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HOPF BIFURCATION IN THE DELAYED
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Abstract In this paper the fractional-order Leslie-Gower model with Holling
type II functional response and a single time delay is firstly considered. The
stability interval and bifurcation points of developed model are derived via
analytic extrapolation by regarding time delay as a bifurcation parameter.
Besides, a delayed feedback control is successfully designed to put off the
onset of Hopf bifurcation, extend the stability domain, and then the system
possesses the stability in a larger parameter range. Some numerical simulations
are shown in order to check the availability of the theoretical results.
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1. Introduction
It is widely known that predator-prey models are typical and important models in
the sphere of ecological systems. In the past few years predator-prey models have
been studied extensively in virtue of their theoretical and practical significance.
One of the famous predator-prey models is Leslie-Gower model. Because of its
significant practical background Leslie-Gower model has attracted lots of applied
mathematicians, economists and engineers to study and got many interesting and
meaningful results, see, e.g., [1, 2, 4, 13–18,24,27,28].
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In general, biological systems can be described by traditional calculus and frac-
tional calculus. However, Petras [19] pointed out that fractional calculus allows
greater degrees of freedom in modeling dynamical systems compared with con-
ventional descriptions of the above systems. Besides, fractional modeling for bio-
logical systems can exceedingly boost the capability of discrimination, design and
control for dynamic systems since fractional calculus possesses illimitable mem-
ory [12, 30, 31]. Therefore, modeling and control of fractional-order biological sys-
tems have currently become a research hotspot, and large amounts of significant
results have been achieved [7–10,26,32]. Recently, the study of fractional-order dy-
namic systems mainly involves the properties of fractional-order dynamics system,
such as stability analysis, undamped oscillations, bifurcations, chaos and so on.

It should be noted that delicate stability results of nonlinear systems can be
acquired in the light of puissant bifurcation analysis. Especially, Hopf bifurcation
analysis for a nonlinear system is a very effective approach, and has attracted many
researchers from various disciplines. At present, bifurcation control is an impor-
tant research content of bifurcation analysis. We know that the general goal of
bifurcation control is to design a controller which is capable of modifying the bi-
furcation characteristics, thereby to achieve some desirable dynamical behaviors.
It is indicated that bifurcation properties of a system can be modified via feed-
back control methods. Various approaches have been proposed to control bifurca-
tion [3, 5, 21–23,29].

Based on upwards discussions, we firstly extend the delayed Leslie-Gower model
to the fractional case. Then we will study the bifurcation and control of the pro-
posed system. Our contributions of this paper are listed as follows. (1) The first
extension of the Leslie-Gower model with time delay to fractional-order case by
Caputo fractional derivative. (2) The precise bifurcation conditions of the delayed
fractional Leslie-Gower model are shown by taking time delay as bifurcation pa-
rameter. (3) A delayed feedback controller which can put off the onset of the Hopf
bifurcation is devised for the proposed model.

The structure of this paper is organized as follows. In Section 2, we present some
definitions of fractional calculus and the fractional-order Leslie-Gower model with
Holling type II functional response. In Section 3, we investigate the linear stability
of the positive equilibrium and also give the occurrence of Hopf bifurcation at the
positive equilibrium. In Section 4, we establish the essential bifurcation control
results via enhancing feedback control method. Some numerical experiments are
given in Section 5 to check our theoretical results. Finally, a brief discussion is
given to conclude this work.

2. Preliminaries
In this section, we will introduce some results about the fractional-order derivatives
and the fractional Leslie-Gower model with Holling type II functional response.

It is well known that there are several common definitions of fractional-order
derivatives, such as the Grünwald-Letnikov fractional derivative, Riemann-Liouville
fractional derivative, the Caputo fractional derivative and so on. Generally speak-
ing, the Caputo derivative is used more at present since the Caputo derivative can
represent well-understood features of physical situation and make it more applicable
to real world problems. Therefore, in this paper the Caputo derivative is taken into
account.
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The Caputo derivative for one function g(x) is defined as

CD
α
t0,tg(t) =

1

Γ(n− α)

∫ t

t0

(t− s)n−α−1g(n)(s)ds,

where α is the value of fractional order, n − 1 < α ≤ n ∈ Z+, Γ(·) is the
Gamma function and Γ(s) =

∫∞
0

ts−1e−tds. As a special case, we have CD
α
0,tg(t) =

1
Γ(1−α)

∫ t

0
(t− τ)−αg

′
(τ)dτ when 0 < α ≤ 1.

