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PERIODIC SOLUTIONS OF SUPERLINEAR
PLANAR HAMILTONIAN SYSTEMS WITH
INDEFINITE TERMS*

Shuang Wang' and Chunlian Liu?f

Abstract Existence of infinitely many periodic solutions for a planar Hamil-
tonian system Jz' = V,H(t,z) is proved. We investigate the case in which
V.H(t, z) satisfies a general superlinear condition at infinity via rotation num-
bers and x%(aw,y) is an indefinite term. Our approach is based on the
Poincaré-Birkhoff theorem and the spiral property of large amplitude solutions.
Our results generalize the classical result in Jacobowitz [13] and Hartman [12]

for second order scalar equations.
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1. Introduction

We investigate the existence of infinitely many periodic solutions for a planar Hamil-
tonian system

JY =V, H(t,z), forz=(z,y)€R% (1.1)

We assume H(t,2) : R x R? — R to be C! in the second variable and T-periodic in
0-1

the first variable. Here, the symplectic matrix J is defined as . We investi-
10

gate the case in which V,H (¢, z) satisfies a general superlinear condition at infinity
via rotation numbers and xaa—g (t,z,y) is a sign-changing function (named“indefinite
term”).
In 1976, Jacobowitz [13] investigated the classical superlinear condition
(f1) lim M = 400, uniformly in ¢ € [0, 7],

|z|—+o0 x
for second order scalar equations

2" + f(t,xz) = 0. (1.2)
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By using the Poincaré-Birkhoff theorem, he [13] proved the existence of infinitely
many periodic solutions for Eq. (1.2). However, an additional sign condition

(f2) xf(t,z) >0 forz#£0

is needed in [13]. One year later, Hartman [12] refined the results in [13] and removed
the sign condition (f3). However, it is worth noting that the sign condition

(f3) xf(t,z) > 0 near x = 00

is implicit in the condition (f1). We also refer Fonda and Sfecci [6] for the existence
of infinitely many periodic solutions of superlinear system with the sign condition
similar to (f3). In the process of applying the Poincaré-Birkhoff theorem, sign
conditions make the problem simple (see for instance [21, pages 2-3]).

Recently, Qian, Torres and Wang [18] introduced a partial superlinear condition

(foo) flt,z)/x > 1(t) for |z| > 1 and t € [0, 27], moreover,
f(t,x)

lim =~ = +o0, uniformly fort¢ e I C [0,2n],
|z|—+o00 x

where [(t) € L'([0,27]), and [ is a set of positive measure.

It is clear that f(¢,x) may be a sign-changing function in (f.). For references
related to indefinite weight, please consult the following papers [4,5,22]. Under the
condition (f ), they investigated the existence of infinitely many periodic solutions
for Eq. (1.2). However, the uniqueness of solutions to the associated Cauchy prob-
lem is a necessary condition in [18](see [18, Lemma 3.1]). Notice that the uniqueness
of solutions is also a crucial condition in [3,12,13].

The existence of periodic solutions for superlinear planar systems (1.1) has also
been studied. Various superlinear conditions for a Hamiltonian system like (1.1)
have been proposed (see [1,16]). Most of these conditions require two components
of the vector field JV,H(t,z) to be superlinear. Fonda and Sfecci [9] introduced
a superlinear condition Ay, which also requires two components of the vector field
JV,H(t, z) to be superlinear, with R = R2. However, their results do not cover the
superlinear equation (1.2) in Hamiltonian form

JJ/ =Y y/ = f(t,l‘) (13)

Recently, Boscaggin [3] extended the result of the superlinear Eq. (1.2) to the
planar Hamiltonian system (1.1) by introducing the following superlinear condition.

(Hs) There exist sequences (V,), € P and (a,), € L*(0,T) such that, for
every n € N

(V.H(t,z),z)

lim inf > ay(t), uniformly for a.e. t € [0,T] (1.4)
|z| =400 Vn(2>
and .
n(t)dt
TGN (1.5)
n—+o0o TV,

where 1y, = f{vn(%y)gl} dzdy, and P is a class of the C?-functions V(z) : R? = R
such that
0<V(Az2) =XV (2), YA>0, z#0.
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Applying the Poincaré-Birkhoff theorem, Boscaggin [3] obtained the existence of
infinitely many periodic solutions to the planar Hamiltonian system (1.1).

