
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com
Volume 13, Number 5, October 2023, 2504–2521 DOI:10.11948/20220400

CONVERGENCE OF THE TWO-POINT
MODULUS-BASED MATRIX SPLITTING

ITERATION METHOD∗

Ximing Fang1, Ze Gu1 and Zhijun Qiao2,†

Abstract In this paper, we discuss the convergence of the two-point modulus-
based matrix splitting iteration method for solving the linear complementarity
problem. Some convergence conditions are presented from the spectral radius
and the matrix norm when the system matrix is a P -matrix. Besides, the
quasi-optimal cases of the method are studied. Numerical experiments are
provided to show the presented results.
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1. Introduction
In this paper, we consider the following linear complementarity problem (LCP(A, q))
to solve z ∈ Rn that satisfies

zTr = 0 with z ≥ 0, r = Az + q ≥ 0, (1.1)

where A = (aij) ∈ Rn×n and q ∈ Rn are given. Many problems can be modeled
as (1) under some conditions, for example, the linear and quadratic programming
problems, the Nash equilibrium point problem of bi-matrix games, and the free
boundary problems of journal bearings (see [1, 3, 5, 6, 11,16,18,19] for details).

In order to compute the numerical solution of the LCP(A, q), many iteration
methods have been established in recent decades. In all of those iteration methods,
the modulus-based type iteration methods attracted many researchers’ attention.
For this kinds of iteration methods, van Bokhoven presented a modulus method [2],
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Murty discussed the modulus iteration method [18], Hadjidimos and Tzoumas pro-
posed a non-stationary extrapolated modulus algorithms [12], Dong and Jiang stud-
ied the modified modulus iteration method [7]. By introducing the parameter ma-
trices and reformulating the LCP(A, q) as an implicit fixed-point equation, Bai
presented a class of modulus-based matrix splitting iteration methods [3]. Since
then, a series of modulus-based type iteration methods have been presented, in-
cluding the general modulus-based matrix splitting method [16], the preconditioned
modulus-based matrix splitting iteration method [23], the two-sweep modulus-based
matrix splitting iteration method [21], the two-step modulus-based matrix split-
ting iteration method [26], the accelerated modulus-based matrix splitting itera-
tion methods [28], the general two-sweep modulus-based matrix splitting iteration
method [19], the relaxation modulus-based matrix splitting iteration method [25],
the preconditioned two-step modulus-based matrix splitting iteration method [8].
Most of these iteration methods are very efficient. Except for the modulus-based
type iteration methods, there are other iteration methods, such as the interior pro-
jection methods and the fixed point method; see [1, 3, 13–16, 20, 22–24, 27] and the
references therein.

In this paper, we shall make a further study on the two-sweep modulus-based ma-
trix splitting iteration method. Since the iteration process of this method involves
two points, we called it the two-point modulus-based (TPMB) matrix splitting it-
eration method in our discussion. The numerical experiments in [21] show that the
TPMB iteration method is very effective and has larger convergence region than the
modulus-based matrix splitting iteration method sometimes. In the present paper,
we first explore the general convergence conditions when the system matrix A is a
P -matrix. These convergence conditions extend the application range of the TPMB
iteration method. Then we focus on the special matrix splittings for the TPMB it-
eration method, that is, the matrices M and N in the splitting A = M −N satisfy
some particular characteristics. In the light of the particular matrix splitting, we
study the concrete convergence conditions and the quasi-optimal cases of the TPMB
iteration method. Besides, the corresponding numerical experiments are illustrated
to show the presented results.

The paper is organized as follows. We introduce the preliminaries in Section 2
and present the main results in Section 3. We show the numerical experiments in
Section 4 and end the paper with concluding remarks in Section 5.

2. Preliminary
Let us first review the classical modulus-based matrix splitting iteration method and
the two-point modulus-based matrix splitting iteration method for the LCP(A, q).

By utilizing the matrix splitting: A = M−N , the LCP(A, q) can be equivalently
transformed into an equation

(Ω +M)x = Nx+ (Ω−A)|x| − γq (2.1)

with
z =

1

γ
(|x|+ x), r =

1

γ
Ω(|x| − x),

where Ω is a positive diagonal matrix, M + Ω is nonsingular, and γ is a positive
constant. Based on Eq. (2.1), the modulus-based matrix splitting iteration method
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[3] and the two-point (two-sweep) modulus-based matrix splitting iteration method
[21] are represented as
Method 2.1.

(Ω+M)x(k+1) = Nx(k)+(Ω−A)|x(k)|−γq and z(k+1) =
1

γ
(|x(k+1)|+x(k+1)), (2.2)

Method 2.2.

(Ω+M)x(k+1) = Nx(k) + (Ω−A)|x(k−1)| − γq and z(k+1) =
1

γ
(|x(k+1)|+ x(k+1)),

(2.3)
respectively.