As we know, the Laplace transform of the fractional Caputo derivative is given
as follows.

L
{
CD

α
0,tg(t); s

}
= sαF (s)−

n−1∑
k=0

sα−k−1g(k) (0) ,

where n− 1 < α ≤ n ∈ Z+.
It is easy to see that L

{
CD

α
0,tg(t); s

}
= sαF (s) when g(k) (0) = 0 for k =

1, 2, . . . , n.
For convenience, we use the notation Dαg(t) to represent the Caputo derivative

operator CD
α
0,tg(t).

Next we will introduce the fractional Leslie-Gower model with Holling type II
functional response and non-identical orders which is shown by

Dq1x(t) =

(
a1 − b1x(t)−

c1y (t− τ)

x (t− τ) + k1

)
x(t),

Dq2y(t) =

(
a2 −

c2y (t− τ)

x (t− τ) + k2

)
y(t),

(2.1)

where qi ∈ (0, 1] for i = 1 and 2, x(t) and y(t) stand for the prey population size
and the predator population size, respectively, τ ≥ 0 represents time delay and
all of the parameters are positive with the ecology meaning as follows. a1 is the
growth rate of prey, a2 is the growth rate of predator. b1 measures the strength of
competition among individuals of species x(t). c1 is the maximum value which per
capita reduction rate of x(t) can attain. c2 is the maximum value which per capita
reduction rate of y(t) can attain. k1 measures the extent to which environment
provides protection to prey x(t) and k2 measures the extent to which environment
provides protection to predator y(t).

To facilitate the theoretical analysis and further obtain the main results, we
assume that the following condition holds.

(H1) a2k2
c2

<
a1k1
c1

.
It is obvious that system (2.1) has a unique positive equilibrium point E∗(x∗, y∗)

under the assumption (H1), which is defined by:
x∗ =

− (c1a2 − a1c2 + c2b1k1) +
√
∆

2c2b1
,

y∗ =
a2 (x

∗ + b2)

c2
,

(2.2)

where ∆ = (c1a2 − a1c2 + c2b1k1)
2 − 4c2b1 (c1a2k2 − c2a1k1).
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When q1 = q2 = 1, system (2.1) turns into the following integer-order system
ẋ(t) =

(
a1 − b1x(t)−

c1y (t− τ)

x (t− τ) + k1

)
x(t),

ẏ(t) =

(
a2 −

c2y (t− τ)

x (t− τ) + k2

)
y(t).

(2.3)

Through Hopf bifurcation technique, Cao and Yuan [4] observed the existence of
Hopf bifurcation phenomena at the positive equilibrium of the above system (2.3).
And the analysis indicated that Hopf bifurcation occurs when time delay passes
through a certain critical value.

In this paper, our main goal is to seek for the conditions of Hopf bifurcation
for system (2.1) by time delay as the bifurcation parameter from the approach
of stability analysis [6], and the impact of each order on bifurcation is revealed.
Moreover, we intend to design a delayed feedback controller to control the creation
of bifurcation and further study the effects of feedback gain on bifurcation control
for the proposed system.

3. Stability and bifurcation of system (2.1)
In this section, we will discuss the conditions of local stability and Hopf bifurcation
for system (2.1) considering time delay τ as the bifurcation parameter.

Let u(t) = x(t) − x∗, v(t) = y(t) − y∗. Then system (2.1) can be transformed
into

Dq1u(t) =

(
a1 − b1(u(t) + x∗)− c1(v (t− τ) + y∗)

(u (t− τ) + x∗) + k1

)
(u(t) + x∗),

Dq2v(t) =

(
a2 −

c2(v (t− τ) + y∗)

(u (t− τ) + x∗) + k2

)
(v(t) + y∗).

(3.1)

Hence, the linearizing system of Eq. (3.1) at (0, 0) is{
Dq1u(t) = α1u (t) + α2v (t− τ) + α3u (t− τ) ,

Dq2v(t) = β1u (t− τ) + β2v (t− τ) ,
(3.2)

where

α1 = −b1x
∗,

α2 = − c1x
∗

x∗ + k1
,

α3 =
c1x

∗y∗

(x∗ + k1)
2 ,

β1 =
a2

2

c2
,

β2 = −a2.