Comparing the classical results of Jacobowitz [13] and Hartman [12], Boscagg-
in [3] introduced an additional condition (H;) to ensure the global continuability of
solutions, as described in [3, pages 134-135]. As a result, Boscaggin [3] only achieved
a partial generalization of the classical results of Jacobowitz [13] and Hartman [12]
for superlinear planar Hamiltonian systems. As is well known, the condition of
global continuability of solutions for superlinear equation is important. For instance,
it was shown in [6] that there are positive continuous functions ¢(¢) such that
the differential equation z” + q(t)z® = 0 has a solution which does not exist on
[0,T]. Consequently, the Poincaré map may not be well defined. To overcome this
difficulty, it is necessary to utilize some a priori estimates for the solutions that have
a prescribed number of rotations in the phase plane, as shown in Hartman [12] and
Fonda and Sfecci [8].

In this paper, we prove the existence of infinitely many periodic solutions for a
planar Hamiltonian system (1.1). We investigate the case in which V,H (t, z) satis-
fies a general superlinear condition at infinity via rotation numbers and x%—g(t, z,y)
is an indefinite term. Moreover, our results is proved without both global continu-
ability and uniqueness of the associated Cauchy problems. Our results generalize
the classical result in Jacobowitz [13] and Hartman [12] for second order scalar
equations, as well as the results in [3,9,18].

A few words about the notations. Let L(t,z) : R x R? — R be T-periodic in the
first variable, differentiable with respect to the second variable, and

L(t,\z) = A’ L(t, z), for every A > 0.

We denote by Q a set of functions L(t, z). Let p(L,) denote the rotation number
of the equation Jz' = VL, (t, z), following [19, page 561].

Theorem 1.1. Suppose that system (1.1) satisfies the following assumptions.
(h1) limsup, W < +o0, uniformly fort € [0,T].

(he)  For sufficiently large v, system (1.1) has upper and lower spiral functions
£4().

(h3) Fory#0 andte[0,T], sgn(y)%(t,&y) > 0.

(hoo) There exist (Lyp)n € Q and (V,)n € P satisfying, for each 6 > 0, there is
I, (t) € LY([0,T)), with

<vzH(ta Z)v Z> > <szn(tv 2)7 Z> - 5Vn(z) - ln(t)a (16)
for all z € R? and a.e. t € [0,T), and
p(Ly) = +00  asn — +oo. (1.7)

Then system (1.1) has infinitely many mT-periodic solutions for every integer
m > 1.

Remark 1.1. The condition (f4) for Eq. (1.2), as given in [12,13],

(g 182

is bounded near x = 0, uniformly in ¢ € [0,T],

implies condition (hy) with H(t,z) = $y* + [; f(t,s)ds.
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Remark 1.2. The spiral functions are introduced by Wang and Qian (see [19,
Definition 1.1]). It is noted in [19, Remark 1.1] that if any solution z(t) is globally
defined on [0, T, then assumption (hs) holds. However, the reverse is not true. For
example, consider the equation

2"+ 1) =0, (1.8)

where [(t) > 0 for ¢ € [0,T], and satisfies fOT I(t)dt > 0. Clearly, Eq. (1.8) satisfies
assumption (hs) (see [18, Example 4.1]). However, the solutions z(t) of Eq. (1.8)
may not be globally defined, and it may not satisfy assumption (H;) in Boscaggin

[3]-
Remark 1.3. Superlinear condition (h) is a general definition for planar Hamil-
tonian systems via rotation numbers (see Section 4 for details).

Now, we give a example, which can be proved by Theorem 1.1 (see Section 4 for
more details).

Example 1.1. Suppose a planar system

au
r = y+ Fy(t7x7y)7

p_od
y= ox

(1.9)
(tm,y) - f(t,x),

such that U(t,z,y) is a C'-function and 27-periodic in ¢, |g—2’(t,x,y)| < alz| and
g—z;{(t,ac,y)\ < bly| with a,b € (0,1), f(t,z) = |sint|z3 — zcost. Then, for every
integer m > 1, system (1.9) has infinitely many 2mm-periodic solutions.