The iteration process (2.3) can be reformulated asx(k+1)

x(k)

 =

 (Ω +M)−1N (Ω +M)−1(Ω−A)

I O

 x(k)

|x(k−1)|


+

−γ(Ω +M)−1q

0

 , (2.4)

where I is an identity matrix.
Other definitions and notations are reviewed briefly as follows: a real matrix A is

called a P -matrix if all of its principal minors are positive; a real matrix A is called
an M -matrix (it is called a nonsingular M -matrix in some papers) if aij ≤ 0, i ̸= j
and A−1 ≥ O; the comparison matrix ⟨A⟩ = (⟨aij⟩) ∈ Rn×n of a real matrix A is
defined as

⟨aij⟩ =

 |aij | for i = j,

−|aij | for i ̸= j,
i, j = 1, 2, . . . , n;

a real matrix A is called an H-matrix if ⟨A⟩ is an M -matrix, and called an H+-
matrix if it has positive diagonals; the absolute value matrix of a real matrix A is
represented as |A| = (|aij |). The splitting A = M − N is called an H-splitting if
⟨M⟩−|N | is an M -matrix and called an H-compatible splitting if ⟨A⟩ = ⟨M⟩−|N |.
For these materials, readers can refer to [4, 9, 10, 16, 21]. From the definitions of
H+-matrix, H-splitting and H-compatible splitting, it is easy to know that the
H-compatible splitting of an H+-matrix is also an H-splitting. In addition, it is
well known that the H+-matrix and the positive definite matrix are two types of
P -matrix [3, 5, 7, 13,18,22].

3. Main results
In this section, we discuss the convergence of TPMB iteration method from the
spectral radius and the matrix norm. From Theorem 4.1 and its proof in [21], we
have the following conclusion for the P -matrix linear complementarity problem.

Lemma 3.1. Suppose A ∈ Rn×n is a P -matrix with A = M −N , and set

W =

 (Ω +M)−1N (Ω +M)−1(Ω−A)

I O

 ,
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then the iteration sequence {z(k)}+∞
k=0 generated by Method 2.2 is convergent for any

initial vectors x(0), x(1) ∈ Rn if any of the following conditions holds:
(i) ρ(|W |) < 1;

(ii) ρ(|(Ω +M)−1N |+ |(Ω +M)−1(Ω−A)|) < 1;
(iii) σ(Ω) = ξ(Ω) + ζ(Ω) < 1;
(iv) δ(Ω) = 2ξ(Ω) + η(Ω) < 1,

where

ξ(Ω) =∥ |(Ω +M)−1N | ∥,
η(Ω) =∥ |(Ω +M)−1(Ω−M)| ∥,
ζ(Ω) =∥ |(Ω +M)−1(Ω−A)| ∥,

and ∥ · ∥ is an induced matrix norm.

Theorem 3.1. A ∈ Rn×n is an M -matrix, and A = M − N is a splitting of
A with M being an M -matrix. If Ω ≥ diag(A) and (Ω + M)−1N ≥ O, then the
sequence {z(k)}+∞

k=0 generated by Method 2.2 is convergent for arbitrary initial vectors
x(0), x(1) ∈ Rn.

Proof. Since A, M are two M -matrices and Ω ≥ diag(A), we have Ω − A ≥ O
and Ω+M is an M -matrix due to Ω+M ≥ M . Then (Ω+M)−1 ≥ O and W ≥ O
in (2.4) under the condition (Ω +M)−1N ≥ O. Since the matrix

(Ω +M)−1(Ω +N −A) = (Ω +M)−1N + (Ω +M)−1(Ω−A) ≥ O

is associated with the matrix splitting

2A = (Ω +M)− (Ω +N −A),

which is a weak regular splitting (see Definition 3.3 in [10]), we know that ρ((Ω +
M)−1(Ω + N − A)) < 1 holds based on Theorem 3.4 in [10]. Thus from (ii) in
Lemma 3.1, we know that Method 2.2 is convergent.

In the following, we discuss some concrete convergence conditions and the quasi-
optimal cases of Method 2.2 based on (ii) and (iv) in Lemma 3.1.

Theorem 3.2. Suppose A ∈ Rn×n is a P -matrix, and the splitting A = M − N
satisfies that M is a symmetric positive definite M -matrix. Set Ω = ωI with ω > 0.
Denote the largest and the smallest eigenvalues of M by λmax and λmin, respectively,
and define τ = ∥ |N | ∥2. Then the iteration sequence {z(k)}+∞

k=0 generated by Method
2.2 is convergent for arbitrary initial vectors x(0), x(1) ∈ Rn if either of the following
two conditions holds:

(i) If M = sI(s > 0) and s > τ , then ω > τ . Moreover, ω = s is a quasi-optimal
parameter when ω ∈ (τ,+∞);

(ii) If M ̸= sI(s > 0), ∥ |(ωI +M)−1(ωI −M)| ∥2 = ||(ωI +M)−1(ωI −M)||2
and τ < λmin, then

ω ∈ (ωL,+∞),

where ωL =
τ − λmin +

√
(λmin − τ)2 + 4λmaxτ

2
. Moreover, ω =

√
λminλmax

is a quasi-optimal parameter.
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Proof. Since the matrix A is a P -matrix, the LCP(A, q) has a unique solution. If
Ω = ωI, from (iv) in Lemma 3.1, we know that a sufficient convergence condition
of Method 2.2 is

δ(Ω) = δ(ωI) = 2∥ |(ωI +M)−1N | ∥2 + ∥ |(ωI +M)−1(ωI −M)| ∥2 < 1.