Therefore, the corresponding characteristic equation of system (3.2) is as follows.

det

 sq1 − α1 − α3e
−sτ −α2e

−sτ

−β1e
−sτ sq2 − β2e

−sτ

 = 0. (3.3)



Hopf bifurcation in the delayed fractional Leslie-Gower model 2559

Then it follows from Eq. (3.3) that

P1 (s) + P2 (s) e
−sτ + P3 (s) e

−2sτ = 0, (3.4)

where

P1(s) = sq1+q2 − α1s
q2 ,

P2(s) = −β2s
q1 − α3s

q2 + α1β2,

P3(s) = −α2β1+α3β2.

We know that Eq. (3.4) can be written as the following form

P1 (s) e
sτ+P2 (s)+P2 (s) e

−sτ=0. (3.5)

Assume that s = iω is one root of Eq. (3.5) where ω > 0 and i denotes the
imaginary unit of a complex number. Substituting s into Eq. (3.5), we have{

(A1 +A3) coswτ − (B1 − B3) sinwτ = −A2,

(B1 + B3) coswτ − (A1 −A3) sinwτ = −B2,
(3.6)

where Al, Bl are the real part and the imaginary part of Pl(s) (l = 1 and 2),
respectively, which are shown as follows.

A1 = ωq1+q2 cos
(q1 + q2)π

2
− α1ω

q2 cos
q2
2
π,

B1 = ωq1+q2 sin
(q1 + q2)π

2
− α1ω

q2 sin
q2
2
π,

A2 = −β2ω
q1 cos

q1π

2
− α3ω

q2 cos
q2π

2
+ α1β2,

B2 = −β2ω
q1 sin

q1π

2
− α3ω

q2 sin
q2π

2
,

A3 = −α2β1 + α3β2,

B3 = 0.

It follows from Eq. (3.6) that
coswτ =

B2B3 − B1B2 +A2A3 −A1A2(
A1

2 + B1
2
)
−
(
A3

2 + B3
2
) = G1 (w) ,

sinwτ =
A2B1 +A2B3 − B2A1 − B2A3(
A1

2 + B1
2
)
−
(
A3

2 + B3
2
) = G2 (w) .

(3.7)

Taking square on both sides of Eq. (3.7) and summing them up, we have

G2
1(ω) + G2

2(ω) = 1. (3.8)

The following assumption is addressed for ensuring the existence of the roots of
Eq. (3.8).

(H2) There exist positive roots for Eq. (3.8).
By the fact cosωτ = G1(ω) we easily have

τ (l) =
1

ω
[arccosG1(ω) + 2lπ], l = 0, 1, 2, . . . . (3.9)
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Define the bifurcation point

τ0 = min{τ (l)}, l = 0, 1, 2, . . . . (3.10)

To obtain the bifurcation conditions, we elaborate the following useful hypoth-
esis.

(H3) M1N1 +M2N2

N 2
1 +N 2

2

̸= 0,
where Ml and Nl are described by Appendix A where l = 1 and 2.

Lemma 3.1. Assume that s(τ) = γ(τ) + iω(τ) is the root of Eq. (3.5) near
τ = τ0 satisfying γ(τ0) = 0 and ω(τ0) = ω0. Then the transversality condition
Re
[
ds
dτ

]
|(τ=τ0,ω=ω0) ̸= 0 holds.

Proof. Differentiating both sides of Eq. (3.5) with respect to τ , we have

P ′
1 (s) e

sτ ds

dτ
+ P1 (s) e

sτ

(
τ
ds

dτ
+ s

)
+ P ′

2 (s)
ds

dτ
+ P ′

3 (s) e
−sτ ds

dτ

+ P3 (s) e
−sτ

(
−τ

ds

dτ
− s

)
= 0,

where P ′
l(s) are the derivatives of Pl(s) with l = 1, 2 and 3.

Therefore,

ds

dτ
=

M(s)

N (s)
, (3.11)

where

M(s) =
[
(−α2β1 + α3β2) e

−sτ −
(
sq1+q2 − α1s

q2
)
esτ
]
s,

N (s) =
[
(q1 + q2) s

q1+q2−1 − α1q2s
q2−1 + sq1+q2 − α1s

q2
]
esτ

+
(
−β2q1s

q1−1 − α3q2s
q2−1

)
− (−α2β1 + α3β2) τe

−sτ .

It follows from Eq. (3.11) that

Re
[ ds
dτ

]
|(τ=τ0,ω=ω0) =

M1N1 +M2N2

N 2
1 +N 2

2

, (3.12)

where M1, M2, N1 and N2 are the real and imaginary parts of M(s), the real and
imaginary parts of N (s), respectively.

