
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com
Volume 13, Number 5, October 2023, 2522–2541 DOI:10.11948/20220414

THE MULTI-STEP RANDOMIZED
KACZMARZ ALGORITHMS FOR SOLVING

LARGE CONSISTENT LINEAR EQUATIONS∗

Hai-Long Shen1,†, Zhi-Min Xu1 and Xin-Hui Shao1

Abstract In order to solve large scale consistent linear systems, based on
the Kaczmarz algorithm, we propose two Multi-step Randomized Kaczmarz
algorithms, denoted as MRK1 and MRK2, and give the corresponding conver-
gence analysis. We consider using parameters to control the number of working
rows. MRK1 algorithm uses a fixed parameter m, and the best result is that
the parameter m is the number of rows of the coefficient matrix, while MRK2
algorithm uses a randomly generated parameter m, which is more general. Fi-
nally, we carry out the corresponding numerical simulation experiments, the
experimental results show that, compared with the RK, GRK algorithm, the
new algorithm is faster and more efficient on CPU in most cases, and the
maximum CPU acceleration is 12.54. And the difference between MRK1(s),
MRK2 and MGRK on CPU is not very significant according to experimental
results.

Keywords Kaczmarz algorithm, Randomized Kaczmarz algorithms, multi-
step Randomized algorithm, linear system, convergence analysis.

MSC(2010) 65F08, 65F10.

1. Introduction
In many fields such as physics, aerospace, engineering and economics, when it relates
to fluid mechanics, linear elasticity, electromagnetism, optimization, least squares,
elliptic partial differential equation problems and so on, it is often necessary to solve
a large-scale consistent linear systems. Therefore, solving the large-scale consistent
linear systems has gradually become a research focus. And when dealing with large
scale sparse matrices, there are a series of requirements such as fast efficiency, high
accuracy, small storage, easy operation and execution, so it is particularly important
to find fast and efficient methods. In this paper, we consider solving the large-scale
consistent linear systems as follows:

Ax = b (1.1)

†The corresponding author.
1Department of Mathematics, College of Sciences, Northeastern University,
Shenyang 110819, China

∗The authors were supported bythe Fundamental Research Funds for the Cen-
tral Universities (N2224005-1), (N2005013) and the Natural Science Founda-
tion of Liaon-Ning Province (No. 20170540323).
E-mail: hailong_shen@126.com(H. Shen), xzm0123456789@163.com(Z. Xu),
xinhui1002@126.com(X. Shao)

http://www.jaac-online.com
http://dx.doi.org/10.11948/20220414

The multi-step randomized kaczmarz algorithms. . . 2523

where A is a coefficient matrix and A ∈ Rs×t, b is a column vector and b ∈ Rs.
At present, the methods of solving linear systems (1.1) can be divided into

direct method and iterative method. The direct methods include Gaussian elimina-
tion method, column principal element elimination method, matrix trigonometric
decomposition method, square root method, catch-up method and so on, which
are more convenient for solving small-scale linear systems. And classical iterative
methods include Jacobi iterative method, Gauss-Seidel iterative method, etc. They
are suitable for solving low-order dense matrix equations and is also one of the rep-
resentative iterative methods, it uses orthogonal projection technology to speed up
the computation process and has been widely concerned by experts and scholars.
Due to its simplicity and efficiency, Kaczmarz algorithm has been widely used in
many fields, such as wireless sensor networks, environmental monitoring, structural
health monitoring and smart power grids [9], information retrieval [2], compressed
sensing [4], electromagnetic field [10], image reconstruction [8], atmospheric imag-
ing [7], etc.

In the 1930s, Polish mathematician Stefan Kaczmarz proposed the Kaczmarz
algorithm to solve large sparse linear systems (1.1), and the idea of the classical
Kaczmarz algorithm [6] is as follows:

If A(i) represents the ith row of the matrix A, b(i) represents the ith entry of the
right-hand side vector b, the initial vector is denoted as x0, and the index i is the
working row selected for the kth iteration, then its iteration formula is as follows:

xk+1 = xk +
b(i) −A(i)xk∥∥A(i)

∥∥2
2

(
A(i)

)∗
, k = 0, 1, 2, · · · , (1.2)

where i = (k mod m) + 1, (·)∗ represents the conjugate transpose of the vector
or matrix, ∥·∥22 represents the Euclidean norm, r(i)k represents the ith entry of the
residual vector rk. The geometric meaning of the formula (1.2) is to project the
current iterative solution xk onto the hyperplane b(i) − A(i)xk = 0 formed by the
selected working row A(i).

In order to reduce the error, many scholars have begun to further research and
exploration, it not only improves the convergence theory of Kaczmarz algorithm,
but also made a lot of improvements. The greedy residual Kaczmarz algorithm [12]
was proposed in 1984 by Ansorge. The greedy idea is mainly reflected in the idea
of choosing the one with the largest entries of the residual vector in each iteration
and finding the corresponding row for iteration. In 2009, Strohmer and Vershynin
consider a random strategy to select the working rows, put forward the Random-
ized Kaczmarz algorithm(RK) [11], and prove that the RK algorithm converges
with expected exponential rate. The RK algorithm benefits from the strategy

P (row = ik) =

∥∥∥A(ik)
∥∥∥2

2

∥A∥2
F

, which makes the selection of working rows more ran-
dom, so its convergence speed is faster. The disadvantage of the RK algorithm
is that the probability criterion is invalid when the coefficient matrix is a unitary
matrix or an orthogonal matrix. That is when the number of iteration steps or the
number of equations is very large, the results of the RK algorithm and the classical
Kaczmarz algorithm are roughly the same. Considering this situation, Bai and Wu
proposed a new probability criterion for selecting working rows and gave the greedy
Randomized Kaczmarz algorithm (GRK) in 2018;see [1].In the kth iteration, the
index set Uk is constructed by greedy strategy, that is, the corresponding row index
with large distance from the current iteration solution to the hyperplane is put into

2524 H. Shen, Z. Xu & X. Shao

Uk and then the working rows are selected from the index set Uk by a random strat-

egy P (row = ik) =

∥∥∥∥r̃(ik)k

∥∥∥∥2

2

∥r̃k∥2
2

. For the GRK algorithm, considering that the current

residual vector r̃k has the same maximum modulus margin r̃
(i)
k = r̃

(j)
k = r̃

(l)
k or their

values are close enough r̃
(i)
k > r̃

(j)
k > r̃

(l)
k at three different positions, the probability

of choosing row i is greatly reduced, it can be seen that the second largest residual
and other larger residuals are also important. In order to make full use of the resid-
ual information calculated in each iteration, Jiang proposed the Multi-step Greedy
Randomized Kaczmarz (MGRK) method [5]. That is, selects multiple working rows
instead of one according to probability one time, which greatly improves the com-
puting speed.

