition and initial value condition, also they got the local smooth characterization
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of the solution for the initial value problem. More precisely, suppose that F'(u),ug
satisfy the following conditions

(1) F(&) e C*T3(R), [F"(€) <A (1+[€]7),
F'(0) = F(0) =0, (1.3)
(2) wo e H*(R), s>5.
the following result is proved.

Theorem 1.1. Under the condition (1.2) and (1.83), the system (1.1) has at least
one smooth solution

[s/5] [(s+1)/5]
u(a,t) € (Y WE O, T;H*®R) (| () WEO,T;H; 7 R))
k=0 k=0

The aim of this work is to study special regularity properties of solutions to
the equation (1.1). Firstly, let us briefly recall some works concerned with special
regularities and decay properties of some dispersive models. The starting point is a
property found by Isaza-Linares-Ponce [3] concerning the propagation of smoothness
in solutions to the k-generalized KdV equation

ou+ u+u*o,u=0, z,teRkeZt,
u(z,0) = up(x).

They studied that the propagation of regularity on the right-hand side of the initial
value for positive times by Kato’s argument, and observed that this regularity travels
with infinite speed to its left as time goes by. More precisely, if the initial datum
ug € H'((wg,)), for some | € Z* and zy € R, then the corresponding solution
u(-,t) belongs to H!((b,0)) for any b € R and any ¢ € (0, 7). Later, Kening et al. [7]
extended this result to the case where | > 3/4. Inspired by [3], Segata-Smith [16]
obtained the results regarding the following fifth order dispersive models

O — 8iu + c1u?0u + 026zu83u + 03u8§u =0,

where ¢y, ¢, c3 are real constants. In order to show how regularity on the initial data
is transferred to the solutions, Linares-Ponce-Smith [9] gave the special regularity
properties of the solution to the general quasilinear equation of KdV type, that is

o+ a (u, Oz u, Qﬁu) Ou+b (u, Oy, 8§u) =0,
u(z,0) = up(x),
where the functions a,b: R? x [0,T] — R satisfy:
(1) a(-,-,-) and b(-,-,-) are C* with all derivatives bounded in [—M, M]3, for
any M > 0,
(2) given M > 0, there exists £ > 1 such that
1//<;§a(x,y,z) < K, for any ((E,y,Z) € [_M,M]Sv
0,b(x,y,2) <0, for (x,y,2) € [-M, M]?.

And they asserted that this depends on the spaces where regularity is measured.
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In addition, combining the approach in [3] and [16], there are many similar re-
sults have been confirmed for other models, such as the fractional KdV equation [12],
Benjamin-Ono equation [5,10], Benjamin equation [2] and the Intermediate long-
wave equation [13]. Interestingly, this property is not only inherent to the one-
dimensional nonlinear dispersive equations, but also to the multi-dimensional dis-
persive models, like Zakharov-Kuznetsov (ZK) equation [8,11], Kadomtsev-Petviashvili
IT (KP-II) [4], the fifth order Kadomtsev-Petviashvili II (KP5-II) [14], and the
Benjamin-Ono-Zakharov-Kuznetsov (BO-ZK) equation [15], etc.

Remark 1.1. Isaza-Linares-Ponce [4] deduced some special regularity properties
of solutions to the Kadomtsev-Petviashvili IT (KP-II). It should be noted that the
method based on energy estimates does not yield a similar result for Kadomtsev-
Petviashvili I, because the terms 93u and —3d; 18511 lead to dispersion with opposite
sign.

Considering that KdV equation has such a regularity property, naturally, we
wonder that whether the propagation of regularity phenomena can be established
in the nonlinear fifth order equation of KdV type (1.1). Motivated by the above
studies, the objective of this paper is to describe the propagation of one-side regu-
larity exhibited by solutions to the IVP (1.1) provided by Theorem 1.1.