Since M is a symmetric positive definite M -matrix, we have

∥ |(ωI +M)−1N | ∥2 ≤ ∥ |(ωI +M)−1| ∥2 · ∥ |N | ∥2

= ∥(ωI +M)−1∥2 · ∥ |N | ∥2

= maxλ∈sp(M)
τ

ω + λ
=

τ

ω + λmin

and if M = sI(s > 0) or M ̸= sI(s > 0) with ∥ |(ωI + M)−1(ωI − M)| ∥2 =
||(ωI +M)−1(ωI −M)||2, we have

∥ |(ωI +M)−1(ωI −M)| ∥2 = ||(ωI +M)−1(ωI −M)||2

= maxλ∈sp(M)
|ω − λ|
ω + λ

= max

{
|ω − λmin|
ω + λmin

,
|ω − λmax|
ω + λmax

}

=



|ω − s|
ω + s

, λmax = λmin = s, (s > 0);

λmax − ω

ω + λmax
, ω ≤

√
λminλmax with λmin ̸= λmax;

ω − λmin

ω + λmin
, ω ≥

√
λminλmax with λmin ̸= λmax.

If we set
δ̄(Ω) = δ̄(ωI) = 2∥(ωI +M)−1∥2 · ∥ |N | ∥2 + ∥(ωI +M)−1(ωI −M)∥2

=



|ω − s|
ω + s

+
2τ

ω + λmin
, λmax = λmin = s, (s > 0);

λmax − ω

ω + λmax
+

2τ

ω + λmin
, ω ≤

√
λminλmax with λmin ̸= λmax;

ω − λmin + 2τ

ω + λmin
, ω ≥

√
λminλmax with λmin ̸= λmax,

and solve the inequality

δ̄(Ω) < 1,

we can obtain the convergence region of ω for Method 2.2.
(I) From 

λmax = λmin = s, (s > 0);

|ω − s|
ω + s

+
2τ

ω + λmin
< 1,
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solving |ω − s|
ω + s

+
2τ

ω + λmin
=

|ω − s|
ω + s

+
2τ

ω + s
< 1, we have s > τ and the conver-

gence region of ω:
ω > τ.

Moreover, the function δ̄(Ω) =
|ω − s|+ 2τ

ω + s
is decreasing on interval ω ∈ (τ, s]

and is increasing on interval ω ∈ [s,+∞), so the minimum value point of δ̄(Ω) is
ω = s. Since the convergence region ω ∈ (τ,+∞) is derived from δ̄(Ω) < 1, thus
the minimum value point ω = s is a quasi-optimal parameter of Method 2.2.

(II) From 
ω ≤

√
λminλmax with λmin ̸= λmax;

λmax − ω

ω + λmax
+

2τ

ω + λmin
< 1,

we have τ < λmin and the convergence region of ω:

ωL < ω ≤
√

λminλmax,

where ωL =
τ − λmin +

√
(λmin − τ)2 + 4λmaxτ

2
. Moreover, the function δ̄(Ω) =

λmax − ω

ω + λmax
+

2τ

ω + λmin
is monotone decreasing on interval ω ∈ (ωL,

√
λminλmax].

(III) From 
ω ≥

√
λminλmax with λmin ̸= λmax;

ω − λmin + 2τ

ω + λmin
< 1,

we have τ < λmin and the convergence region of ω:

ω ≥
√
λminλmax.

Moreover, the function

δ̄(Ω) = δ̄(ωI) =
ω − λmin + 2τ

ω + λmin
= 1 +

2(τ − λmin)

ω + λmin

is monotone increasing on interval ω ∈ [
√
λminλmax,+∞).

Combining with (II) and (III), we obtain the convergence region when τ < λmin,
that is

ω ∈ (ωL,+∞).

Moreover, since this convergence region is derived from δ̄(Ω) < 1, we know that the
minimum value point

ω =
√

λminλmax

is a quasi-optimal parameter of Method 2.2.

Remark 3.1. (i) Since M is a symmetric positive definite M -matrix in Theorem
3.2, (ωI+M)−1(ωI−M) ≥ O holds when ω ≥ max{mii}, and ∥ |(ωI+M)−1(ωI−
M)| ∥2 = ||(ωI +M)−1(ωI −M)||2 holds. Besides, when (ωI +M)−1(ωI −M) is
a diagonal matrix, ∥ |(ωI +M)−1(ωI −M)| ∥2 = ||(ωI +M)−1(ωI −M)||2 always
holds.
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(ii) The particular matrix splitting and the condition τ < λmin are required in
Theorem 3.2. In general, we can set M = diag(A), then check other conditions.
Especially, if A is a symmetric positive definite M -matrix, there is an ordinary
matrix splitting, that is M = A and N = O, then the condition τ = 0 < λmin is
satisfied.