Clearly, the hypothesis (H3) shows that transversality condition holds. Thus,
we have proved Lemma 3.1.

Next we further give the following hypotheses to establish the stability of system
(2.1) with τ = 0.

(H4) α1 + α3 + β2 < 0,
(H5) α3β1 − α2β1 + α1β2 > 0.

Lemma 3.2. Assume that (H4)-(H5) hold. Then the positive equilibrium point
E∗(x∗, y∗) of system (2.1) with τ = 0 is asymptotically stable.

Proof. If τ = 0, then Eq. (3.4) turns to be

λ2 − (α1 + α3 + β2)λ+ α3β1 − α2β1 + α1β2 = 0. (3.13)
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Since the assumptions (H4)-(H5) hold, by Routh-Hurwitz criteria we have that the
two roots of the above equation (3.13) have negative real parts. This completes the
proof.

From the above results and notations, we can easily get the following conclusion.

Theorem 3.1. Assume that (H1)-(H5) are satisfied, the following results are avail-
able for system (2.1).

(1) When τ ∈ [0, τ0), the positive equilibrium point E∗ of system (2.1) is asymp-
totically stable.

(2) When τ = τ0 system (2.1) undergoes a Hopf bifurcation at E∗. Namely, sys-
tem (2.1) has a branch of periodic solutions bifurcating from the positive equilibrium
point E∗ near τ = τ0.

4. Stability and bifurcation of the controlled system
We know that various feedback controllers have been designed to control the Hopf
bifurcation of fractional-order systems recently, see, e.g., [11, 20, 25]. But the feed-
back controller has not been carried over into fractional-order Leslie-Gower model
with Holling type II functional response to meet the control of the Hopf bifurcation.
In this paper a time-delayed force m[y(t) − y(t − τ)] is introduced to the second
equation of system (2.1). Therefore, the delayed feedback control system can be
written as 

Dq1x(t) =

(
a1 − b1x(t)−

c1y(t− τ)

x(t− τ) + k1

)
x(t),

Dq2y(t) =

(
a2 −

c2y(t− τ)

x(t− τ) + k2

)
y(t) +m [y(t)− y(t− τ)],

(4.1)

where m stands for the feedback gain parameter.
Considering time delay τ as a bifurcation parameter in the above system (4.1),

we discuss the conditions under which Hopf bifurcation occurs. Let u(t) = x(t)−x∗

and v(t) = y(t)− y∗, for system (4.1) we have
Dq1u(t) =

(
a1 − b1(u(t) + x∗)− c1(v (t− τ) + y∗)

(u (t− τ) + x∗) + k1

)
(u(t) + x∗),

Dq2v(t) =

(
a2 −

c2(v (t− τ) + y∗)

(u (t− τ) + x∗) + k2

)
(v(t) + y∗) +m[v(t)− v(t− τ)].

(4.2)

Then it gains from system (4.2) that the linearized form is{
Dq1u(t) = α1u(t) + α2v(t− τ) + α3u(t− τ),

Dq2v(t) = β1u(t− τ) + β2v(t− τ) +mv(t)−mv(t− τ),
(4.3)

where α1, α2, α3, β1 and β2 are shown as Eq. (3.2).
Hence, the characteristic equation of system (4.3) is as follows.

det

 sq1 − α1 − α3e
−sτ −α2e

−sτ

−β1e
−sτ sq2 −m+ (m− β2) e

−sτ

 = 0. (4.4)
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It follows from Eq. (4.4) that

Q1(s) +Q2(s)e
−sτ +Q3(s)e

−2sτ = 0, (4.5)

where

Q1(s) = sq1+q2 −msq1 − α1s
q2 +mα1,

Q2(s) = sq1 (m− β2)− α3s
q2 −mα1 +mα3 + α1β2,

Q3(s) = −mα3 − α2β1 + α3β2.

Assume that Cl and Dl are the real and imaginary parts of Ql(s) for l = 1, 2 and
3, respectively, which are given as follows.

C1 = wq1+q2 cos

(
q1 + q2

2

)
π −mwq1 cos

q1
2
π − α1w

q2 cos
q2
2
π +mα1,

D1 = wq1+q2 sin

(
q1 + q2

2

)
π −mwq1sin

q1
2
π − α1w

q2 sin
q2
2
π,

C2 = (m− β2)w
q1 cos

q1
2
π − α3w

q2 cos
q2
2
π −mα1 +mα3 + α1β2,

D2 = (m− β2)w
q1 sin

q1
2
π − α3w

q2 sin
q2
2
π,

C3 = −mα3 − α2β1 + α3β2,

D3 = 0.