Theorem 1.2. Letl € Z* 1 > 1. If ug, F(u) satisfy (1.3), and for some xg € R,

105032y = [ (Ohe)” (@) < o, (1)

zo

o = [ @) @<, (9

Zo

then the solution of the IVP (1.1) provided by Theorem 1.1 satisfies that for any

e>0andv >0,
o0
, 2
sup / |5‘§:u(sc,t)| dz < ¢y,
0<t<T Jzxg+e—vt

for 5 =0,1,2,...1, with

o = co (evvs T Juoll g 51 F (@)l oo s | (@ht0, 952 F )| 12 10y ) -

In particular, for all t € (0,T], the restriction of u(-,t) to any interval (x1,00)
belongs to H'((x1,00)).
Moreover, for any e > 0,v >0, and R > 0,

xo+R—vt 9
/ / 8l+2u(x,t)| dzdt < ¢4,
xo+e—vt

R [T o ) | P B

Several direct consequences can be deduced from Theorem 1.2, for instance (for
further outcomes see [3,16]), since the system (1.1) is time reversible, it indicated

Corollary 1.1. Let u € C([0,T]; H*(R)),s > 5, be the solution of the IVP (1.1)
provided by Theorem 1.1. If there exist n € ZT,a € R and t € (0,T) such that

82“(’0 ¢ LQ(((I, OO)),

where ¢; = ¢1 (l;e;v; R; T |lwol| g 5 | F'(w)]
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then for any t € (0,1) and any b € R,
dgu(-t) & L*((b, 00)).

2. Preliminaries

We shall construct our cutoff functions firstly, which are inspired by [3,16]. For v
be large enough, the constant A = A(v) being chosen to satisfy p(1) = 1, define the
polynomial

p(z) = A/Ox y (1 —y)'dy

which satisfies

p(0) =0, p(1)=1,
P (0) = p"(0) == p(0) =0,
P =p"(1)="-=p"(1) =0,

with 0 < p,p for 0 <z < 1.
For parameters €,b > 0, define x € C7(R) by

0 r <e¢g,
x(z;6,0) =< p((x—€)/b) e<z<b+te, (2.1)
1 b+e<u.

By construction y is positive for x € [g,00) and all derivatives are supported in
[e,b + €]. By the definition, x is positive for = € [¢,00). Computing as Sec. II
in [16], we can derive the following properties concerning  :

(1) x(z;¢/5,4¢/5) = 1 on supp x(w;¢,b) = [g, 00),

[X" (z:e.0)]”
X’ (x;e,b)

(2)

(3) [xW(z;e,b)| < e(j4,b), forj=1,2,....7,

’ < e(e,b)x/(x;¢/3,b+¢) on support of x/,

(4) [ (@32,b)| < ej, e, )X (@52/3,b+) on [e,b+¢], for j=1,2,...,7.

By interpolation we have the following lemma, which is required to apply the
inductive hypothesis.
Lemma 2.1. Suppose ¢ € L2(R) and for some m € Z+,m > 2,15 € R,

R N

0

Foranyj=1,2,....m—1and d >0,

SN2
10261 g0 = |

Making use of Cauchy-Schwarz, Young’s inequality, and Sobolev embedding, we
get the following lemma, which is generalized the Lemma 3 of [16].

0 9
|8§c¢’ dx < oo.
+5

0
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Lemma 2.2 (Lemma 3, [16]). Let j; (i =1,2,---p+1) € Z*and ,b > 0. Suppose
nonnegative function x(xz;e,b) has support in [e,00) and x(z;e,b) > 1 whenever
x >b+e, as defined in (2.1). Then

p+1
’/Haj’ux
Jji+p—1 Jji+p—2
/ Z (Ou) dw—i—/ Z (O u)” ' (x;¢/3,b+ e)dx
m=ji m=ji
Je+p—k
X H/ Z (02u)” x(x;¢/5, 45/5)dw+/(8§+1u)2x(az)dm. (2.2)

n=jk

Of course, we can also replace x with x'.
For example, when p =2, (2.2) can be written as

‘/ I udP2udux (z)de

< {/(6£1+1U)ZX(£L')CZ$ + /(aglu)Qx(x)dx + /(8%111)2)(’(33)(13:}
x / (072u)2x(z; /5, 4¢/5)dx + / (%) x(x)da. (2.3)