This paper also pays attention to the above shortcomings of the RK algorithm,
and each iteration of the MGRK method needs to recalculate the probability and
the index set Uk by residuals, resulting in a large amount of calculation. In order
to solve these problems, on the basis of the RK algorithm, we consider select mul-
tiple working rows one time, and propose two multi-step Randomized Kaczmarz
algorithms, denoted as MRK1 algorithm and MRK2 algorithm, collectively known
as MRK algorithm. MRK1 algorithm selects working rows according to probability
and a fixed parameter m. It is found that the CPU of MRK1 algorithm is better
when m is larger (but does not exceed the number of rows of coefficient matrix). The
difference is that the parameter m of MRK2 algorithm is randomly generated by a
function. In this paper, the convergence factor of the new algorithm is compared
with that of RK, GRK and MGRK, and we give the corresponding theoretical analy-
sis. Finally, numerical simulation experiments are carried out. Theoretical analysis
and experimental results show that the two algorithms are more efficient and faster
than RK, GRK and MGRK algorithm in most cases, although the improvement in
the number of iterative steps is not great.

The structure of this paper is as follows: In Section 2 we introduce some knowl-
edge about classical Kaczmarz, RK algorithm, MGRK algorithm and their conver-
gence. In section 3, the new MRK algorithm is proposed, and two different forms
of the multi-step Randomized Kaczmarz algorithm are given. In section 4, the con-
vergence of the two new algorithms is analyzed and compared with the convergence
factors of other algorithms. In section 5, the corresponding numerical simulation
experiments are carried out. Finally, this paper is summarized.

2. Preliminary knowledge
First, the general form of the least-squares solution of the linear systems (1.1) can
be written as

x = A†b+ (E − PA∗) y , ∀y ∈ Rt (2.1)

where A† is the Moore-Penrose pseudoinverse of the matrix A, E is the identity
matrix, PA∗ is the orthogonal projection on the row space of the matrix A, and
PA∗ = A†A.When the matrix A is full rank, if s ≥ t, then A† = (A∗A)

−1
A∗;

if s < t, then A† = A∗ (AA∗)
−1. If the system of linear systems is consistent,

because (E − PA∗) y ∈ ker (A∗A) = ker (A) , A†b ∈ RA∗ , and the row space RA∗

is orthogonal to the null space ker (A), it can be known as x⋆ = A†b is the least

The multi-step randomized kaczmarz algorithms. . . 2525

Euclidean-norm solution of the system of linear systems (1.1).
For a matrix Q = (qij) ∈ Rs×t, it is recorded ∥Q∥F =

√∑i=s
i=1

∑j=t
j=1 q

2
ij as the

Frobenius norm of the matrix. In particular, if Q is a square matrix, it is recorded λi

as the eigenvalue of the matrix Q, and tr (Q) =
∑i=s

i=1 λi =
∑i=s

i=1 qii can be defined
as the trace of the matrix Q. This leads to another definition of Frobenius norm:
∥Q∥F = ∥Q∗Q∥2. And if Q is a Hermitian matrix, denote λmin(Q) and λmax(Q)
as the minimum and maximum nonzero eigenvalues of the matrix, respectively.
For the consistent linear systems in (1.1), the following RK algorithm is proposed
by Strohmer and Vershynin:
Algorithm 1 RK
Input: A,b,T ,x0

Output: xT

1: for k = 0, 1, 2 · · ·T do

2: Select ik = {1, 2, ..., s} with probability P (row = ik) =

∥∥∥A(ik)
∥∥∥2

2

∥A∥2
F

;

3: Set xk+1 = xk + b(i)−A(i)xk

∥A(i)∥2

2

(
A(i)

)∗
, k = 0, 1, 2, · · · ;

4: end for
The corresponding convergence analysis is given in [11], and the solution error
satisfies the following theorem.

Theorem 2.1 ([11]). If the system of linear systems (1.1) is consistent, the iter-
ation sequence{xk}∞k=0 generated by the initial vector x0(x0 ∈ RA∗) and the RK
algorithm converges to a unique least-norm solution x⋆ = A†b in expectation. And
the solution error is expected to satisfy the following formula:

E ∥xk − x⋆∥22 ≤

(
1− λmin (A

∗A)

∥A∥2F

)k

∥xk − x0∥22 , k = 1, 2, · · · ,

where Ek (·) = E {·|i0, i1, i2 · · · ik−1} represents the mean error of the kth iteration.

In order to solve the problem that the GRK algorithm may have the same
maximum residual modulus margin or the residual modulus margins are very close
at different locations, Jiang proposed an MGRK method in [5]. That is, select a
series of working rows with largely relative residuals. The MGRK algorithm is as
follows:
Algorithm 2 MGRK
Input: A,b,T ,x0

Output: xT

1: for k = 0, 1, 2 · · ·T do

2: Compute εk = 1
2

(
1

∥b−Axk∥2
2

max
1≤ik≤s

{ ∣∣∣b(ik)−A(ik)xk

∣∣∣2∥∥∥A(ik)
∥∥∥2

2

}
+ 1

∥A∥2
F

)
;

3: Define the index set of positive integers:
Uk =

{
ik|
∣∣b(ik) −A(ik)xk

∣∣2 ≥ εk ∥b−Axk∥22
∥∥A(ik)

∥∥2
2

}
;

4: Compute vector

r̃
(i)
k =

{
b(i) −A(i)xk, if i ∈ Uk

0, otherwise
;

2526 H. Shen, Z. Xu & X. Shao

5: Select ik = {ik1,ik2,..., ikm1
} ∈ Uk with probability P (row = ik) =

∣∣∣r̃(i)k

∣∣∣2
∥r̃k∥2

2

;

6: Compute

xk+ 1
m1

= xk +
b(ik1) −A(ik1)xk∥∥∥A(ik1)

∥∥∥2
2

(
A(ik1)

)∗

xk+ 2
m1

= xk+ 1
m1

+
b(ik2) −A(ik2)xk+ 1

m1∥∥∥A(ik2)
∥∥∥2
2

(
A(ik2)

)∗
...

xk+1 = xk+m1−1
m1

+
b(ikm1−1) −A(ikm1−1)xk+m1−1

m1∥∥∥A(ikm1−1)
∥∥∥2
2

(
A(ikm1−1)

)∗
;

7: end for

The convergence theorem of MGRK algorithm is also given in literature:

Theorem 2.2 ([5]). If the system of linear equations (1.1) is consistent, the
iteration sequence {xk}∞k=0 generated by the initial vector x0(x0 ∈ RA∗) and the
MGRK algorithm converges to a unique least-norm solution x⋆ = A†b in expectation,
and the solution error satisfies the following formula :

E ∥xk − x⋆∥22

≤

(
1− 1

2

(
1

γ
∥A∥2F + 1

)
λmin (A

∗A)

∥A∥2F

)m1(k−1)

·

(
1− λmin (A

∗A)

∥A∥2F

)m1

∥x0 − x⋆∥22 .

In the above formula, k = 1, 2.... and γ = max
1≤i≤s

j=s∑
j=1
j ̸=i

∥∥A(j)
∥∥2
2
.