It follows from Eq. (4.5) that

Q1(s)e
sτ +Q2(s) +Q3(s)e

−sτ = 0. (4.6)

Assumed that s = iω is one root of Eq. (4.6) and ω > 0. According to Eq. (4.6)
we have {

(C1 + C3) coswτ − (D1 −D3) sinwτ = −C2,
(D1 +D3) coswτ − (C1 − C3) sinwτ = −D2.

(4.7)

According to the above equation, it is easy to get
coswτ =

D2D3 −D1D2 + C2C3 − C1C2(
C12 +D1

2
)
−
(
C32 +D3

2
) = H1 (w),

sinwτ =
C2D1 + C2D3 −D2C1 −D2C3(
C12 +D1

2
)
−
(
C32 +D3

2
) = H2 (w).

(4.8)

From Eq. (4.8), we can easily have

H2
1(ω) +H2

2(ω) = 1. (4.9)

Based on cosωτ = H1(ω), we have

τ∗(l) =
1

ω
[arccosH1(ω) + 2lπ], l = 0, 1, 2, . . . . (4.10)
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To establish the fundamental results of this section, the following assumption is
beneficial.

(H6) Eq. (4.9) has at least one positive real root.
Now we define the following bifurcation point

τ∗0 = min{τ (∗)(l) }, l = 0, 1, 2, . . . . (4.11)

To capture the bifurcation conditions, the following assumption is addressed.
(H7) X1Y1 + X2Y2

Y2
1 + Y2

2

̸= 0,
where Xl and Yl are shown by Appendix B with l = 1 and 2.

Lemma 4.1. Assume that s(τ) = δ(τ) + iω(τ) is the root of Eq. (4.6) near
τ = τ∗0 satisfying δ(τ∗0 ) = 0 and ω(τ∗0 ) = ω0. Then the transversality condition
Re
[
ds
dτ

]
|(τ=τ∗

0 ,ω=ω∗
0 )

̸= 0 holds.

Proof. Differentiating Eq. (4.6) with respect to τ , we have

Q1
′ (s) esτ

ds

dτ
+Q1 (s) e

sτ

(
τ
ds

dτ
+ s

)
+Q2

′ (s)
ds

dτ
+Q3

′ (s) e−sτ ds

dτ

+Q3 (s) e
−sτ

(
−τ

ds

dτ
− s

)
= 0,

where Q′
l(s) stands for the derivatives of Ql(s) with l = 1, 2 and 3.

Thus,

ds

dτ
=

X (s)

Y(s)
, (4.12)

where

X (s) =
(
Q3 (s) e

−sτ −Q1 (s) e
sτ
)
s,

Y(s) = Q1
′ (s) esτ +Q1 (s) e

sτ +Q2
′ (s) +Q3

′ (s) e−sτ −Q3 (s) τe
−sτ .

It follows from (4.12) that

Re
[ ds
dτ

]
|(τ=τ∗

0 ,ω=ω∗
0 )

=
X1Y1 + X2Y2

Y2
1 + Y2

2

, (4.13)

where X1, X2, Y1 and Y2 are the real and imaginary parts of X (s) and the real and
imaginary parts of Y(s), respectively.

Hence, the transversality condition is true through the hypothesis (H7). Then
we have proved Lemma 4.1.

Based on Lemma 3.1, Lemma 3.2 and Lemma 4.1, we establish the following
theorem.

Theorem 4.1. Assume that (H1) and (H4)-(H7) are met. Then the following
statements are true for system (4.1).

(1) When τ ∈ [0, τ∗0 ), the positive equilibrium point E∗ of system (4.1) is asymp-
totically stable.

(2) When τ = τ∗0 , system (4.1) undergoes a Hopf bifurcation at E∗. Namely, sys-
tem (4.1) has a branch of periodic solutions bifurcating from the positive equilibrium
point E∗ near τ = τ∗0 .
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5. Numerical results
This section provides two numerical examples to demonstrate the effectiveness and
feasibility of our theoretical results.

5.1. Example 1
In this example we choose time delay as the bifurcation parameter to examine the
stability and bifurcation of system (2.1). For easy to compare, we consider system
(2.1) with a1 = 1.5, b1 = 10, c1 = 1.5, a2 = 0.5, c2 = 1.5 and k2 = 10, which is
from the literature [4]. Then system (2.1) becomes the following form.