When p =3, (2.2) is written as follows

‘ / O ud2udP udiuy (x)dx

< [P + @2 1w x(wie/5,45/5)do [ @)ru)x(zie/5.12/5)ds
A [0 20 + @+ @ (@i + (032 + @2+ )
X X' (z;¢/3,b+ s)daz} + /(6£4u)2x(x)dx. (2.4)

Proof. We take p = 2,3 as examples to give the proof.
First we observe that x(z;¢,b) is nonnegative, supported on [e,00) and x(z) > 1
when x > b+ . Thus

‘ / M udP2uduxde
<3 / (09u)? (02)° xdz + = / (095u)? v
<1 H(ajlu)sz /OO (8j2u) dr + f/(aj"u)Qxda:
5o (@) / (0920)° x(a;2/5, 42 /5)da + / (@) xdo,  (2.5)

then Young’s inequality yields

('), <2 [ oo+ [ o2
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g/(@i”lu)zxd:ﬂ+/(32,;1u)2xdm+/(8£1u)zx/dx. (2.6)

This completes the proof of (2.3). The inequality involving (2.4) is bounded similarly

‘ / DI ud2udP udiuxde

5 [ @0 (000 (000 o+ 5 / (02)” xda

O ((83{1 (072u) )H / (07u ® X(x;¢/5,4¢ /5)dzx + % / (8i4u)zxdx,
(2.7)

IN

IN

using (2.6) and (2.7), it holds that
(@00 @)X,
<2 / |07 udl | (920)° yda + / (091u)? (972u)” X' da:
42 / |02 | (99 )® xda
<4 / (0910)? (0)° xd + 2 / (09 10)? (69°u) xdlo
2 / (0327 )? (8 0)” yde + / (0910)? (0920)? Y do
< [@w? + @ 1w x(wse/5, 45 5)do x { [0 20 + (0 u?
+ (93 u)?] () dx + / (@310 + (@2 ) (wie/3,b+ e)da ). (28)

This completes the proof of (2.4). Arguing similarly as deriving (2.5)-(2.8), com-
bined with the properties of the cutoff function, it is easy to summarize the inequal-
ity (2.2), and we omitted the details here. O

3. Proof of Theorem 1.2

In the rest of this paper, the letter ¢ denotes a generic constant whose exact values
may change from line to line, but do not depend on particular solutions or functions.
For the sake of calculation, we are going to ignore the coefficients in the following
discussion. As the argument is translation invariant, we consider only xq = 0.

We shall use an induction argument. First, for the sake of simplicity of exposition
we shall restrict the proofs of theorem to the case of the model equation:

Opu — O2u — (gﬁ:) + (0%u)? + 0pudu = 0. (3.1)

Additionally, because this nonlinearity has a total of four derivatives, integrating
by parts produces a form very similar to 9,ud3u, we mainly show the estimates of
nonlinearity 9,ud3u.
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According to Theorem 1.1, by applying Sobolev embedding theorem, integration
by parts, Young’s inequality, we can easily get the case | =1,2,3,4

T
sup / (8iu)2 (z,t)x(x + vt;e,b)dx + / / (6i+2u)2 (z, )X (x + vt; e, b)dxdt
0

t€[0,T]
SCQ. (32)

Case | = 5. We now prove the case [ = 5. Applying 95 to (3.1) and multiplying
the result by d3u(x,t)x(z + vt;e,b), after some integration by parts, we find

% (82u)2 x(z + vt)dx + / (8;@2 X' (z + vt)dx + / (82u)2 X (z + vt)da
=A; + Ay + Ag, (33)
where

Ay = v/ (82u)2 X (z + vt)dz + / (82u)2 X" (z + vt)dz,
OF
_ 5 (98 5
As = /am (8u>x d,ux(x + vt)de,
As = /85 ((02u)? + 0ud2u) Bux(z + vt)dz.

Integrating in the time interval [0,T] and employing (3.2) with [ = 3,4, one deduces

T
J
0

T
§|v|/ /(82u)2x/(as+vt)dxdt
0

+ /T / (8311)2 X (x4 vt;e/3,b + €)dxdt
<cp, ’ (3.4)
since given v,e,b,T as above there exist ¢ > 0 and R > 0 such that
X' (z +vt) < eli_g g (x), V(z,t) e Rx[0,T].