3. Multi-step Randomized Kaczmarz algorithm.
We note the probability criterion of selecting working row in each iteration of
the RK algorithm, when the row norms of the coefficient matrix are very close∥∥A(ik)

∥∥2
2
>
∥∥A(il)

∥∥2
2
>
∥∥A(im)

∥∥2
2

or equal
∥∥A(ik)

∥∥2
2
=
∥∥A(il)

∥∥2
2
=
∥∥A(im)

∥∥2
2
, the

probability of selecting the ikth row will be greatly reduced. We also notice that
RK algorithm only selects one row in each iteration, this reduces the likelihood
that other rows will be selected as working rows, which correspond to relatively
high probabilities. And in order to avoid the calculation of the index set Uk and
probability in MGRK algorithm, the new algorithm adopts the random strategy of
the RK algorithm.

In this paper, MRK algorithm has improved RK algorithm from the idea of
improving GRK algorithm, a Multi-step Randomized Kaczmarz (MRK) method is
proposed by selecting multiple working rows according to the probability. Mean-
while, two different forms of the multi-step Randomized Kaczmarz algorithm are
given: One is to use the fixed parameter m in each iteration to control the number

The multi-step randomized kaczmarz algorithms. . . 2527

of working rows, the other is to randomly generate a parameter m according to a
function and select the rows of the coefficient matrix according to the probability.
MRK algorithm can be regarded as a multi-step RK method, and because one time
multiple rows of coefficient matrix are selected, the convergence process of iteration
sequence to true solution is accelerated.

Firstly, consider the MRK1 algorithm with fixed parameter m that selects the
same number of working rows one time. Secondly, MRK2 algorithm is given to se-
lect different number of working rows one time, that is, random function generates
parameter m.

Algorithm 3 MRK1
Input: A,b,T ,x0,and m
Output: xT

1: for k = 0, 1, 2 · · ·T do

2: Select ik = {ik1,ik2,..., ikm
} with probability P (row = ik) =

∥∥∥A(ik)
∥∥∥2

2

∥A∥2
F

;
3: Compute



xk+ 1
m

= xk +
b(ik1) −A(ik1)xk∥∥∥A(ik1)

∥∥∥2
2

(
A(ik1)

)∗

xk+ 2
m

= xk+ 1
m

+
b(ik2) −A(ik2)xk+ 1

m∥∥∥A(ik2)
∥∥∥2
2

(
A(ik2)

)∗
...

xk+1 = xk+m−1
m

+
b(ikm−1) −A(ikm−1)xk+m−1

m∥∥∥A(ikm−1)
∥∥∥2
2

(
A(ikm−1)

)∗
; (3.1)

4: end for

Algorithm 4 MRK2
Input: A,b,T ,x0

Output: xT

1: for k = 0, 1, 2 · · ·T do
2: Compute m = randi(s) to select the number of row indicators.

3: Select ik = {ik1,ik2,..., ikm
} with probability P (row = ik) =

∥∥∥A(ik)
∥∥∥2

2

∥A∥2
F

;

2528 H. Shen, Z. Xu & X. Shao

4: Compute

xk+ 1
m

= xk +
b(ik1) −A(ik1)xk∥∥∥A(ik1)

∥∥∥2
2

(
A(ik1)

)∗

xk+ 2
m

= xk+ 1
m

+
b(ik2) −A(ik2)xk+ 1

m∥∥∥A(ik2)
∥∥∥2
2

(
A(ik2)

)∗
...

xk+1 = xk+m−1
m

+
b(ikm−1) −A(ikm−1)xk+m−1

m∥∥∥A(ikm−1)
∥∥∥2
2

(
A(ikm−1)

)∗
; (3.2)

5: end for

4. Convergence analysis of MRK algorithm
This section we will prove that MRK1 and MRK2 algorithms are linear convergent,
compare their convergence factors with those of RK, GRK and MGRK algorithm,
and analyze the advantages and disadvantages.

Firstly,it is shown that if the MRK algorithm converges, it converges to the
least-norm solution x⋆ = A†b. This is because when the initial vector x0 ∈ RA∗ ,
suppose the iteration sequence {xk}∞k=0 generated by RK algorithm converge to x̄,
and the limit of both sides of the iteration formula can be obtained:

lim
k→∞

xk+1 = lim
k→∞

(
xk +

b(ik) −A(ik)xk∥∥A(ik)
∥∥2
2

(
A(ik)

)∗)
, k = 0, 1, 2, · · ·

then we have (
b(w) −A(w)x̄

)(
A(w)

)∗
= 0, w = 1, 2, . . . , s.

Consider the system of equations in the form of

A∗b−A∗Ax̄ = 0,

that is
A∗b = A∗Ax̄.

According to the formula (2.1), we have x̄ = A†b+ (E − PA∗) y, ∀y ∈ Rt. Con-
sidering that each step of iteration is carried out on the row space RA∗ , x̄ can be
regarded as a linear combination of matrix row vectors, that is, x̄∈ RA∗ , and there
is x̄ = x⋆ = A†b. The convergence theorem of the MRK1 algorithm is given below.

Theorem 4.1. If the system of linear equations (1.1) is consistent, the sequence of
iterative solutions {xk}∞k=0 generated by the initial vector x0(x0 ∈ RA∗) and MRK1
algorithm converges to a unique least-norm solution x⋆ = A†b. The error of the
solution satisfies the following formula in expectation:

Ek ∥xk+1 − x⋆∥22 ≤

(
1− λmin (A

∗A)

∥A∥2F

)m

∥xk − x⋆∥22 , k = 0, 1, 2, . . . , (4.1)

The multi-step randomized kaczmarz algorithms. . . 2529

so that it is possible to have for k = 1, 2,

E ∥xk − x⋆∥22 ≤

(
1− λmin (A

∗A)

∥A∥2F

)km

∥x0 − x⋆∥22 . (4.2)

Proof. First let’s prove an orthogonal relation.From the iterative formula (3.1),
we get

A(ikl)
(
xk+ l

m
− x⋆

)
= A(ikl)

xk+ l−1
m

− x⋆ +
b(ikl) −A(ikl)xk+ l−1

m∥∥∥A(ikl)
∥∥∥2
2

(
A(ikl)

)∗
= A(ikl)

(
xk+ l−1

m
− x⋆

)
+A(ikl)

A(ikl)x⋆ −A(ikl)xk+ l−1
m∥∥∥A(ikl)

∥∥∥2
2

(A(ikl)
)∗

= A(ikl)
(
xk+ l−1

m
− x⋆

)
+A(ikl)x⋆ −A(ikl)xk+ l−1

m

= 0,

where l = 1, 2, ...,m. It can be known that xk+ l
m
−x⋆ and A(ikl) are perpendicular to

each other,
(
A(ikl)

)∗
and xk+ l

m
− xk+ l−1

m
are parallel to each other. We can obtain

xk+ l
m

− x⋆ and
(
xk+ l

m
− xk+ l−1

m

)∗
are perpendicular to each other. According to

the geometric relationship, we can get the formula:∥∥∥xk+ l
m

− x⋆

∥∥∥2
2
=
∥∥∥xk+ l−1

m
− x⋆

∥∥∥2
2
−
∥∥∥xk+ l

m
− xk+ l−1

m

∥∥∥2
2
, l = 1, 2, . . . ,m.