(iii) Here the quasi-optimal parameter means that it minimizes the upper bound
of a convergence condition function.

In the following, we discuss the H+-matrix, which belongs to the P -matrix and
takes the M -matrix as a special case.

Theorem 3.3. Suppose A ∈ Rn×n is an H+-matrix, and the splitting A = M −N
satisfies that M is an H+-matrix and ⟨M⟩ − |N | + ⟨A⟩ is an M -matrix. If Ω ≥
diag(A), then the sequence {z(k)}+∞

k=0 generated by Method 2.2 is convergent for
arbitrary initial vectors x(0), x(1) ∈ Rn.

Proof. We will prove that the convergence condition (ii) in Lemma 3.1 holds
under the assumption. Since M is an H+-matrix, then Ω + ⟨M⟩ is an M -matrix
and Ω+M is also an H+-matrix. So,

|(Ω +M)−1| ≤ (⟨Ω+M⟩)−1 = (Ω + ⟨M⟩)−1

holds (see Lemma 3.2 in [10]). Thus

|(Ω +M)−1N |+ |(Ω +M)−1(Ω−A)| ≤ (Ω + ⟨M⟩)−1(|N |+ |Ω−A|). (3.1)

Then, if Ω ≥ diag(A), (Ω + ⟨M⟩)−1(|N | + |Ω − A|) can be looked as the iteration
matrix of

⟨M⟩ − |N |+ ⟨A⟩

with the M -splitting:
(Ω + ⟨M⟩)− (|N |+ |Ω−A|).

Hence, from Theorem 3.4 in [10], we have

ρ((Ω + ⟨M⟩)−1(|N |+ |Ω−A|)) < 1.

Thus, combining with (3.1) and the monotone theory of spectral radius of nonneg-
ative matrices, the inequality

ρ(|(Ω +M)−1N |+ |(Ω +M)−1(Ω−A)|) < 1

holds (see Lemma 3.2 in [10]). Then the conclusion is proved.

Corollary 3.1. Suppose A ∈ Rn×n is an H+-matrix, and the splitting A = M −N
is an H-splitting, i.e., ⟨M⟩ − |N | is an M -matrix. If Ω ≥ diag(A), then the
sequence {z(k)}+∞

k=0 generated by Method 2.2 is convergent for arbitrary initial vectors
x(0), x(1) ∈ Rn.

Proof. Since A ∈ Rn×n is an H+-matrix, A = M − N , ⟨M⟩ − |N | is an M -
matrix and ⟨M⟩ ≥ ⟨M⟩ − |N |, we know that M has positive diagonal and ⟨M⟩ is
an M -matrix, then M is an H+-matrix.

From the H-splitting condition, we know that

⟨A⟩ ≥ ⟨M⟩ − |N |
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holds. Thus
⟨M⟩ − |N |+ ⟨A⟩ ≥ 2(⟨M⟩ − |N |).

Then, the matrix ⟨M⟩ − |N |+ ⟨A⟩ is an M -matrix. According to Theorem 3.3, the
conclusion is established.

In the following, we consider a particular matrix splitting, i.e., the accelerated
over-relaxation (AOR) splitting, which is defined as:

A = Mαβ −Nαβ , Mαβ =
1

α
(D−βL), Nαβ =

1

α
[(1−α)D+(α−β)L+αU ], (3.2)

where D = diag(A), −L and −U are the strictly lower and the upper triangular
parts of A, respectively. If A is an H+-matrix, then the splitting (3.2) is an H-
compatible splitting, i.e., ⟨A⟩ = ⟨M⟩ − |N | holds if

0 ≤ β ≤ α ≤ 1, with α ̸= 0. (3.3)

For an H+-matrix, since the H-compatible splitting is also an H-splitting, we know
that Corollary 3.1 holds for the AOR splitting with α and β satisfying (3.3). Accord-
ing to (3.2), there are several particular cases of Method 2.2, that is the two-point
modulus-based accelerated over-relaxation (TPMBAOR) iteration method, the two-
point modulus-based successive over-relaxation (TPMBSOR) iteration method (for
α = β), the two-point modulus-based Gauss-Seidel (TPMBGS) iteration method
(for α = β = 1) and the two-point modulus-based Jacobi (TPMBJ) iteration
method (for α = 1, β = 0). For the quasi-optimal case of the TPMBAOR iter-
ation method, we have the following conclusion.

Theorem 3.4. Suppose A ∈ Rn×n is an H+-matrix and the AOR splitting satisfies
(3.2) and (3.3). If Ω ≥ D, then the sequence {z(k)}+∞

k=0 generated by Method 2.2 is
convergent for arbitrary initial vectors x(0), x(1) ∈ Rn. Moreover,

(i) the quasi-optimal case is the TPMBGS iteration method, that is α = β = 1;
(ii) if Ω = ωD with ω ≥ 1, then the quasi-optimal case is the TPMBGS iteration

method with ω = 1.

Proof. From the assumption, the first part of this theorem can be proved from
the AOR splitting being an H-splitting and Corollary 3.1.