Remark 1.4. The Hamiltonian function of system (1.9) is

2 xT
Hitvo) =%+ [ f(t.s)ds +u(t.o.p).
0

It is clear that no functions k21 (y) and s 1(x) satisfy assumption As in [9], with
a;; = 00, 1,5 € {1,2}. Moreover, the functions g—z;’(t,x,y) and %(t,x,y) may be
unbounded for sufficiently large 2 and y. Therefore, system (1.9) does not satisfy
assumption Ajz in [9], with R = R2.

Remark 1.5. For any ¢t € {2k7, k € Z}, one has

Z—Z(t,%y)—i—f(tw) <(a—1)z <0, forz>1andyecR.

On the other hand, for any t € {2k7 + 7/2,k € Z}, we have

?(t,x,y)—ﬁ—f(t,x) >3 —azr >0, forz>1andyecR.
x

Therefore,

. (gg(t,x,y) + f(t,x))

is an indefinite term for system (1.9).
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The remaining sections of this paper are organized as follows. In Section 2,
we introduce a modified Hamiltonian system represented by (2.2) and provide a
proof of Theorem 1.1. In Section 3, we conduct a comparative analysis between
the superlinear conditions discussed in this paper and those already existing in the
literature. Furthermore, we include a proof for Example 1.1 as an application of
Theorem 1.1.

2. Existence of infinitely many periodic solutions

We recall that, if z(s) # 0 for every s € [0, t], the t-rotation number of z(¢) is defined

Rot((); 0,1]) = %/O Wdt.

Precisely, writing z(¢) = (r(t) cos 8(t), r(t) sin 6(t)), we have

0y — (1)

Rot(=(1); [0,]) = .

for all ¢ € [0,T],
where (r9,6p) = (r(0),0(0)), as given in ( [19, pages 560-561]). We also refer
[7,11,14,15,17,20,23,24] for the nice applications via rotation numbers. Following
[19], we will denote by Rot™ (¢; z) the t-rotation number of z(t), which is a solution
of system (1.1). For any ¢ € [0,T], we will write the t-rotation number Rot” (t; z)
of Jz' = V. L(t, z) as Rot™ (t;v) with v = 2(0)/|2(0)].

Let Hp(z) be a C'-function satisfying

Hy(z) > H 2 2.1
O(Z) = OréltaSXT (t70ay) +x ) ( )

and
Hy(z) = 400 <= |z| = +o0.

Let us define a truncated function

].7 |3| < R*7
A(s) = < smooth connection, R, < |s| < Ru;
07 |S| Z R**’

and X (s) <0 for s > 0, where R, R.. are positive parameters.
We now state the Hamiltonian system

JZ =V_.H\(t,2), z=(z,y)cR? (2.2)

where Hy(t,z) = Mx?)A\(y?)[H(t,z) — Ho(2)] + Ho(z). For the associated Cauchy
problem of (2.2), there is global continuability on [0,7]. In fact, if |2]? > 2R..,
system (2.2) is equivalent to Jz' = V,Hy(z). So that the global existence of z(¢) is
guaranteed.

By (h1), there are two numbers M > 0 and rj; > 0 satisfying

\V-H{(t, 2)|

] <M, foreveryte[0,T]and 0 < |z| < rp.
z
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Lemma 2.1. Let R, > 7"12\4, There exist a integer J > 0 and a constant § > 0 such
that, for a solution z(t) of (2.2) satisfies 0 < |zo| <, it holds that

0<|z(t)| <rm, fortel0,T]

and

Rot™>(z(t);[0,T]) < J.
Proof. Let z(t) be a solution of (2.2) satisfying 0 < |z(¢)| < 7 in a certain
interval I. So that Hy(t,z) = H(t,z) for t € I. For t € I, one has

(
) 12020+ @0y()
()] = i

22 () + v (1) + |G (¢, 2, ) > + |G (¢, 2, y)|?
2r(t)

IN

< (14 M2)r(t).