Notice that the chain rule yields

P
o) = 3 A gy @@, (39)
1<p<s
with Y77, a; = p, Y7 i-a; = s, and for aqzy,1, -+, g, either all of them are zero,

or at most one of them is 1 and the rest are zero. Then thanks to (3.5), Young’s
inequality and Sobolev embedding theorem, we derive

T
[ i
0

T
= [ [ [FO@)° + PO @0 02u + PO (0.0 (@20 + (0.0 020)
0

+F® ((03u)® + 0yud2udiu + (8pu)? tu) + FB) ((92u)* + O2udiu + Opudiu)
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F® a5y ]5‘5ux(x + vt)dxdt
<co + c/ / (92u)” x(z + vt)dzdt, (3.6)
where the last term we used integration by parts
/F(2)82u8£ux(x + vt)dz
=— %(/F(3)8Iu(82u)2x(a: + vt)dx + /F(z)(ﬁgu)Qx'(x + vt)dz).
Making use of integrating by parts, it follows
Az = /8u (9%u) x—i—vtdx—i—/au 86) X' (@ + vt)dx
/84 X (z + vt) dx—l—/a?’ )2x'(a:+vt)dm
+ /82u (QLU) X" (x + vt)dx + /&cu (85’.u)2 X" (x + vt)dx. (3.7)
This expression exhibits a loss of derivatives in that the term
/ 92u (9%u)” x(z + vt)dx (3.8)

can be controlled neither by the well-posedness theory nor by the [ = 4 case. In [6],
Kwon introduced a modified energy to overcome a similar issue. Thus we know that
a smooth solution u to the IVP (3.1) satisfies the following identity:

d 442

o /(%u(amu) xdz
:/8m8tu(8;1u)2xdx+2/8Iu8§u8i8tuxdx+v/8mu(8§u)2x'da:

2 oF 2 or

:v/@mu (O3u) X’dx—l—/@m (&L)I (O3u) Xdat:—|—/Oh'ggu@;lu@;1 (%)dex

+ /8311 (8;5”)2 ydz + /&Uu (aﬁu)Q Y dx + / (93w + Opudzu) (32’&)2 vdz

+ /(aiu + (0pu)?) (92u)*x dx + /Bgu (8;;’u)2 X"dz + /&gu (321&)2 X" dx

+ / (02udu + Opudiu) (a;u)Q ydz + / (Opudu + (agu)Q) (a;*u)2 Y'dzx

+ @+ 0,u0u) 0 da + [ (@but (0,0)%) (000" ds

—I—/3§u(8§u)2x(4)dx+/8$u(8§u)2x(5)dx, (3.9

where x9) denotes x)(x 4 vt), we use this identity to eliminate (3.8) from (3.7)
yields

F
Ao =g [om@tpas v [ o) as s [o. (50) (0t ras
u xr
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4 o [OF 2 5,\2 2095, \2. 1
+ [ 0yud ud; B xdz + | Opudiu (03u)” xdx + [ (9,u)?(2u)*x dx
u x

+ /(82u8§u + Opudiu) (Qﬁu)Q xdz + /(@Cu@iu + (6311)2) (8;1.u)2 X'dz

+ /(8§u + 3mu8ﬁu)(8ﬁu)zx”dx + /(Zﬁ’u + (afu)2)(6§u)zx"’dx
+ / O2u(0tu) W dx + / Dpu(92u) 2y du., (3.10)

Integrating in the time interval [0,T], applying (3.2), (3.5), the hypothesis on the
initial and Lemma 2.1, the fundamental theorem of calculus yields

T
| Aai
0

Substituting the inequalities (3.4), (3.6), (3.11) in (3.3), Gronwall’s inequality leads
to

T
<co+ c/ / (8£u)2 xdzdt. (3.11)
0

sup / 8u x+vtd:c+/ /87 X (x + vt)dzdt < cp.

t€[0,T]

This proves the desired result with [ = 5.
Case [ = 6. Similar to the previous case, for [ = 6,

:lit (9%u ) x(x + vt)dx + / (8211)2 X' (z + vt)dz + / (821;)2 O (z + vt)da
=A; + Ay + As, (3.12)
where

Ay = v/ ([“)gu)2 X' (z 4 vt)dz + / (8Zu) X" (z + vt)dx,

Ag = /85. (8F> Sux(z + vt)d,
Az = /86 %+ 0,udiu) Sux(z + vt)dz.