We prove (i) and (ii) below. Since M has positive diagonals and ⟨M⟩ is an
M -matrix according to the assumption, we know that M is an H+-matrix and

ρ(|(Ω +M)−1N |+ |(Ω +M)−1(Ω−A)|) ≤ ρ((Ω + ⟨M⟩)−1(|N |+ |Ω−A|)) (3.4)

holds from Theorem 3.3. We discuss α, β and Ω to make ρ((Ω+ ⟨M⟩)−1(|N |+ |Ω−
A|)) < 1, and prove (i) and (ii) in three steps.

I) Let α be a fixed nonzero value. If Ω ≥ D and β : 0 ≤ β ≤ α ≤ 1, then, for
the TPMBAOR iteration method, we have

M̂αβ =Ω+ ⟨Mαβ⟩ = Ω+ ⟨ 1
α
(D − βL)⟩

≥Ω+ ⟨ 1
α
(D − αL)⟩ = Ω+ ⟨Mαα⟩ = M̂αα;

N̂αβ =|Nαβ |+ |Ω−A| =
∣∣∣∣ 1α [(1− α)D + (α− β)L+ αU ]

∣∣∣∣+ |Ω−A|
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≥
∣∣∣∣ 1α [(1− α)D + (α− α)L+ αU ]

∣∣∣∣+ |Ω−A| = |Nαα|+ |Ω−A| = N̂αα

=

∣∣∣∣ 1α [(1− α)D + αU ]

∣∣∣∣+ |Ω−A|;

Âαβ =M̂αβ − N̂αβ = Ω+D − |Ω−D| − 2(|L|+ |U |) = M̂αα − N̂αα = Âαα

=2[D − (|L|+ |U |)] = 2⟨A⟩.

Since 2⟨A⟩ is an M -matrix, N̂αβ ≥ N̂αα ≥ 0, M̂αβ and M̂αα are M -matrices, thus,
there are two regular splittings of 2⟨A⟩ [10]. From Theorem 1.1 in [17], we have

ρ(M̂−1
αβ N̂αβ) ≥ ρ(M̂−1

αα N̂αα),

which means that the quasi-optimal parameter β in the TPMBAOR iteration method
is β = α. Thus the quasi-optimal TPMBAOR iteration method is the TPMBSOR
iteration method for any Ω ≥ D.

II) Set α = β. If Ω ≥ D, then, for the TPMBSOR iteration method, we have

M̂αα =⟨Mαα⟩+Ω = ⟨ 1
α
(D − αL)⟩+Ω

≥⟨(D − L)⟩+Ω = M̂11;

N̂αα =|Nαα|+ |Ω−A| =
∣∣∣∣ 1α [(1− α)D + αU ]

∣∣∣∣+ |Ω−A|

≥|U |+ |Ω−A| = |N11|+ |Ω−A| = N̂11;

Âαα =M̂αα − N̂αα = Ω+D − |Ω−D| − 2(|L|+ |U |) = M̂11 − N̂11 = Â11.

From Theorem 1.1 in [17], we have

ρ(M̂−1
αα N̂αα) ≥ ρ(M̂−1

11 N̂11),

which means that the quasi-optimal case of TPMBSOR iteration method is α = β =
1. Thus the quasi-optimal TPMBSOR iteration method is the TPMBGS iteration
method for any Ω ≥ D.

Then, collecting I) and II), (i) is proved.
Note that Ω = ωD with ω ∈ [1,+∞) satisfies the condition Ω ≥ D, thus (i)

holds in this case. For (ii), we need to prove that when Ω = ωD with ω ∈ [1,+∞),
the quasi-optimal parameter in the TPMBGS iteration method is ω = 1.

III) Set α = β = 1. If Ω = ωD,ω ∈ [1,+∞), then, for the TPMBGS iteration
method, we have

M̂11ω =⟨M11⟩+Ω = ⟨(D − L)⟩+ ωD ≥ ⟨(D − L)⟩+D = M̂111;

N̂11ω =|N11|+ |Ω−A| = |U |+ |ωD −A| = |ω − 1|D + |L|+ 2|U |

≥|L|+ 2|U | = |N1|+ |1D −A| = N̂111;

Â11ω =M̂11ω − N̂11ω = (ω + 1− |ω − 1|)D − 2(|L|+ |U |)

=2(D − |L| − |U |) = Â111 = 2⟨A⟩.

From Theorem 1.1 in [17], we also have

ρ(M̂−1
11ωN̂11ω) ≥ ρ(M̂−1

111N̂111).