Choosing § € (07T‘M€_(1+M2)T), and assume that 0 < |z9| < §. Let I be the
maximal interval of time containing ¢t = 0 in which 0 < |2(¢)| < ras. Then, we have

|z0] exp (= (1 + M?)[t]) < |2(t)] < |20| exp (1 + M?)[t]), fort eI
Hence, [0,7] C I and
0 < |2(t)] <rp, forte|0,T].
So that

Vsz(tv Z)a Z> < |VZH/\(ta Z)||Z|
|22 - |22

Hence, choosing the integer J with J > MT/2m, it holds that

—0'(t) = < < M.

Rot™>(z(t);[0,T]) < J.
O
Proof of Theorem 1.1. The proof will be divided into four steps.

Step 1. By Lemma 2.1, for every integer m > 1, we can find R; > 0 sufficiently
small such that if |zg| = Ry then

0<|z(t)| <rm, fortel0,mT],

and
Rot™(mT; z) < j¥,, if |20 = Ry, (2.3)

where jr, =mJ.
Step 2. Let j be an integer such that j > j» . We will prove that there exists Ra
satisfying

Rot™ (mT;z) > j, if |20| = Ra. (2.4)

Indeed, from (1.7), there exists n € N satisfying

p(Ln) > j/m.
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Then, by (1.6) and Lemma 2.4 in [19], there exists R > rjs satisfying, for each
solution z(t) of system (1.1) such that |z(¢)| > R for all t € [0, mT], it holds that

Rot™ (mT; z) > j. (2.5)

Take
Ry = (gj_-f-l)il(R); Ry = g+1 and /R, > R},

where §ji+1(-) are functions introduced in [19, Lemma 3.3].

We now estimate a solution of (2.2) with |z9| = Rz as follows.

(i) Note that Hy(t,z) = H(t,z) when R < |z(t)| < R} for all ¢ € [0, mT]. From
(2.5), we find that (2.4) holds.

(#¢) If there is t; € (0,mT) such that |z(¢1)] > Rj, then there is t] € (0,¢1)
satisfying |z(t})] = Rj and

1 (Re) < 2(0)] < &4 (R2)

for ¢ € [0,t}]. In this case, Hx(t,z) = H(t,z) for t € [0,¢;]. So that the solution
2(t) of system (2.2) is also a solution of system (1.1) when ¢ € [0,t}]. By Lemma
3.3 in [19], we know that

0(t1) — 0o = —2(j + 1), (2.6)

Considering the solutions of system (2.2), we have

x'y = 8812 A(t,0,y)y
= y[2yN (y*)(H(t,0,y) — Ho(0,y))

1) TR 00) + A S (1.0.0)

for x = 0 and ¢t € [0,mT]. By (2.1) and (hs), one has, for x = 0, y # 0 and
t € [0,mT],
'y >0,

which implies that
O(mT) —0(t)) < 7. (2.7)

Combining (2.6) with (2.7), we have
O(mT) — 6y < —2jm,

which implies that (2.4) holds.

(#i1) When there is to € (0, mT) satisfying |z(t2)] < R, we can proceed analo-
gously to the proof of (2.4) as (i).
Step 3. We construct an annular 2 = Bg,\Bg,. By (2.3), (2.4) and the Poincaré-
Birkhoff theorem (the version in [8, 10, 19]), system (2.2) has at least two dis-
tinct mT-periodic solutions 2!, (t) satisfying z¢,(0) € Q and

Rot™(mT; 28 () =4, i=1,2. (2.8)

Step 4. What is left is to prove that z! () satisfy |20,(t)] < VR« i = 1,2.
That is, system (1.1) has two distinct mT-periodic solutions z¢,(¢), i = 1,2. It is
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clear that 2% (0) € Q. If there exists t3 € (0,mT) satisfying |z}, (t3)| > VR., we
have t§ € (0,t3) such that |z} (t5)] = R, and |2},(t)] < Ry < /R, for t € [0,t}].
For clarity, let 6% () denote the argument function of 2} (¢). By use of an argument
similar to Step 2, one has

and
0r, (mT) — 6,(0) < —2jm.

So that Rot™>(mT; 2} (t)) > j, a contradiction with (2.8). Therefore, for all ¢t €
[0, mT], one has |z} (t)| < v/R.. Similarly, |22 (t)] < v/R. holds for all t € [0, mT].
O

3. Applications

Firstly, we show that superlinear conditions (Hy,) in [3] and (f) in [18] are special
cases of (hs), which is introduced in Theorem 1.1. The discussions will be divided
into the following two cases.