Dq1x(t) =

(
1.5− 10x(t)− 1.5y (t− τ)

x (t− τ) + k1

)
x(t),

Dq2y(t) =

(
0.5− 1.5y (t− τ)

x (t− τ) + 10

)
y(t).

(5.1)

Obviously, the positive equilibrium point of system (5.1) is E∗ = (0.1, 3.36). To
study the impact of time delay on the dynamic characteristics of system (5.1), we
should establish the bifurcation point. Then we set q1 = 0.92 and q2 = 0.95. It is
easy to find that the critical frequency ω0 and the bifurcation point τ0 are 0.4838
and 3.4387, respectively. Besides, we can easily check that (H1)-(H5) are true.
According to Theorem 3.1, when τ = 3 < τ0 the positive equilibrium point E∗ is
asymptotically stable, as shown in Figs. 1–3. On the other hand, as τ is increased
to pass τ0, E∗ loses its stability and a Hopf bifurcation occurs. For instance, when
τ = 4 > τ0 the positive equilibrium point E∗ is unstable, which is shown in Figs. 4–
6. When q1 = q2 = 1, system (5.1) turns to be the integer-order system. Then
we have ω0 = 0.4990 and τ0 = 3.1398. Therefore, we can see that fractional-order
system can put off the onset of Hopf bifurcation and the stability interval of the
corresponding system can be amplified.

Next we will present the different effects of each order on bifurcation for system
(5.1). Here, we first set one order, and then we discuss the effects of the second
order on the bifurcation of system (5.1).

To be specific, we set q2 = 0.95 to discuss the effects of q1 on bifurcation for
system (5.1). From Fig. 7 we observe that the bifurcation happens in advance when
q1 decreases.

Besides, to explore the impact of q2 on bifurcation for system (5.1) we set q1 =
0.92. As shown in Fig. 8 we see that the bifurcation takes place prematurely when
q2 increases.

In summary, Hopf bifurcation happens in advance for system (5.1) supposing
that q1 is firstly fixed as q2 increases. However, the changes of q1 when q2 is fixed
have little effect on the occurrence of Hopf bifurcation in advance.

5.2. Example 2
In this part, we will design a linear delayed feedback controller to delay the onset
of Hopf bifurcation of system (2.1). To better illustrate the effects of bifurcation
control through the above proposed controller, all parameters of the system are
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Figure 1. The positive equilibrium point E∗

of system (5.1) is asymptotically stable with
initial values (0.5,0.5), q1 = 0.92, q2 = 0.95
and τ = 3 < τ0 = 3.4387.

Figure 2. The positive equilibrium point E∗

of system (5.1) is asymptotically stable with
initial values (0.5,0.5), q1 = 0.92, q2 = 0.95
and τ = 3 < τ0 = 3.4387.
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Figure 3. The positive equilibrium point E∗

of system (5.1) is asymptotically stable with
initial values (0.5,0.5), q1 = 0.92, q2 = 0.95
and τ = 3 < τ0 = 3.4387.

Figure 4. The positive equilibrium point E∗

of system (5.1) is unstable and a periodic os-
cillation bifurcates from the positive equilib-
rium point E∗ with initial values (0.5,0.5),
q1 = 0.92, q2 = 0.95 and τ = 4 > τ0 = 3.4387.

Figure 5. The positive equilibrium point E∗

of system (5.1) is unstable and a periodic os-
cillation bifurcates from the positive equilib-
rium point E∗ with initial values (0.5,0.5),
q1 = 0.92, q2 = 0.95 and τ = 4 > τ0 = 3.4387.

0.2 0.4 0.6 0.8 1 1.2 1.4

x(t)

0

1

2

3

4

5

6

7

8

9

y
(t

)

Figure 6. The positive equilibrium point E∗

of system (5.1) is unstable and a periodic os-
cillation bifurcates from the positive equilib-
rium point E∗ with initial values (0.5,0.5),
q1 = 0.92, q2 = 0.95 and τ = 4 > τ0 = 3.4387.

same as those in Example 1. That is, we consinder the following system.
Dq1x(t) =

(
1.5− 10x(t)− 1.5y (t− τ)

x (t− τ) + k1

)
x(t),

Dq2y(t) =

(
0.5− 1.5y (t− τ)

x (t− τ) + 10

)
y(t) +m[y(t)− y(t− τ)].