Integrating in the time interval [0,T] and applying the | = 4,5 results, one deduces

/ Aqdt <|v|/ / X' (x + vt)dzdt
0

/ / (07u)” X' (z + vt;e/3,b + €)dudt

(3.13)

Then thanks to (3.5), integration by parts, Young’s inequality and Sobolev embed-
ding theorem, we derive

T T
/ Aadt =C/ / [F(g)(&;u)7 + FD(9,u)°0%u + F© ((0zu)?(D2u)?
0 0
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+ (9,u)* O2u) + FO(9,u(02u)® + (9pu)0pud?ud3u + (9,u)” 8u)
+ FW (0,u(d3u) (aﬁu)%ﬁu + O ud?udiu + (0yu)? O2u)
+ F®) (aiuaiu + 02udlu + 8Iu6§u) + F<2>a;u] Suxdxdt

<co + C/OT/ [(F(g))2 + (qu)z}x(:c + vt)dzdt

<co —l—c/oT/ (82u)2xdxdt. (3.14)
After integrating by parts, we see
As = /82 (07u) Xda:+/6 u (97u) ’dx+/64 gu )" xdz
—|—/8§u (9%u) X’dx—k/@iu (9%u) X”daz—l—/axu 82u)2x"’dx
+ / (2u)>x'd. (3.15)

This expression exhibits a loss of derivatives in that the term
/Qzu (8Zu)2 xdz. (3.16)

A smooth solution u to the IVP (3.1) satisfies the following identity:

/8 w(95u)?xdx
5 ' 5 5, 55 ((OF
=v [ Jyu (6 xX'dx+ [ 0, (9 ) xdz + [ Oyudyud; 5 xdx

+/8§u (a;u) de—k/(?xu 8Zu) X’dm—k/(@ﬁu—kazuamu) (8gu) xdx

+/(a§u+(amu)2)(a§ )2x dx+/82 (98u) ”dx—l—/@ u 2 X" dx

+ / (PudPu + Dyudtu) (9%u)® vz + / (DPu + Byudbu + (%)) (9%u)® y'de

+ /(8§u + 0y ud?u) (03u)?\ dx + /(agu + (0,u)?)(92u)* " dx

4 / O2u(05u) 2V dz + / 0, u(@u)>x ) da. (3.17)

We use this identity to eliminate (3.16) from (3.15), the term Az can be written as

Ay = dt/(‘?u de+v/8u85) de+/a ( )z(agufxd:c
+/8mu8§u8i (m)wxdﬂ /c%uazu (agu) xdz + /(azu)z(agu)zx’dx
+ /(aiu(');z’u + Opudsu) (82u)2 xdz + /((’)ﬁu + Opudiu) (05u)*x" dx

+ /(a,iu + 0pudPu + (8iu)2) (8gu)2 X' dz + /(6§u + (0,u)?)(92u)? X" dx
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+ / O2u(05u) W dx + / Dpu(92u) 2 x P du., (3.18)

Integrating in the time interval [0,T], applying the I = 5 result, the formula (3.5),
and hypothesis on the initial, the fundamental theorem of calculus yields

T T
/ Asdt| <o+ c/ / (82u)2 xdxdt. (3.19)
0 0

Substituting the inequalities (3.13), (3.14), (3.19) in (3.12), applying Gronwall’s
inequality produces

T
sup / (82u)2 x(x + vt)dx + / / (8§u)2 X' (z + vt)dzdt < c.
0

t€[0,T)

Similar to the treatment of [ = 5,6, we know that the inequality (3.2) is true for
the cases [ = 7,8, the analysis is omitted.