(1) The superlinear condition (Hs) is a special case of (hs) for planar system
(1.1). Indeed, from (1.4), for each § > 0, there exists 1, (t) € L*([0,7]) such that,
for every n € N,

(Vo H(t,z),z) > (an(t) — 0)Va(2) — 1n(t),

for all 2 € R? and a.e. t € [0,T]. Taking L, (t,2) = a,(t)V,(2)/2, by (1.5), one has

Rot‘L,: (T;v) :=

= t = — +00
27’\/n

Vi (2(1)) 271y,

1 [T (V.La(t,2),2) [ an(t)dt
|

as n — oo. Using Proposition 2.2 in [2], we have Rot™" (T’;v) — 400 (n — +00).
Therefore, we can apply Lemma 2.2 in [19] to conclude that p(L,) — +oo (n —
+00), and thus (he) is satisfied.

(2) We claim that the partial superlinear condition (f) is a special case of (hoo)
for second order equation (1.2). Indeed, by (f), we have

f(t,x)x > a,(t)z?, for large enough z and ¢ € [0, 27,

where
2 tel,;

an(t) = {l(t;, t € [0,27]\1.

Then, for large enough = and ¢ € [0, 27], one has
(VoH(t2),2) = y* + f(t,2)w > ¢ + an(t)2?,
where H(t,2) = [ f(t,s)ds + % Taking

an(t)z? + y?

and  V,(z) = 2% + 92,

inequality (1.6) is satisfied.
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Consider the systems
J2' =V, Ly(t,z2). (3.1)

Using a general polar coordinate
T .
T =—cosp, Y=rsinp,
n

we have

oy = M=) alan(0)2 + )
¥ n2z? + y2 n2g? +y2

It follows that for t € I, —¢'(t) = n; and for ¢ € [0, 27]\I,
—nl=(O)2? . E8m22 447 (1)

—'(t) > >__n =— ,
('0()* n2x2—|—y2 - n2$2+y2 n

where [ () = max{0, —I(¢)}. Then the general argument function y(t) satisfies

ST i) dt

©(0) — p(27) > nmes(I) — -

— 400 (n = 00). (3.2)

Let us denote by Rot™ (2m;v) the 27-rotation number of solution z(t) of (3.1).
From (3.2), we have Rot”"(2m;v) — +oc as n — co. By Lemma 2.2 in [19], we
have p(L,,) — 400 as n — oc.

Secondly, we give the proof of Example 1.1.
Proof of Example 1.1. The proof falls naturally into two steps.
Step 1. We will check that (h.,) holds for system (1.9). Since f(t,z) = |sint|z3 —

x cost, it follows that

lim inf ftz) > liminf (V222/2 — V2/2) = 400, for t € [r/4,7/2],

|z|—+o00 T |z|—+o0

and for ¢ € [0, 2],

t
1) = |sint|z® — cost > — cost.
x
Then, for fixed n € N, one has
t
lim inf ft:2) > ¢, (t), uniformly a.e. in t € [0, 27],

|z|—=+o00 X

where

oo n2+1+a, teln/4,7/2];
cn(t) = — cost, t €0,2m)\[m/4,7/2],

Hence that f(t,x)x > (c,(t) — 1)2? for a.e. t € [0,27] and sufficiently large |z, and
finally that

(9.t1(0.2).2) = (Get) + 100 o+ (4 St )

> (cn(t) —1—a)z® + (1= b)y* — 6(2” +¢°)
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for a.e. ¢ € [0,27] and sufficiently large |x|, where

H(t,2) = /0 F(t, s)ds + y; U 2),

Taking

La(t,2) = (eat) = 1 - a) - + %

and  V,(2) = 2% + 92,
inequality (1.6) holds.