The full proof is given below.
When m = 1,

Ek ∥xk+1 − x⋆∥22 ≤

(
1− λmin (A

∗A)

∥A∥2F

)
∥xk − x⋆∥22

it is the same as the proof of RK algorithm which can refer to [11].
When m = 2, first for the k = 0, 1, 2, . . . , we have∥∥∥xk+ 1

2
− x⋆

∥∥∥2
2
= ∥xk − x⋆∥22 −

∥∥∥xk+ 1
2
− xk

∥∥∥2
2
, (4.3)

∥xk+1 − x⋆∥22 =
∥∥∥xk+ 1

2
− x⋆

∥∥∥2
2
−
∥∥∥xk+1 − xk+ 1

2

∥∥∥2
2
. (4.4)

From the above formula (4.3) and (4.4), we can get

∥xk+1 − x⋆∥22 = ∥xk − x⋆∥22 −
∥∥∥xk+ 1

2
− xk

∥∥∥2
2
−
∥∥∥xk+1 − xk+ 1

2

∥∥∥2
2
, (4.5)

taking the expectation for k in the formula (4.5), we get

Ek ∥xk+1 − x⋆∥22 = ∥xk − x⋆∥22 − Ek

∥∥∥xk+ 1
2
− xk

∥∥∥2
2
− Ek

∥∥∥xk+1 − xk+ 1
2

∥∥∥2
2

2530 H. Shen, Z. Xu & X. Shao

= ∥xk − x⋆∥22 − Ek

∥∥∥∥∥∥∥
b(ik1) −A(ik1)xk∥∥∥A(ik1)

∥∥∥2
2

(
A(ik1)

)∗∥∥∥∥∥∥∥
2

2

−Ek

∥∥∥∥∥∥∥
b(ik2) −A(ik2)xk+ 1

2∥∥∥A(ik2)
∥∥∥2
2

(
A(ik2)

)∗∥∥∥∥∥∥∥
2

2

= ∥xk − x⋆∥22 −
s∑

ik1
=1

∣∣∣b(ik1) −A(ik1)xk

∣∣∣2∥∥∥A(ik1)
∥∥∥2
2

·

∥∥∥A(ik1)
∥∥∥2
2

∥A∥2F

−
s∑

ik2
=1

∣∣∣b(ik2) −A(ik2)xk+ 1
2

∣∣∣2∥∥∥A(ik2)
∥∥∥2
2

·

∥∥∥A(ik2)
∥∥∥2
2

∥A∥2F

= ∥xk − x⋆∥22 −
∥b−Axk∥22

∥A∥2F
−

∥∥∥b−Axk+ 1
2

∥∥∥2
2

∥A∥2F
≤ ∥xk − x⋆∥22

−λmin (A
∗A)

∥A∥2F
∥xk − x⋆∥22 −

λmin (A
∗A)

∥A∥2F

∥∥∥xk+ 1
2
− x⋆

∥∥∥2
2
.

It can be seen from the above formula that MRK1 algorithm converges in expected.
Taking the expectation for k in the formula (4.3) and (4.4), we get

Ek

∥∥∥xk+ 1
2
− x⋆

∥∥∥2
2
= ∥xk − x⋆∥22 − Ek

∥∥∥xk+ 1
2
− xk

∥∥∥2
2

= ∥xk − x⋆∥22 −
∥b−Axk∥22

∥A∥2F

≤ ∥xk − x⋆∥22 −
λmin (A

∗A)

∥A∥2F
∥xk − x⋆∥22

=

(
1− λmin (A

∗A)

∥A∥2F

)
∥xk − x⋆∥22 , (4.6)

Ek ∥xk+1 − x⋆∥22 =
∥∥∥xk+ 1

2
− x⋆

∥∥∥2
2
− Ek

∥∥∥xk+1 − xk+ 1
2

∥∥∥2
2

=
∥∥∥xk+ 1

2
− x⋆

∥∥∥2
2
−

∥∥∥b−Axk+ 1
2

∥∥∥2
2

∥A∥2F

≤
∥∥∥xk+ 1

2
− x⋆

∥∥∥2
2
− λmin (A

∗A)

∥A∥2F

∥∥∥xk+ 1
2
− x⋆

∥∥∥2
2

=

(
1− λmin (A

∗A)

∥A∥2F

)∥∥∥xk+ 1
2
− x⋆

∥∥∥2
2
. (4.7)

The inequality in the above formula (4.7) can be proved by the following formula:

∥Ay∥22 = (Ay,Ay) = y∗A∗Ay ≥ λmin (A
∗A) ∥y∥22 , ∀y ∈ Ct.

The multi-step randomized kaczmarz algorithms. . . 2531

From (4.6) and (4.7), we have

Ek ∥xk+1 − x⋆∥22 ≤

(
1− λmin (A

∗A)

∥A∥2F

)2

∥xk − x⋆∥22 . (4.8)

When the number of selected working rows is m, according to the orthogonal rela-
tionship, we can get∥∥∥xk+ l

m
− x⋆

∥∥∥2
2
=
∥∥∥xk+ l−1

m
− x⋆

∥∥∥2
2
−
∥∥∥xk+ l

m
− xk+ l−1

m

∥∥∥2
2
, l = 1, 2, . . . ,m. (4.9)

Further, we can get

Ek ∥xk+1 − x⋆∥22 ≤ ∥xk − x⋆∥22 −
λmin (A

∗A)

∥A∥2F

l=m−1∑
l=1

∥∥∥xk+ l
m

− x⋆

∥∥∥2
2
. (4.10)

It can be seen from the above equation that the MRK1 algorithm converges in
expected. According to the expectation on both sides of the equation (4.9), we
have

Ek

∥∥∥xk+ l
m

− x⋆

∥∥∥2
2
=
∥∥∥xk+ l−1

m
− x⋆

∥∥∥2
2
− Ek

∥∥∥xk+ l
m

− xk+ l−1
m

∥∥∥2
2

≤

(
1− λmin (A

∗A)

∥A∥2F

)∥∥∥xk+ l−1
m

− x⋆

∥∥∥2
2
, l = 1, 2, . . . ,m.

So we have

Ek ∥xk+1 − x⋆∥22 ≤

(
1− λmin (A

∗A)

∥A∥2F

)m

∥xk − x⋆∥22 , k = 0, 1, 2,

Taking the full expectation of the above formula has

E ∥xk+1 − x⋆∥22 ≤

(
1− λmin (A

∗A)

∥A∥2F

)m

E ∥xk − x⋆∥22 , k = 0, 1, 2,

By induction of k we have

E ∥xk − x⋆∥22 ≤

(
1− λmin (A

∗A)

∥A∥2F

)km

∥x0 − x⋆∥22 .