Remark 3.1. It is worth mentioning that as [ gets bigger, some terms in A, and
Ajz are difficult to handled directly even by integration by parts, so (2.3) in Lemma
2.2 can be used. For example, when [ = 8, the following term appears in As.

|/F(3)8§u5‘iu8§ux(x + vt)dz|
§||F(3)\|L;c{[/(82u)2x(x + vt)dz + /(8§u)2x(x+vt)dx+ /(8§u)2x’(x+vt)d:r]
X /(aiu)Zx(m;a/5,45/5)dm + /(3§u)gx(w+vt)dx}

<co + c/(@fu)zx(x + vt)dz.

Case | > 9. We prove the general case [ > 9 by induction. In detail, we assume
that if wg, F'(u) satisfy (1.4), (1.5), then

T
sup / (8541)2 x(x + vt)dx + / / (8£+2u)2 X' (z + vt)dzdt < c,
telo,T] 0

for j =1,2,3,...,1, 1 > 9, and for any v,e,b > 0.
Now we have that

u0|(0,oo) € Hl+1((0,00)), F(u)|(0,oo) € HlJrs((Ovoo))

Similar to the case above, for [ > 9,

% / (04 w)” X (@ + vt)da + / (03u)” ¥ (2 + vt) + (85 10) > X (@ + vt)da
=A; + Ay + A3, (3.20)

where

A = v/ (ai“u)Qx’(x + vt)dx + / (8i+2u)2x’”(x + vt)dx,
Ay = /8i+1 (gfj) O ux (x + vt)da,

Ag = /8;“ ((02u)? + Opudiu) O ux(z + vt)dz.
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Integrating in the time interval [0,T], and from the induction cases | — 1,1, one
deduces

T
|/ Aqdt| < ¢p. (3.21)
0
Thanks to (3.5), we have

O(F' ()= > CPLPP™(w) - (9u)™ - (92u)™ ... (9LF2u) "2,
1<p<i+2

with Zig a; = p, Zij 1-a; =1+ 2, and for Qg2 g, 5 Oy, either all of them
are zero, or at most one of them is 1 and the rest are zero. Notice that the above
equation ignores coeflicients yields

oF
I+1/Y5

=F 3 (0,u)' "2 + FU2(0,u) 02u + FED[(0,u) 1 00u + (9pu)' 2 (07u)?]
+ FO[(9,u)4(8%u)® + (8,u) ~302udu + (9,u) 20 ]
+ FUD[(0,u) 8 (0%u)* + (0pu) =5 (0%1)203u + (Opu) ~*0%udu
+ (azu)l_4(8§u)2 + (azu)l_38§u]
+ FO2[(0pu) 78(02u)® + (9,u)' T (07u)?03u + (9,u)' 0 (02u)* O u
+ (0,u)' 7002 u(82u)? + (9,u) 203 ud u + (0pu) 202 ud>u + (9pu) ~405)

+ FU9[(1 — i — 1) terms of u to divide the (I + 2) derivative]

142 2
+ F®) Dpudu + 02udu + Pudl tu+ -+ 89[5 2 ]uaﬁf2 % ]u}
+ F@ k2,

By Young’s inequality, Sobolev embedding theorem and (1.5), the first term can be
estimated as

/F(H?’)(@aju)l“aﬁlux(x + vt)dx
Sc/ [(F(H?’))2 + (8?‘111)2])((33 + vt)dx
<co+ c/(@iﬂu)Qx(x + vt)dz.
Making use of integration by parts, the last term holds that
/F(2)8§:+2u8i+1ux(x + vt)dx

<c

/F(?’)Bmu(ai“u)?x(ac + vt)dx + /F(2)(8i+1u)2xl(x + vt)dz
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<co + c/(8i+1u)2x(x +vt)dz.

The middle terms can be processed by Young’s inequality, Sobolev embedding the-
orem and (2.2) in Lemma 2.2, we omit the calculation details here. In summary,

we have
T
/ Asdt
0

We note that when [ > 9, the identity similar to (3.9), (3.17) can not completely
contain the term As (in fact, only the first eight items are included, see (3.26)).
After integrating by parts, for positive numbers oy, as, az, we arrive at

T
<co+ C/ / (6;+1u)2 xdxdt. (3.22)
0

Az = / 02u (8i+2u)2 xdz + /83;u (8i+2u)2 X'dx + /3;1.11 (ai“u)Z xdx
+ /aﬁu (6glc+1u)2xldit + /3§u (3§:+1u)2><”d$ + /@cu (8glc+1u)2xmdl,