Next, we will prove that p(L,) — 400 as n — +oo. Writing (z(t),y(t)) in
general polar coordinate

o(t) = S ottt ) = 7y sinlol0) (33)
one has
*QD/(t) _ HM(mly — xy/) _ ancn(t) 11— a)x2 + (1 . b)y2] .

n2z2 + (1 -b)y2 n2z? + (1 — b)y?
It follows that
—o'(t)=nVvV1—-0b forte[n/4,1/2],
and
nv1—b[(cost + 1+ a)z?]
n?x? + (1 — b)y?
n(2+a)V1-— b2
— n2x?2 4+ (1-b)y?
< (2+a)V1—>b n2z?+ (1-0b)y? 2+a)Vv1-10
- n n2z2 + (1 — b)y? n

—¢'(t) >

for t € [0, 27)\[7/4,7/2]. Therefore, we have

27
VI—b 2r(24+a)VI—b
- [ = T2 TRHOVIZY oo (n— o0),
0 n

which implies that 5= (¢(0) — (27)) = +00 as n — co. Since the generalized polar

coordinate (3.3) is really a kind of elliptic coordinates, we have Rot™" (; v) — 400
as n — oo. Hence p(Ly) — 400 as n — +00 by Lemma 2.2 in [19].

Step 2. We will check that conditions (h1), (he) and (h3) hold for system (1.9). Tt
is easy to see that system (1.9) satisfies (h3). We conclude that

f(t,x)

< lim (|sint[z® +1) =1, fort € [0,27],
x

" |z|—=0

lim
|z]—0

hence that
|f(t,z)] < 2]z|, for sufficiently small x and ¢ € [0, 27],

and finally that (hq) holds.
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Next, we check (hs). Divide R? into four regions as

Dy = {(z,y)|lz > 0,y > 0} Dy = {(z,y)|lz >0,y <0}
D3 = {(z,y)|z <0,y < 0}; Dy = {(z,y)|z <0,y > 0}.
Let Fy(x) = [ f1(s)ds, where fy(x) = sgn(z) maxo<i<or(alz| + |f(t,2)[). Con-
sider two functions
R((E,y), fOf ({E,y) € Dl UDBa
I(z,y), for (z,y) € Dy UDy,

and
I(z,y), for (z,y) € DyUDs,
Ulz,y) =
R(z,y), for (z,y) € Dy UDy,
where ) ) )
1-— T Y
I(z,y) = Ty2 + Fy(x), R(z,y) = o + bR
Since

fit,a

x
we have — f(t,z)y < ay for (x,y) € D1UD5 and t € [0, 27]. Since |g—l;’(t, z,y)| < alz|
and %—Z(t,x,yﬂ < bly|, we get

) = |sint|z? — cost > —1, for 2 # 0 and t € [0, 27],

ou
- <
z (y + By (t,x,y)) < (1+b)wy

and

—y——(t <
yax( ,z,y) < axy

for (z,y) € Dy UD;3. It follows that

W =xa' +yy =x (y+ Z{(tw,y)) - (gz;{(tw,y) + f(taw)> y

<(a+b+2)wy < (a+b+2)R(x(t),y(t))
for (x,y) € D1 U Ds5. Similarly, we can deduce that

%tt)’y(t) -2 <y+ gz;(t,x,y)) - (gzi(t,x,y) +f(tva)) Y

> (1 +b)zy+azy+xy > —(a+ b+ 2)R(z(t),y(t))

for (z,y) € Dy UDy.
Observe that

OV _ (1 by + 1, (@)a
— (b 1)y (‘;Z’u,x,w n f(m)) ) (y n ZZ(t,x,w)

— -0y (o0 Pt - 0.
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1) (Gt + o).

For (x,y) € DQ? we get f+(JU) > Oa f+(1‘) - %(t,l‘,y) —f(t,d?) > 0 and %(t,x,y)—!—
by < 0. Moreover, we have fi(z) < 0, fy(x) — g—g(t,x,y) — f(t,z) < 0 and
%’(t,x,y) +by > 0 for (z,y) € Dy. Hence, I'(z(t),y(t)) < 0 for (x,y) € Dy UDy.
Using a similar argument as above, we have I'(z(t),y(t)) > 0 for (x,y) € D1 U Ds.

For y = 0 and t € [0,27], we have %(t,x,y) = 0. Moreover, for y # 0 and
t € [0, 2], we have sgn(y)%—lz(t,x,y) > 0. By Lemma 4.1 in [19] with p(z) = 0,
we can prove that (hz) holds for system (1.9). System (1.9) has infinitely many
2mm-periodic solutions by Theorem 1.1. O
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