It holds for k = 0, 1, 2, 3,
It can be seen from (4.1) that the larger the parameter m is, the faster the

convergence speed of MRK1 algorithm will be. Therefore, a conclusion is drawn in
this paper. In order to achieve the best effect, the parameter m of MRK1 algorithm
is usually taken as the number of rows s of coefficient matrix in linear systems (1.1).

The convergence proof of MRK2 algorithm is similar to that of MRK1 algorithm.
The error formula of MRK2 algorithm is directly given below without proof.

Theorem 4.2. If the system of linear equations (1.1) is consistent, the sequence
of iterations {xk}∞k=0 produced by the initial vector x0(x0 ∈ RA∗) and the MRK2

2532 H. Shen, Z. Xu & X. Shao

algorithm converges to a unique least-norm solution x⋆ = A†b. And the error of the
solution satisfies the following formula in expectation:

Ek ∥xk+1 − x⋆∥22 ≤

(
1− λmin (A

∗A)

∥A∥2F

)mk

∥xk − x⋆∥22 , k = 0, 1, 2, . . . , (4.11)

then we can get for k = 0, 1, 2, 3,

E ∥xk − x⋆∥22 ≤

(
1− λmin (A

∗A)

∥A∥2F

) ∞∑
k=1

mk

∥x0 − x⋆∥22 , (4.12)

where mk is the parameter generated by the random function at the kth iteration.

ρ is denoted as the convergence factor, and the convergence factors of different
algorithms are compared below. Firstly, the convergence factors of RK and MRK
algorithms are compared.

ρRK = 1− λmin (A
∗A)

∥A∥2F
> ρMRK1 =

(
1− λmin (A

∗A)

∥A∥2F

)m

, (4.13)

ρRK = 1− λmin (A
∗A)

∥A∥2F
> ρMRK2 =

(
1− λmin (A

∗A)

∥A∥2F

)mk

. (4.14)

From the two equations (4.13) and (4.14), the convergence rate of MRK algo-
rithm is faster than that of RK algorithm for both fixed and randomly generated
parameter. And by observing the following numerical examples, we can also draw
the same conclusion.

Next, the convergence factors of MRK1 algorithm and MRK2 algorithm are
compared. Since the parameter m in each iteration of the MRK2 algorithm is un-
certain, we consider the convergence factor of the previous k step for comparison.
We record the factor as ρ′MRK1, ρ′MRK2 and denote mk as the parameter generated
by the kth iteration.

When mk >
∑k

l=1 ml , we have

ρ′MRK1 =

(
1− λmin (A

∗A)

∥A∥2F

)mk

< ρ′MRK2 =

(
1− λmin (A

∗A)

∥A∥2F

) k∑
l=1

ml

the convergence speed of MRK1 is faster than that of MRK2, and vice versa.
Then, we compare the convergence factors of MRK1 algorithm and MGRK

algorithm.According to the above analysis, we have

ρMRK1=

(
1− λmin (A

∗A)

∥A∥2F

)m

, ρMGRK=

(
1− 1

2

(
1

γ
∥A∥2F + 1

)
λmin (A

∗A)

∥A∥2F

)m1

.

Let α = λmin(A
∗A)

∥A∥2
F

and β = 1
2

(
1
γ ∥A∥2F + 1

)
, when m > ln(1−βα)

ln(1−α) m1, we have
ρMRK1 < ρMGRK , the convergence speed of the MRK1 algorithm is faster than
that of the MGRK algorithm. When m < ln(1−βα)

ln(1−α) m1, we have ρMRK1 > ρMGRK ,

The multi-step randomized kaczmarz algorithms. . . 2533

the convergence speed of the MRK1 algorithm is slower than that of the MGRK
algorithm. And we can observed from numerical examples that MRK1 algorithm
sometimes runs faster and has smaller CPU compared to MGRK algorithm. And
the CPU of MGRK algorithm is similar to that of MRK1(s) algorithm, which is a
good result.

Finally, the convergence factors of MRK2 algorithm and MGRK algorithm are
compared. The convergence factor of the previous k step is also considered for
comparison.

ρ′MGRK =

(
1− 1

2

(
1

γ
∥A∥2F + 1

)
λmin (A

∗A)

∥A∥2F

)m1(k−1)(
1− λmin (A

∗A)

∥A∥2F

)m1

,

ρ′MRK2 =

(
1− λmin (A

∗A)

∥A∥2F

) k∑
l=1

ml

.

When
l=k∑
l=1

ml > m1(k−1)ln(1−βα)+m1ln(1−α)
ln(1−α) , ρ′MRK2 < ρ′MGRK , the convergence

speed of the MRK2 algorithm is faster than that of the MGRK algorithm. And

when
l=k∑
l=1

ml < m1(k−1)ln(1−βα)+m1ln(1−α)
ln(1−α) , there is ρ′MGRK < ρ′MRK2, that is,

the convergence speed of the MRK2 algorithm is slower than that of the MGRK
algorithm. More generally, their CPUs are very close. At the same time, according
to the experimental results, the convergence rate of MRK2 is faster than that of
MGRK for most practical applications matrices and full rank matrices. Other
situations also need to be further improved.

5. Numerical experiment
In this section, coefficient matrices with different characteristics will be selected
as numerical examples of RK, MRK, GRK and MGRK algorithms. Let IT and
CPU represent the arithmetic mean of the running time and iteration steps of the
corresponding method repeated 50 times, respectively. Assuming that the initial
vector x0 of all algorithms is a t-dimensional zero vector, the termination rule is
that the relative solution error RSE defined below reaches the precision 10−6 or
the number of iteration steps exceeds 200000,

RSE =
∥xk − x⋆∥22

∥x⋆∥22
≤ 10−6.

For those that do not meet the accuracy requirements or the number of iteration
steps exceeds 200000, the experimental results are represented by “−−”. In addi-
tion, we also report the speed-up ratio of MRK1, MRK2 against RK, namely

speed− up1,m =
CPURK

CPUMRK1(m)
, speed− up2 =

CPURK

CPUMRK2
.

All the numerical experiments are run on MATLAB(R2017a) on a personal lap-
top computer(Intel(R) Core(TM)i5-7200U CPU@2.50GHz 2.71 GHz). All methods

2534 H. Shen, Z. Xu & X. Shao

are executed precisely according to the procedures defined in the algorithm. For the
first type matrices, we use the random function randn in the MATLAB to randomly
generate the coefficient matrixA and the solution vector x⋆ ∈ Rt, then calculate the
right-hand side vector b = Ax⋆. Numerical experiments were carried out on ma-
trices of different orders, and the experimental results were shown in Tables 1–4.