Then the quasi-optimal parameter ω in the TPMBGS iteration method is ω = 1.
Thus the conclusion (ii) is proved.
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4. Numerical experiments
In this section, we show several examples to illustrate the presented results. Exam-
ple 4.1 is for the convergence region, the quasi-optimal parameter matrix Ω and the
comparison of the different convergence conditions, and it is connected with Lemma
3.1 and Theorem 3.2. Example 4.2 and Example 4.3 are for the TPMBAOR itera-
tion method, and both examples are connected with Theorem 3.4. Some notations
are described as follows: the number of iteration steps is denoted by IT, and the
norm of the residual vector is denoted by RES. Here, RES is defined as:

RES(z(k)) = ||min(z(k), Az(k) + q)||2,

where z(k) is the kth approximate solution. The iteration stops when RES(z(k)) <
1.0e− 5 or k reaches 250. The system matrix A in the first three examples is given
by A(µ, θ, φ) = Â+ µI + θB + φC, where µ, θ and φ are three constants,

Â = Tridiag(−I, S,−I) ∈ Rn×n

is a block-tridiagonal matrix, I ∈ Rn×n is the identity matrix, B = tridiag(0, 0, 1) ∈
Rn×n and S = tridiag(−1, 4,−1) ∈ Rm×m are two tridiagonal matrices with dif-
ferent orders, C = diag([1, 2, 1, 2, ...]) ∈ Rn×n is a diagonal matrix, m is a positive
integer and n = m2. For convenience, we set m = 30,

q = (1,−1, 1,−1, . . . , 1,−1, . . .)T ∈ Rn

and all initial iteration vectors are chosen to be

x(0) = x(1) = (1, 0, 1, 0, . . . , 1, 0, . . .)T ∈ Rn

in our experiments. By changing the values of µ, θ and φ in A(µ, θ, φ), we test
many cases in our experiments, such as A(2, 0, 1), A(1, 0, 1), A(1, 0, 2), A(0, 0, 1),
A(1, 1, 0), A(1, 1, 1), A(0, 1, 1), A(0, 2, 1), A(2, 2,−1), A(0, 1, 2), A(1, 2, 1), and so
on. The first four matrices are symmetric positive definite matrices, and the rest
are H+-matrices, so they are all P -matrices. For the construction way of A and the
choosing way of q, readers can refer to [3,19]. We also consider another case in our
experiments, that is A(µ, θ, φ) = Â+ µI + θB + φC with

Â = Tridiag(−0.5I, S,−0.5I) ∈ Rn×n.

Since the numerical results are similar, we omit this part. In Example 4.4, we
consider a practical linear complementarity problem, which is derived from the
Black-Scholes American option pricing problem. All the tests are performed in
MATLAB R2016b on a Dell Laptop (Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz
2.70GHz, 4.00GB RAM).

Example 4.1. In this example, we test Lemma 3.1 and Theorem 3.2. We consider
four cases: A(2, 0, 1), A(1, 1, 0), A(1, 0, 1) and A(1, 1, 1). For the case A(2, 0, 1), we
set M = sI = max(diag(A))I = 8I, then τ = 4.5413; for the case A(1, 1, 0), we set
M = sI = max(diag(A))I = 5I, then τ = 3.0507, here ‘max(diag(A))’ denotes the
maximum value of the diagonal elements of A. So, both cases satisfy (i) in Theorem
3.2, that is M = sI(s > 0) and s > τ . We set Ω = ωI with

ω ∈ (τ,+∞).
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For convenience, we denote the lower bound τ and the particular parameter value
s by ωL and ωS , respectively. For the case A(1, 0, 1), we set M = triu(A,−1) −
triu(A, 2), which is the tridiagonal part of A, where ‘triu’ is an operator in MAT-
LAB, which can generate the upper triangle parts of A. Then τ = 1.9897 and
λmin = 4.4484. For the case A(1, 1, 1), we set M = diag(A), which is the diagonal
part of A. Then τ = 3.0507 and λmin = 6. So, both cases satisfy (ii) in Theorem
3.2, that is M ̸= sI(s > 0) and τ < λmin. We set Ω = ωI and consider

ω ∈ (ωL,+∞),

where ωL is defined as that in Theorem 3.2. We denote
√
λminλmax by ωS . Then, we

have the same notation ωS for the four cases. We set some values of ω in [ωL,+∞),
that is

ω = ωL :
ωS − ωL

5
: 2ωS − ωL,

where ‘:’ is an operator in MATLAB. Then ωL is the first value and ωS is in
the middle of the 11 values. We consider ∥ |(ωI + M)−1(ωI − M)| ∥2 = ||(ωI +
M)−1(ωI−M)||2, ρ(|(Ω+M)−1N |+ |(Ω+M)−1(Ω−A)|) < 1 and IT for Theorem
3.2. Meanwhile, we compare the four convergence conditions given in Theorem 3.1,
that is, ρ(|W |) < 1, ρ(|(Ω + M)−1N | + |(Ω + M)−1(Ω − A)|) < 1, σ(Ω) < 1 and
δ(Ω) < 1. The numerical results are shown in Table 1 and Figure 1.