(5.2)
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Figure 7. Illustration of bifurcation point τ0
versus the order q1 for system (5.1) with q2 =
0.95.
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Figure 8. Illustration of bifurcation point τ0
versus the order q2 for system (5.1) with q1 =
0.92.

According to Example 1 we know that system (5.1) loses its stability and Hopf
bifurcation occurs if τ > 3.4387. In the following, we will discuss the impact of
feedback gain m on the bifurcation for system (5.2). To control bifurcation of sys-
tem (5.2) and achieve desirable dynamic characteristics, we set the feedback gain
m = −0.1. Then we have the critical frequency ω∗

0 = 0.3614 and the bifurcation
point τ∗0 = 5.2428. As shown in Fig. 9 we can see that the stability domain be-
comes smaller when the feedback gain m increases. Thus, the proposed system
is controlled, but the corresponding integer order one is not controlled under the
determined system parameters and feedback gain as shown in Figs. 10–11. Besides,
according to Figs. 12–13 we observe that the effects of bifurcation control are much
better when feedback gain decreases.
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Figure 9. Illustration of bifurcation point τ∗
0

versus gain m for controlled system (5.2) with
q1 = 0.92 and q2 = 0.95. The bifurcation
points are gradually getting smaller and smaller
as feedback gain increases, which shows that
the Hopf bifurcation occurs in advance.

Figure 10. The positive equilibrium point of
controlled system (5.2) is unstable with initial
value (0.5,0.5), m = −0.1, τ = 5.24, q1 = 1
and q2 = 1.

6. Conclusion
We have discussed the dynamic characteristics of the delayed fractional Leslie-Gower
model with Holling type II functional response. We have firstly studied the stability
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Figure 11. Controlled system (5.2) converges
to the positive equilibrium point with initial
value (0.5,0.5), m = −0.1, τ = 5.24, q1 = 0.92
and q2 = 0.95.
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Figure 12. The effect of bifurcation control for
system (5.2) becomes better as feedback gain
decreases with initial value (0.5,0.5), q1 = 0.92,
q2 = 0.95, τ = 5.24 and feedback gain m =
−0.2, m = −0.15, m = −0.08.
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Figure 13. The effect of bifurcation control for system (5.2) becomes better as feedback gain decreases
with initial value (0.5,0.5), q1 = 0.92, q2 = 0.95, τ = 5.24 and feedback gain m = −0.2, m = −0.15,
m = −0.08.

of the proposed Leslie-Gower model, and some sufficient conditions for the existence
of Hopf bifurcation are derived by means of analyzing the corresponding character-
istic equation. The results obtained show that time delay has a significant impact
on the stability. Furthermore, we have found that the onset of bifurcation can be
put off as the other order decreases when one order is fixed. Secondly, a delayed
feedback controller has been devised for system (2.1) to defer the Hopf bifurcation.
We find that the feedback gain is excellent for controlling the dynamical behaviors.
In addition, we can easily see that the obtained conditions of the control method
proposed in this paper are accurate, simple and apt to be verified. Some numer-
ical examples have been provided to confirm the validity and effectiveness of the
developed results.

Appendix A
Computation of the expressions M1, M2, N1 and N2 in Eq. (3.12)

M1 = ω0

[
(−α2β1 + α3β2) +

(
ωq1+q2 cos

(q1 + q2)

2
π − α1ω

q2 cos
q2
2
π

)]
sinω0τ0
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+ω0

[
ωq1+q2 sin

(q1 + q2)

2
π − α1ω

q2 sin
q2
2
π

]
cosω0τ0,

M2 = ω0

[
(−α2β1 + α3β2)−

(
ωq1+q2 cos

(q1 + q2)

2
π − α1ω

q2 cos
q2
2
π

)]
cosω0τ0

+ω0

[
ωq1+q2 sin

(q1 + q2)

2
π − α1ω

q2 sin
q2
2
π

]
sinω0τ0,

N1 =

[
(q1 + q2)ω

q1+q2−1 cos
(q1 + q2 − 1)

2
π

− α1q2ω
q2−1 cos

(q2 − 1)

2
π + ωq1+q2 cos

(q1 + q2)

2
π

]
cosω0τ0

+

[
− α1ω

q2 cos
q2
2
π + τ(α2β1 − α3β2)

]
cosω0τ0 − β2q1ω

q1−1 cos
(q1 − 1)

2
π

−
[
(q1+q2)ω

q1+q2−1 sin
(q1+q2 − 1)