Table 1. The experimental results of matrix (s = 50 with different t)

s× t 50× 1000 50× 2000 50× 3000 50× 4000 50× 5000

RK IT 570.8 500.0 470.8 436.1 435.7
CPU 0.0400 0.0401 0.0501 0.0627 0.0713

MRK1 (2)

IT 843.9 760.3 721.1 684 657.2
CPU 0.0251 0.0293 0.0384 0.0489 0.0576
speed− up1,2 1.59 1.37 1.30 1.28 1.24

MRK1 (3)

IT 696. 0 650.1 612.1 599.3 565.1
CPU 0.0187 0.0237 0.0299 0.0413 0.0524
speed− up1,3 2.14 1.69 1.68 1.52 1.36

MRK1 (s)

IT 545.2 496.7 492.4 451.4 460.81
CPU 0.0073 0.0115 0.0188 0.0261 0.0361
speed− up1,3 5.48 3.49 2.66 2.40 1.98

MRK2
IT 572.5 507.8 503.3 468.5 441.6
CPU 0.0087 0.0125 0.0198 0.0278 0.0333
speed− up2 4.60 3.21 2.53 2.26 2.14

GRK IT 135.2 114.4 105.8 100.8 97.2
CPU 0.0141 0.0129 0.0148 0.0191 0.0223

MGRK (2)
IT 238.7 206.5 191.2 184.1 175.8
CPU 0.0093 0.0099 0.0120 0.0144 0.0191

MGRK (3)
IT 246.3 210.5 198.9 189.2 182.9
CPU 0.0086 0.0086 0.0107 0.0144 0.0171

In order to intuitively observe the acceleration effect of the new algorithm MRK
on RK, GRK,MGRK, we have drawn the IT and CPU graphs of the MRK1, MRK2,
RK,GRK and MGRK algorithms, as shown in Figures 1–8.

1000 2000 3000 4000 5000

t

0

100

200

300

400

500

600

700

800

900

IT

RK

MRK1(2)

MRK1(3)

MRK1(s)

MRK2

GRK

MGRK(2)

MGRK(3)

Figure 1. IT for s = 50 with different t.

1000 2000 3000 4000 5000

t

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

IT

RK

MRK1(2)

MRK1(3)

MRK1(s)

MRK2

GRK

MGRK(2)

MGRK(3)

Figure 2. IT for s = 100 with different t.

The multi-step randomized kaczmarz algorithms. . . 2535

Table 2. The experimental results of matrix (s = 100 with different t)

s× t 100× 1000 100× 2000 100× 3000 100× 4000 100× 5000

RK IT 1316.7 1106.1 1061.2 1040.8 993.1
CPU 0.0880 0.0853 0.1214 0.1580 0.1775

MRK1 (2)

IT 2021.6 1702.3 1631.4 1522.9 1560.6
CPU 0.0625 0.0649 0.0924 0.1237 0.1496
speed− up1,2 1.41 1.31 1.31 1.28 1.19

MRK1 (3)

IT 1775.5 1538.3 1426.1 1382.4 1375.9
CPU 0.0460 0.0521 0.0750 0.1053 0.1419
speed− up1,3 1.91 1.64 1.62 1.50 1.25

MRK1 (s)

IT 1334.3 1130.1 1067.3 1031.1 992.6
CPU 0.0168 0.0248 0.0417 0.0729 0.0973
speed− up1,3 5.24 3.44 2.91 2.17 1.82

MRK2
IT 1334.5 1161.5 1105.6 1072.8 1040.9
CPU 0.0174 0.0274 0.0463 0.0700 0.0883
speed− up2 5.06 3.11 2.62 2.17 1.82

GRK IT 303.9 256.0 233.4 227.8 207.9
CPU 0.0320 0.0365 0.0518 0.0776 0.0869

MGRK (2)
IT 500.9 432.0 388.4 380.1 352.1
CPU 0.0207 0.0242 0.0331 0.0489 0.0583

MGRK (3)
IT 491.6 418.6 383.3 373.2 342.6
CPU 0.0169 0.0203 0.0279 0.0424 0.0490

1000 2000 3000 4000 5000

s

0

200

400

600

800

1000

1200

IT

RK

MRK1(2)

MRK1(3)

MRK1(s)

MRK2

GRK

MGRK(2)

MGRK(3)

Figure 3. IT for t = 50 with different s.

1000 2000 3000 4000 5000

s

0

500

1000

1500

2000

2500

IT

RK

MRK1(2)

MRK1(3)

MRK1(s)

MRK2

GRK

MGRK(2)

MGRK(3)

Figure 4. IT for t = 100 with different s.

After analysis, it is found that although MRK algorithm is not dominant in the
number of iterative steps, when the algorithm parameters are selected properly, the
CPU of MRK1 and MRK2 algorithms is greatly shortened compared with RK and
GRK algorithms. For the randomly generated fat matrix (s<t), MRK1 algorithm
can always accelerate RK algorithm regardless of the value of parameter m, and
with the increase of parameter m, the acceleration effect of RK algorithm is more
and more obvious. The minimum acceleration is 1.19, the maximum acceleration
is 5.48, and the running speed is significantly improved. For thin matrix (s>t),
although MRK1 algorithm cannot achieve the acceleration effect when m is very
small, it can still achieve the acceleration effect with the increase of m, and the
larger the m, the better the effect, the maximum acceleration is 12.54. No matter

2536 H. Shen, Z. Xu & X. Shao

Table 3. The experimental results of matrix (t = 50 with different s)

s× t 1000× 50 2000× 50 3000× 50 4000× 50 5000× 50

RK IT 718.2 681.3 676.2 676.9 671.8
CPU 0.0544 0.0621 0.0732 0.1165 0.1160

MRK1 (2)

IT 1067.6 1024.3 1020.9 1015.7 1005.7
CPU 0.0593 0.0905 0.1222 0.1644 0.1974
speed− up1,2 0.92 0.69 0.60 0.71 0.59

MRK1 (3)

IT 935.9 918.9 908.8 911.4 892.5
CPU 0.0434 0.0626 0.0865 0.1147 0.1345
speed− up1,3 1.25 0.99 0.85 1.02 0.86

MRK1 (s)

IT 701.6 686.4 677.4 680.8 681.2
CPU 0.0044 0.0078 0.0133 0.0320 0.0430
speed− up1,3 12.36 7.96 5.50 3.64 2.70

MRK2
IT 699.2 687.1 676.5 687.8 689.9
CPU 0.0046 0.0064 0.0091 0.0153 0.0279
speed− up2 11.83 9.70 8.04 7.61 4.16

GRK IT 85.0 79.0 75.3 72.9 71.6
CPU 0.0097 0.0115 0.0147 0.0186 0.0215

MGRK (2)
IT 141.5 132.6 126.9 121.3 119.3
CPU 0.0062 0.0066 0.0081 0.0114 0.0131

MGRK (3)
IT 140.5 128.7 122.6 118.8 117.3
CPU 0.0052 0.0056 0.0060 0.0085 0.0100

Table 4. The experimental results of matrix (t = 100 with different s)

s× t 1000× 100 2000× 100 3000× 100 4000× 100 5000× 100

RK IT 1519.7 1419.8 1413.9 1408.1 1386.8
CPU 0.1195 0.1332 0.1566 0.2177 0.2411

MRK1 (2)

