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Abstract This paper explores a class of delayed Clifford-valued neutral-type
cellular neural networks with D operator. Considering that the multipli-
cation of Clifford algebras does not satisfy the commutativity, by applying
the non-decomposition method, Krasnoselskii’s Fixed Point Theorem and the
proof by contradiction, we obtain several sufficient conditions for the existence
and global exponential synchronization of anti-periodic solutions for Clifford-
valued neutral-type cellular neural networks with D operator. Finally, we give
one example to illustrate the feasibility and effectiveness of the main results.
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1. Introduction
The neural network model, which is a cellular neural network model, has attracted
the interest of many scholars and has been extensively researched in the past
decades. The dynamics for different types of cellular neural networks have been
discussed by many scholars, such as the existence, periodic properties, antiperiodic
properties and stability, and so on (see [7, 18, 27, 28, 31, 33, 40, 43]). In recent years,
the existence and stability of periodic (and anti-periodic) solutions for cellular neu-
ral networks have been discussed by some authors (see [13,19,20,34,45]).

Due to the limit for the switching speed of neurons and amplifiers, time-delay
factors are generated in the implementation of neural networks and are inevitable.
Because of this fact, in many practical applications for delayed neural networks
model, neutral-type neural networks can be described as non-operator-based neutral
neural networks and D-operator-based neutral neural networks. However, through
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the comparison between the non-operator-based neutral model and D-operator-
based neutral model, we can get that the neutral model with D operator has more
general significance than non-operator-based ones, and there are many good results
for neutral-type neural networks with D operator (see [1–3, 8, 10, 14–17, 35, 36, 38,
39,44]).

A new multidimensional neural networks model, which is Clifford-valued neu-
ral networks, represents a generalization of the real-valued, complex-valued, and
quaternion-valued neural networks. We know that the multiplication of Clifford
algebras does not satisfy the commutativity, it does not need to decompose the
Clifford-valued neural networks into real-valued neural networks, thus reducing the
complexity of the calculation. Recently, the theoretical and applied research of the
Clifford-valued neural networks model has become a hot and new topic. A great
number of research results have been made by many scholars (see [4, 9, 21–23, 29,
30,42]).

As well known, anti-periodic synchronization, which is an important dynamic
property for differential equations, has played a key role in network control. In re-
cent years, the synchronization for neural networks model has become a new topic
and is received many scholars’ favor. There’s been a lot of research such as exponen-
tial synchronization, almost periodic synchronization, anti-periodic synchronization,
and so on (see [5, 11,12,24–26,32,37,41]).

With the inspiration from the previous research, to fill the gap in the research
field of delayed Clifford-valued neutral-type cellular neural networks with D oper-
ator, the work of this article comes from three main motivations. (1) Recently,
neutral-type neural networks with D operator have been discussed by some au-
thors, but there is little research about Clifford-valued neutral-type cellular neu-
ral networks with D operator. (2) Some authors have discussed the anti-periodic
synchronization for neural networks with delays. However, there has been no pa-
per about the anti-periodic synchronization for Clifford-valued cellular neural net-
works. (3) Up to now, in practical applications for neural networks, there has
been no paper about the anti-periodic synchronization for delayed Clifford-valued
neutral-type cellular neural networks with D operator. Therefore, we will study the
anti-periodic synchronization of delayed Clifford-valued neutral-type cellular neural
networks with D operator in this paper by using the non-decomposition method,
Krasnoselskii’s Fixed Point Theorem, and the proof by contradiction.

Compared with the previous kinds of literature, the main contributions of this
paper are listed as follows. (1) Firstly, to the best of our knowledge, the introduction
of the delayed Clifford-valued neutral-type cellular neural networks with D operator.
(2) Secondly, this is the first time to study the anti-periodic synchronization for
Clifford-valued neutral-type cellular neural networks with D operator. (3) Thirdly,
to avoid the complexity of the calculation, without separating the Clifford-valued
neural networks into real-valued neural networks. (4) Fourthly, our method in this
paper can be used to discuss the synchronization for other types of Clifford-valued
systems with D operator. (5) Finally, we give one example to verify the effectiveness
of the conclusion.