Table 1. Numerical results of the TPMB iteration method

A(2, 0, 1)

ω ωL ω2 ω3 ω4 ω5 ωS ω7 ω8 ω9 ω10 ω11

DN 0 0 0 0 0 0 0 0 0 0 0
ρ(Plus) 0.91 0.81 0.72 0.63 0.58 0.56 0.58 0.60 0.61 0.63 0.64

IT 26 22 20 20 18 18 22 25 27 30 32
A(1, 1, 0)

ω ωL ω2 ω3 ω4 ω5 ωS ω7 ω8 ω9 ω10 ω11

DN 0 0 0 0 0 0 0 0 0 0 0
ρ(Plus) 0.80 0.71 0.64 0.57 0.51 0.45 0.47 0.49 0.50 0.52 0.54

IT 49 39 31 24 24 26 29 31 34 36 38
A(1, 0, 1)

ω ωL ω2 ω3 ω4 ω5 ωS ω7 ω8 ω9 ω10 ω11

DN 0.02 0.02 0.02 0.02 0.02 0.04 0.03 0 0 0 0
ρ(Plus) 1.02 0.90 0.80 0.71 0.63 0.58 0.56 0.58 0.60 0.62 0.64

IT 39 31 26 22 21 18 19 21 25 27 31
A(1, 1, 1)

ω ωL ω2 ω3 ω4 ω5 ωS ω7 ω8 ω9 ω10 ω11

DN 0 0 0 0 0 0 0 0 0 0 0
ρ(Plus) 0.68 0.67 0.58 0.49 0.42 0.38 0.40 0.42 0.45 0.47 0.49

IT 35 31 26 19 17 19 21 24 26 29 31
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Figure 1. The numerical results about IT and the convergence conditions
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In Table 1, DN and ρ(Plus) represent ∥ |(ωI + M)−1(ωI − M)| ∥2 − ||(ωI +
M)−1(ωI −M)||2 and ρ(|(Ω+M)−1N |+ |(Ω+M)−1(Ω−A)|), respectively. From
Table 1, we can see that for the cases A(2, 0, 1), A(1, 1, 0) and A(1, 1, 1), the con-
vergence domain of ω can extend to ω2-ω11 since the condition DN = 0 always
holds from Theorem 3.2. The convergence domain of ω can extend to ωL since
ρ(Plus) < 1 on ωL from (ii) in Lemma 3.1. For the case A(1, 0, 1), the convergence
domain of ω can not extend to ω2-ω7 since DN = 0 does not hold from Theorem
3.2. However, the convergence domain of ω can extend to ω2-ω7 since ρ(Plus) < 1
from (ii) in Lemma 3.1. This example verifies the convergence conditions in Lemma
3.1 and Theorem 3.2, and it also shows that the convergence domain obtained by
Lemma 3.1 is larger than that of Theorem 3.2.

The left side of Figure 1 corresponds to the data of ω and IT in Table 1. For
the cases A(2, 0, 1) and A(1, 1, 0), the numerical results show that ω = ωS = s is a
good parameter when M = sI with s > 0. For the cases A(1, 0, 1) and A(1, 1, 1),
the former does not accord with Theorem 3.2 since that DN = 0 does not hold, and
the latter accords with Theorem 3.2. However, both numerical results show that
ω = ωS =

√
λminλmax is a good parameter when M ̸= sI. Therefore, this example

verifies the conclusion of Theorem 3.2 for the quasi-optimal parameters. The right
side of Figure 1 is for the convergence functions. The y-axis represents the func-
tion value, the lines ‘+ + +’ and ‘∗ ∗ ∗’ represent ρ(Plus) and δ̄(Ω), respectively.
The numerical results show that ρ(Plus) is the lowest in the five condition func-
tions: ρ(|W |), ρ(Plus), σ(Ω), δ(Ω) and δ̄(Ω), and they have the similar monotone
property.

Example 4.2. In this example, we investigate the function ρ((Ω + ⟨M⟩)−1(|N | +
|Ω−A|)) utilized in Theorem 3.4 (see expression (3.4)) and the influence of α, β in
the TPMBAOR iteration method. We consider α, β ∈ [0, 1 + 2

l ] with l > 0, which
is larger than the interval [0, 1] discussed in Theorem 3.4. Specifically, we set

α =
1

l
:
1

l
: (1 +

2

l
) and β =

1

l
:
1

l
: (1 +

2

l
)

with l = 9, and α9 = β9 = 1. Then, both β ≤ α and α ≤ β are included in our
experiments. We consider four cases: A(0, 0, 1), A(0, 1, 1), A(0, 2, 1) and A(2, 2,−1),
all of which are H+-matrices. Setting Ω = D, which is the diagonal part of A, then
we obtain Figure 2 and Table 2.

Since the numerical results are similar, we only show the data of case A(0, 0, 1)
in Table 2, which correspond to the first two of Figure 2. The notation ρ in Table
2 represents ρ((Ω+ ⟨M⟩)−1(|N |+ |Ω−A|)) utilized in Theorem 3.4. From Figure 2
and Table 2, we have the observations as follows. (i) When the AOR splitting is the
H-compatible splitting, that is, 0 ≤ β ≤ α ≤ 1 with α ̸= 0, the TPMBGS iteration
method (α = β = 1) is good. (ii) When the spitting is not an H-compatible
splitting, that is, α and β do not satisfy the inequality 0 ≤ β ≤ α ≤ 1, the
TPMBAOR iteration method is still convergent since ρ((Ω + ⟨M⟩)−1(|N | + |Ω −
A|)) < 1. This indicates that the convergence region of α and β discussed in
Theorem 3.4 is sufficient. Besides, we can find that the TPMBGS iteration method
has good performance in a large convergence range. (iii) The spectral radius ρ((Ω+
⟨M⟩)−1(|N |+ |Ω−A|)) is not exactly consistent with the number of iteration steps.