IT 2307.0 2167.8 2102.9 2094.7 2061.2
CPU 0.1309 0.1927 0.2550 0.3328 0.3975
speed− up1,2 0.91 0.69 0.61 0.65 0.61

MRK1 (3)

IT 2018.9 1919.1 1882.6 1861.1 1876.1
CPU 0.0868 0.1325 0.1728 0.2290 0.2768
speed− up1,3 1.38 1.01 0.91 0.95 0.87

MRK1 (s)

IT 1533.7 1421.4 1407.5 1397.2 1386.6
CPU 0.0096 0.0115 0.0166 0.0323 0.0461
speed− up1,3 12.54 11.58 9.43 6.74 5.23

MRK2
IT 1527.3 1437.0 1408.6 1405.8 1386.7
CPU 0.0144 0.0162 0.0185 0.0262 0.0416
speed− up2 8.30 8.22 8.46 8.31 5.80

GRK IT 203.4 169.5 156.6 154.0 147.0
CPU 0.0249 0.0275 0.0361 0.0530 0.0607

MGRK (2)
IT 322.1 270 249.4 244.1 233.8
CPU 0.0146 0.0163 0.0207 0.0311 0.0342

MGRK (3)
IT 309.1 255.0 234.5 227.4 222.1
CPU 0.0111 0.0120 0.0150 0.0231 0.0243

The multi-step randomized kaczmarz algorithms. . . 2537

1000 2000 3000 4000 5000

t

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

C
P

U

RK

MRK1(2)

MRK1(3)

MRK1(s)

MRK2

GRK

MGRK(2)

MGRK(3)

Figure 5. CPU for s = 50 with different t.

1000 2000 3000 4000 5000

t

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

C
P

U

RK

MRK1(2)

MRK1(3)

MRK1(s)

MRK2

GRK

MGRK(2)

MGRK(3)

Figure 6. CPU for s = 100 with different t.

1000 2000 3000 4000 5000

s

0

0.05

0.1

0.15

0.2

C
P

U

RK

MRK1(2)

MRK1(3)

MRK1(s)

MRK2

GRK

MGRK(2)

MGRK(3)

Figure 7. CPU for t = 50 with different s.

1000 2000 3000 4000 5000

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

C
P

U

RK

MRK1(2)

MRK1(3)

MRK1(s)

MRK2

GRK

MGRK(2)

MGRK(3)

Figure 8. CPU for t = 100 with different s.

fat matrix or thin matrix, firstly, the CPU acceleration effect of MRK2 algorithm
on RK algorithm is confirmed. Secondly, it is found that MRK1(s) and MRK2
algorithms can accelerate GRK algorithm in most cases, especially for fat matrix,
the maximum acceleration is 2.59. Under the premise of similar iterative steps,
when m takes the number of rows as s, sometimes the effect of MRK2 algorithm is
even better than MRK1 algorithm.

The second kind of matrices is the full-rank matrix with certain structures and
properties selected from the SuiteSparse Matrix Collection website [3], such as the
order, rank, condition number (cond (A)) and density of the test matrix. where
density is defined as

density =
the number of nonzero elements in matrix A

the number of all elements in matrix A
.

some properties of the second type of matrices are recorded in Table 5. The exper-
imental results are shown in Table 6.

We find that MRK1 algorithm can always accelerate RK algorithm regardless
of the value of parameter m, and the acceleration effect becomes more and more
significant with the increase of parameter m, the maximum acceleration is 10.65.
Compared MRK1, MRK2 algorithm and GRK algorithm, we found that MRK1(s)
and MRK2 algorithms can always accelerate GRK algorithm, and the maximum
acceleration is 4.55. It can also be concluded that although the improvement in
the number of iteration steps is not large, the MRK algorithm has a significant

2538 H. Shen, Z. Xu & X. Shao

Table 5. Full rank matrix

Matrix Name Order Density/% Rank Condition Number
Stranke94 10× 10 90.00 10 5.173300e + 01

ash958 958× 292 0.68 292 3.210358e + 00

bibd_15_3 105× 455 2.86 105 1.882938e + 00

cari 400× 1200 31.83 400 3.129239e + 00

can_24 24× 24 27.78 24 7.775851e + 01

Table 6. Experimental results for full-rank matrices

s× t Stranke94 ash958 bibd_15_3 cari can_24

RK IT 1893.1 6330.4 1252.8 39008.2 4697
CPU 1.0120 0.4794 0.0799 2.1171 0.3799

MRK1 (2)

IT 28528.0 9342.1 1870.7 60089.3 7086.6
CPU 0.5705 0.5054 0.0515 1.2289 0.3237
speed− up1,2 1.77 0.95 1.55 1.72 1.17

MRK1 (3)

IT 28442.3 9190.2 1842.9 55172.2 6274.8
CPU 0.5715 0.5046 0.0561 1.1477 0.2354
speed− up1,3 1.77 0.95 1.42 1.84 1.61

MRK1 (s)

IT 20835.6 6365.0 1237.1 38683.7 4620.4
CPU 0.1631 0.0450 0.0102 0.2094 0.0757
speed− up1,3 6.20 10.65 7.83 10.11 5.02

MRK2
IT 22387.0 6402.6 1294 41970 4809.8
CPU 0.2504 0.0461 0.0114 0.3121 0.0805
speed− up2 4.04 10.40 7.01 6.78 4.71

GRK IT 8412.8 812.6 268.1 4694.8 939.5
CPU 0.5259 0.1449 0.0252 0.2854 0.3228

MGRK (2)
IT 20146.7 1258.8 452.1 9210.6 1470.0
CPU 0.4625 0.0777 0.0178 0.2145 0.1762

MGRK (3)
IT 26015.9 1154.4 437.2 11471.9 1362.4
CPU 0.4713 0.0603 0.0140 0.2084 0.1292

CPU acceleration effect on RK,GRK algorithm. Finally, as the acceleration effect
of MRK1 algorithm becomes more and more obvious with the increase of parameter
m, the comprehensive acceleration effect of MRK1 algorithm is better than that of
MRK2 algorithm.

The third kind of examples are matrices from practical applications. These ma-
trices are from combinatorial problems (bibd_15_3, n2c6-b1, flower_5_1), least
squares problems (ash958), linear programming problem (cari), structural prob-
lems (can_24, bcsstm01), counterexample problems (rgg010), wbg model problems
(WorldCities) and so on. The properties of the matrix are shown in Table 7. The
experimental results are shown in Table 8.