2
π − α1q2ω

q2−1 sin
(q2 − 1)

2
π

]
sinω0τ0

−
[
ωq1+q2 sin

(q1+q2)

2
π−α1ω

q2 cos
q2
2
π

]
sinω0τ0−α3q2ω

q2−1 cos
(q2 − 1)

2
π,

N2 =

[
(q1 + q2)ω

q1+q2−1 cos
(q1 + q2 − 1)

2
π

− α1q2ω
q2−1 cos

(q2 − 1)

2
π + ωq1+q2 cos

(q1 + q2)

2
π

]
sinω0τ0

+
[
−α1ω

q2 cos
q2
2
π+τ(−α2β1+α3β2)

]
sinω0τ0−β2q1ω

q1−1 sin
(q1−1)

2
π

+

[
(q1+q2)ω

q1+q2−1 sin
(q1+q2 − 1)

2
π−α1q2ω

q2−1 sin
(q2 − 1)

2
π

]
sinω0τ0

+

[
ωq1+q2 sin

(q1+q2)

2
π−α1ω

q2 sin
q2
2
π

]
sinω0τ0−α3q2ω

q2−1 sin
(q2 − 1)

2
π.

Appendix B

Computation of the expressions X1, X2, Y1 and Y2 in Eq. (4.13)

X1 = w0
∗

{[
(−mα3 − α2β1 + α3β2) +

(
wq1+q2 cos

(
q1 + q2

2

)
π

−mwq1 cos
q1
2
π − α1w

q2 cos
q2
2
π +mα1

)]
sinw0

∗τ0
∗

+

[
wq1+q2 sin

(
q1 + q2

2

)
π −mwq1 sin

q1
2
π − α1w

q2 sin
q2
2
π

]}
,

X2 = w0
∗

{[
(−mα3 − α2β1 + α3β2)−

(
wq1+q2 cos

(
q1 + q2

2

)
π
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−mwq1 cos
q1
2
π − α1w

q2 cos
q2
2
π +mα1

)]
cosw0

∗τ0
∗

+

[
wq1+q2 sin

(
q1 + q2

2

)
π −mwq1 sin

q1
2
π − α1w

q2 sin
q2
2
π

]
sinw0

∗τ0
∗

}
,

Y1 =

[
(q1 + q2)w

q1+q2−1 cos

(
q1 + q2 − 1

2

)
π −mq1w

q1−1 cos

(
q1 − 1

2

)
π

− α1q2w
q2−1 cos

(
q2 − 1

2

)
π + wq1+q2 cos

(
q1 + q2

2

)
π −mwq1 cos

q1
2
π

− α1w
q2 cos

q2
2
π +mα1 + τ (mα3 + α2β1 − α3β2)

]
cosw0

∗τ0
∗

−
[
(q1 + q2)w

q1+q2−1 sin

(
q1 + q2 − 1

2

)
π −mq1w

q1−1 sin

(
q1 − 1

2

)
π

− α1q2w
q2−1 sin

(
q2 − 1

2

)
π + wq1+q2 sin

(
q1 + q2

2

)
π

−mwq1 sin
q1
2
π − α1w

q2 sin
q2
2
π

]
sinw0

∗τ0
∗

+ (m− β2) q1w
q1−1 cos

(
q1 − 1

2

)
π − α3q2w

q2−1 cos

(
q2 − 1

2

)
π,

Y2 =

[
(q1 + q2)w

q1+q2−1 cos

(
q1 + q2 − 1

2

)
π −mq1w

q1−1 cos

(
q1 − 1

2

)
π

− α1q2w
q2−1 cos

(
q2 − 1

2

)
π + wq1+q2 cos

(
q1 + q2

2

)
π −mwq1 cos

q1
2
π

− α1w
q2 cos

q2
2
π +mα1 + τ (−mα3 − α2β1 + α3β2)

]
sinw0

∗τ0
∗

+

[
(q1 + q2)w

q1+q2−1 sin

(
q1 + q2 − 1

2

)
π −mq1w

q1−1 sin

(
q1 − 1

2

)
π

− α1q2w
q2−1 sin

(
q2 − 1

2

)
π + wq1+q2 sin

(
q1 + q2

2

)
π

−mwq1 sin
q1
2
π − α1w

q2 sin
q2
2
π

]
cosw0

∗τ0
∗

+ (m− β2) q1w
q1−1 cos

(
q1 − 1

2

)
π − α3q2w

q2−1 cos

(
q2 − 1

2

)
π.
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