+ /6‘Su (Biu)z xdx + / ou ((’9iu)2 X'dz + / Z 0% (02u)? x(*3) du,

(3.23)
where * indicates the following conditions, for i € Z™,
ay + 2as + az =21+ 6, a1 < asy.
Depending on the value of as, we have
ag=101-1, ar+az3=38, a;>6,
(*) ar=101—2, a1 +a3=10, a; > 7,
as=101—-3, a1 +a3=12, a; > 8,
ar=1l—1 ar+a3=2i+6, a; >1+5.
This expression exhibits a loss of derivatives in that the term
/8§u (8;+2u)2 xdz. (3.24)

For positive numbers (1, 82, 83, a smooth solution u to the IVP (3.1) satisfies the
following identity:

d 11 2
dt/&;u(@gﬂu) xdz
= / Dpu(dL )X dx + / ax(a—F)x(a;uﬁde / amua;ua;(ai)mxdx
ou ou
+/aiu(ai+2u)2xdx+/axu(ai+2u)2xfdx+ / (Opu + Opudiu) (aﬁlu)?deE

+/(agu_i_(awu)Q)(ai+lu)2X/dx+/892# (ai—i_lu)ZX”dl‘—‘r/ag;U (ai—&-lu)?X///dx
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+ /(agu + PudPu + 0,ud u) (0 u)?xdx + /((’9;1u + 0,ud?u) (0 u)*x" dx
+ /(aiu + Opudiu + (9%u)?) (8L u)?x dx + /(8§u + (0pu)?) (0L u)? X" dx

/32 (OLu)®x (4)d:c+/6 u(d, )X(5)dm+/2851u8'82 (002u)*x ") dx,

ok

(3.25)
where *x indicates the following conditions
B1+ B2+ 283+ B =20+ 5,
ﬂl < 52 < 633
l+4
(sx) qU+4— {;} <B<l-1,
0< B < [WL] 4
2
Using the identity (3.25) eliminate (3.24) from (3.23), we find
d
As :a/ﬁxu(ﬁiufxdx—i—v/axu(al da:—l—/@ u)*xdx
/8 ud’, u@l de—i—/@ ud?u (0L u) de—l—/(a u)? (05 )X dx

+ /(3§u8£u + &Cu@iu)(aiu) xdr + /(@;u@iu + (02u)?)(dLu)? X' dx
+ /(6;% + Dpud?u) (8L u)?x" dx + /(5‘§u + (0,u)?) (0L u)?x" dx

/82 (0 u) 4)d:17+/6 w(@hu)?x® dx+/Zaﬂ1uaﬁ2 (082u)?x P dx

/ Z 0 (822u)” x(*8) da, (3.26)

where the treatment of [ 0,ud\udl(2E),xdx is similar to the term A,. Applying
the inequalities (2.3), (2.4) in Lemma 2.2, one obtains

/Z@glu(ax“zu)Qx(as)dx
<Z{/ (001 1y)? (as)dx+/(8§‘1u)zx(a3)dm+/(6§‘1u)2x(0‘3+1)da:}
y / (022 u)Px (w325, 42 /5)dz + 3 / (0°22)2x () d, (3.27)

and

/ Z 8fluafzu(8§3u)2x(54)dm
< / [(05+10)? + (9%2u0)2)x(: /5, 4e /5) da / (%) (: /5, 4e/5)de
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e B L e Ny L L)

(851 )] (Ba+1) d(t Z/ 853 X(ﬁ4 (328)

Hence, from our induction hypothesis, combining the inequalities (3.27) and (3.28),
the fundamental theorem of calculus leads to

T
/ Asdt
0

Inserting the inequalities (3.21), (3.22), (3.29) in (3.20), employing Grénwall’s in-
equality produces

T
<c¢o+ c/ / (8;.“1;)2 xdzdt. (3.29)
0

sup / <8§:+1U) (x4 vt)dx + / / 3l+3 (z + vt)dzdt < cp.

t€[0,T]

This closes our induction and completes the proof of Theorem 1.2.
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