Example 4.3. In this example, we consider the parameter ω with Ω = ωD, ω ∈
[1,+∞). The parameters α and β in the TPMBAOR iteration method are set to
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Figure 2. The comparison between ρ((Ω+ ⟨M⟩)−1(|N |+ |Ω−A|)) and IT for the TPMBAOR iteration
method

be same as Example 4.2. For each of A(0, 0, 1), A(0, 1, 1), A(0, 2, 1) and A(2, 2,−1),
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Table 2. Numerical results of the TPMBAOR iteration method

A(0, 0, 1)

ρ α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11

β1 0.94 0.89 0.86 0.82 0.80 0.77 0.75 0.73 0.72 0.81 0.90
β2 1.00 0.89 0.85 0.82 0.79 0.77 0.75 0.73 0.71 0.81 0.89
β3 1.05 0.95 0.85 0.81 0.79 0.76 0.74 0.72 0.71 0.80 0.89
β4 1.09 1.01 0.91 0.81 0.78 0.75 0.73 0.72 0.70 0.80 0.89
β5 1.14 1.06 0.96 0.87 0.77 0.75 0.73 0.71 0.69 0.80 0.89
β6 1.18 1.10 1.01 0.92 0.83 0.74 0.72 0.70 0.69 0.79 0.89
β7 1.23 1.15 1.06 0.97 0.88 0.79 0.71 0.69 0.68 0.79 0.88
β8 1.27 1.19 1.11 1.02 0.93 0.84 0.76 0.69 0.67 0.78 0.88
β9 1.33 1.23 1.15 1.06 0.98 0.89 0.81 0.73 0.66 0.78 0.88
β10 1.38 1.27 1.19 1.11 1.02 0.94 0.86 0.78 0.71 0.77 0.88
β11 1.44 1.32 1.23 1.15 1.07 0.98 0.90 0.82 0.75 0.82 0.87

IT α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11

β1 118 63 44 34 29 25 23 21 20 21 21
β2 113 60 42 33 28 25 22 21 20 20 21
β3 109 58 41 32 27 24 22 21 20 20 20
β4 104 56 39 31 27 24 22 21 20 20 20
β5 99 53 38 31 26 24 22 21 20 20 20
β6 95 51 37 30 26 23 22 21 20 20 20
β7 90 50 36 29 26 23 22 21 20 20 20
β8 87 48 35 29 25 23 22 21 20 20 20
β9 84 47 34 28 25 23 22 21 20 20 21
β10 82 45 34 28 25 23 22 21 20 20 21
β11 81 44 33 27 24 23 22 21 20 20 21

we consider three cases: ω = 1, 2, 3. The numerical results are shown in Figure 3.

In each sub-figure of Figure 3, the value of ω is 1, 2, 3 in turn. From Figure 3,
we can see that when ω = 1, i.e., Ω = D, the number of iteration steps is minimal.

Example 4.4. In this example, we consider the linear complementarity prob-
lems derived from the Black-Scholes American option pricing problem. Based on
the Black-Scholes model, we can obtain the LCP(A, q) with A = tridiag(−τ, 1 +
2τ,−τ) ∈ Rn×n being an M -matrix when τ > 0. For the detailed materials, read-
ers can refer to [20, 21]. We set q = Ae(e = (1, 1, 1, ..., 1)T ∈ Rn) with n = 1000
and consider the TPMBSOR iteration method (that is α = β in the TPMBAOR
iteration method) with α = β = 1

l : 1
l : 1 + 2

l and l = 10, then we obtain Table 3 as
follows.

Example 4.4 shows that the TPMBSOR iteration method can deal with the
linear complementarity problem effectively and the TPMBGS iteration method,
i.e., α = β = 1, is a quasi-optimal case.
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Figure 3. The comparison of IT for the TPMBAOR iteration method with different Ωs

5. Concluding remarks
In this paper, we studied the convergence problems of the TPMB matrix splitting
iteration method for solving the LCP(A, q) with a P -matrix. Some convergence
theories are provided, including the general convergence conditions and the quasi-
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Table 3. Numerical results of the TPMBSOR iteration method

A = tridiag(−τ, 1 + 2τ,−τ)

IT α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 = 1 α11 α12

τ = 0.5 9 5 3 3 3 3 2 2 2 2 2 2
τ = 1 12 7 5 4 4 3 3 3 3 3 3 3
τ = 1.5 16 9 7 6 5 5 4 4 4 4 4 4
τ = 2 20 11 8 7 6 5 5 5 5 5 4 4
τ = 2.5 24 13 10 8 7 7 6 6 6 6 6 6
τ = 3 28 16 12 10 8 8 7 7 6 6 6 6

optimal cases from two respects: the spectral radius and the matrix norm. The
numerical examples are illustrated to show the presented results.
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