For the third type of examples, the same conclusion is that the acceleration ef-
fect of the MRK1 algorithm becomes more and more significant as the parameter m

The multi-step randomized kaczmarz algorithms. . . 2539

Table 7. Matrices from practical applications

Matrix Name Order Density/% Rank Condition Number
n2c6-b1 105× 15 13.33 14 4.336746e + 15

rgg010 10× 10 76.00 4 Inf
bcsstm01 48× 48 1.04 24 Inf
flower_5_1 211× 201 1.42 179 2.000742e + 16

WorldCities 315× 100 23.87 100 6.599990e + 01

Table 8. Experimental results for full-rank matrices

s× t n2c6-b1 rgg010 bcsstm0 flower_5_1 WorldCities

RK IT 166.3 400.5 202.9 35188.1 44008.3
CPU 0.0108 0.0221 0.0133 2.2594 2.6710

MRK1 (2)

IT 167.4 408.2 178.1 35299.2 66259.2
CPU 0.0108 0.0218 0.0116 2.2334 1.9075
speed− up1,2 1.00 1.01 1.15 1.01 1.40

MRK1 (3)

IT 253.6 610.3 263.5 52284.7 59062.7
CPU 0.0087 0.0135 0.0073 1.7660 1.4273
speed− up1,3 1.24 1.64 1.82 1.28 1.87

MRK1 (s)

IT 182 387 175 35042.5 44582.7
CPU 0.0012 0.0020 0.0015 0.2727 0.2309
speed− up1,3 9.00 11.05 8.87 8.29 11.57

MRK2
IT 172.4 484.3 190.2 35482.1 44510.3
CPU 0.0016 0.0064 0.0013 0.2847 0.2474
speed− up2 6.75 3.45 10.23 7.94 10.80

GRK IT 30.8 141.1 24 4941.8 8390.9
CPU 0.0035 0.0091 0.0018 0.4676 0.7708

MGRK (2)
IT 61.4 390.0 53.3 9479.5 14187.3
CPU 0.0019 0.0101 0.0016 0.3364 0.5062

MGRK (3)
IT 69.9 513.6 62 10834.1 14133.2
CPU 0.0018 0.0104 0.0012 0.3106 0.3678

increases. And we found that for most matrices, MRK1(s) and MRK2 algorithms
both play an accelerated role in RK, GRK and MGRK algorithms. And the maxi-
mum speedup is 11.57. The difference for the third kind matrices is the acceleration
effect of MRK1(s) is better than that of MRK2 in terms of IT and CPU sometimes.

Finally, for MRK algorithm and MGRK algorithm, for the same matrix, MGRK
algorithm needs fewer iterative steps than MRK algorithm, but such a conclusion
cannot be given for the CPU. That is, sometimes MRK algorithm achieves better
CPU effect, and sometimes MGRK algorithm achieves better CPU effect, but the
new algorithm is also efficient, and its CPU performance is remarkable. And it
can be observed that the difference between the two CPUs is not very significant
through experimental data in Tables 1–4 and Figures 7–8. In addition, for some
matrices with special structures and properties (Tables 7–8), MRK algorithm has
more advantages on CPU than MGRK algorithm.

2540 H. Shen, Z. Xu & X. Shao

We also observed MRK algorithm is superior to MGRK algorithm in optimal
parameter selection. This is because on the premise that the parameter of MRK1
algorithm is smaller than the number of rows of the coefficient matrix, the larger the
parameter m is, the faster the convergence rate will be. In addition, the parameters
of MRK2 algorithm are generated randomly according to the function, so a better
effect can be achieved without intervention. However, the parameter m1 of MGRK
algorithm is limited by the index set Uk, and m1 cannot always increase. Therefore,
the optimal parameter corresponding to each iteration is different, so it is difficult
to determine the optimal parameter for MGRK algorithm.

6. Conclusion
In this paper, the MRK algorithm is proposed to select some rows of the coefficient
matrix according to the probability of each iteration. According to different rules of
selecting parameter m, the algorithm is divided into MRK1 and MRK2. Theoretical
analysis and numerical experiments show that although MRK algorithm has no
significant improvement in the number of iteration steps, it has a very significant
acceleration effect on CPU, and the maximum acceleration is 12.54. Therefore,
MRK algorithm has a good improvement. However, the experiment found that
when the row and column ratio (the number of rows to the number of columns) of
the coeffiient matrix is very large, and the parameter m of the MRK1 algorithm is
very small, the acceleration effect is not achieved. Therefore, the MRK1 algorithm
needs to be further improved.

Acknowledgements
The authors would like to thank the anonymous referee of this paper for very helpful
comments and suggestions.

References
[1] Z. Bai and W. Wu, On greedy randomized Kaczmarz method for solving large

sparse linear systems, SIAM Journal on Scientific Computing, 2018, 40(1),
A592–A606.

[2] J. Cai and Y. Tang, A new randomized Kaczmarz based kernel canonical cor-
relation analysis algorithm with applications to information retrieval, Neural
Networks, 2018, 98, 178–191.

[3] T. A. Davis and Y. Hu, The university of Florida sparse matrix collection,
ACM Transactions on Mathematical Software (TOMS), 2011, 38(1), 1–25.

[4] C. Gu, M. Sun and P. F, On randomized sampling Kaczmarz method with ap-
plication in compressed sensing, Mathematical Problems in Engineering, 2020,
1–11.

[5] X. Jiang, Subspace algorithm and random Kaczmarz algorithm for web page
sorting and their applications, PhD thesis, Shanghai University (Doctoral Dis-
sertation), 2019.

[6] S. Karczmarz, Angenaherte auflosung von systemen linearer Glei-Chungen,
Bull. Int. Acad. Pol. Sic. Let., Cl. Sci. Math. Nat., 1937, 355–357.

The multi-step randomized kaczmarz algorithms. . . 2541

[7] C. Pechstein, M. Eslitzbichler and R. Ramlau, An H1-Kaczmarz reconstructor
for atmospheric tomography, Journal of Inverse and Ill-Posed Problems, 2013,
21(3), 431–450.

[8] C. Popa and R. Zdunek, Kaczmarz extended algorithm for tomographic image
reconstruction from limited-data, Mathematics and Computers in Simulation,
2004, 65(6), 579–598.

[9] P. Ramanan, G. Kamath and W. Song, Distributed randomized Kaczmarz and
applications to seismic imaging in sensor network, In 2015 International Con-
ference on Distributed Computing in Sensor Systems, IEEE, 2015, 169–178.

[10] D. Schmidt, J. Leliaert and O. Posth, Interpreting the magnetorelaxometry
signal of suspended magnetic nanoparticles with Kaczmarz’algorithm, Journal
of Physics D: Applied Physics, 2017, 50(19), 195002.

[11] T. Strohmer and R. Vershynin, A randomized Kaczmarz algorithm with expo-
nential convergence, Journal of Fourier Analysis and Applications, 2009, 15(2),
262.

[12] J. Yin, Y. Du and K. Zhang, Greedy distance stochastic Kaczmarz method for
solving large sparse linear equations, Journal of Tongji University (NATURAL
SCIENCE EDITION), 2020, 48(8), 1224–1231.

	Introduction
	Preliminary knowledge
	Multi-step Randomized Kaczmarz algorithm.
	Convergence analysis of MRK algorithm
	Numerical experiment
	Conclusion