Notations: R denotes the set of real numbers, R+ = [0,+∞) denotes the set of
non-negative real numbers, A denotes the set of Clifford numbers, An denotes the
set of n dimensional Clifford numbers, ∥·∥A represents the vector Clifford norm. For
x =

∑
A

xAeA ∈ A, we define ∥x∥A = max
A

{
| xA |

}
and for x = (x1, x2, · · · , xn)T ∈
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An, we define ∥x∥An = max
1≤i≤n

{
∥xi∥A

}
. Moreover,

r− = min
1≤i≤n

inf
[0,ω]

ri(t), r
+ = max

1≤i≤n
sup
[0,ω]

ri(t),

c− = min
1≤i≤n

inf
[0,ω]

ci(t), c
+ = max

1≤i≤n
sup
[0,ω]

ci(t),

a+ = max
1≤i,j≤n

∥aij(t)∥A, I = max
1≤i≤n

∥Ii(t)∥A,

b+ = max
1≤i,j≤n

∥bij(t)∥A, d+ = max
1≤i,j≤n

∥dij(t)∥A.

Above all, we will study the solutions of Clifford-valued neutral-type cellular
neural networks with delays and D operator:

[xi(t)− ri(t)xi(t− τi(t))]
′

= −ci(t)xi(t) +
n∑

j=1

aij(t)fj
(
xj(t)

)
+

n∑
j=1

bij(t)gj
(
xj(t− γij(t))

)
+

n∑
j=1

dij(t)

∫ +∞

0

kij(θ)hj
(
xj(t− θ)

)
dθ + Ii(t), (1.1)

where i = 1, 2, · · · , n, xi(t) ∈ A is the state vector of the ith unit at time t, ci(t) > 0
represents the rate with which the ith unit will reset its potential to the resting state
in isolation when disconnected from the network and external inputs, aij , bij , dij ∈ A
denote the strength of connectivity, the activation functions fj , gj , hj ∈ A show how
the jth neuron reacts to input, delay factors satisfy that τi(t), γij(t) ∈ R+, kij(θ)
corresponds to the transmission delay kernel, Ii ∈ A denotes the ith component of
an external input source introduced from outside the network to the unit i at time
t, ri(t) is a continuous function with respect to t.

The initial value of system (1.1) is the following

xi(s) = φi(s), s ∈ [−η, 0], (1.2)

where φi(s)∈C
(
[−η, 0],A

)
, i=1, 2, · · · , n, η=max

{
τ, γ

}
, τ= max

1≤i≤n

{
sup

t∈[0,ω]

τi(t)
}

,

γ= max
1≤i,j≤n

{
sup

t∈[0,ω]

γij(t)
}

.

This paper is organized as follows: In Section 2, we introduce some definitions
and preliminary lemmas. In Section 3, we establish some sufficient conditions for the
existence anti-periodic solutions of system (1.1), global exponential synchronization
for system (1.1) and system (3.5). In Section 4, some numerical examples are
provided to verify the effectiveness of the theoretical results. Finally, we draw a
conclusion in Section 5.

2. Preliminaries
The real Clifford algebra over Rm is defined as

A =

{ ∑
A∈{1,2,··· ,m}

uAeA, u
A ∈ R

}
,
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where eA = eh1
· · · ehν

with A = {h1 · · ·hν}, 1 ≤ h1 < h2 < · · · < hν ≤ m
and 1 ≤ ν ≤ m. Moreover, e∅ = e0 = 1 and eh, h = 1, 2, · · · ,m are said to be
Clifford generators and satisfy e2p = −1, p = 1, 2, · · · ,m, and epeq + eqep = 0,
p ̸= q, p, q = 1, 2, · · · ,m. Let Q = {∅, 1, 2, ..., A, ..., 12 · · ·m}, then it is easy to see
that A = {

∑
A u

AeA, u
A ∈ R}, where

∑
A is short for

∑
A∈Q and dim A = 2m.

To study the existence of ω
2 -anti-periodic solution of system (1.1), we need the

following assumptions:

(H1) For i, j = 1, 2, · · · , n, ω > 0, ri, ci, τi, γij : R → R+ are ω
2 -periodic, aij , bij , dij ,

fj , gj , hj , Ii : R → A, and aij(t+ ω
2 )fj(u) = −aij(t)fj(−u), bij(t+ ω

2 )gj(u) =
−bij(t)gj(−u), dij(t+ ω

2 )hj(u) = −dij(t)hj(−u),Ii(t+ ω
2 ) = −Ii(t).

(H2) For j = 1, 2, · · · , n, there exist positive constants Lf , Lg, Lh such that

∥fj(u)− fj(v)∥A ≤ Lf∥u− v∥A,
∥gj(u)− gj(v)∥A ≤ Lg∥u− v∥A,
∥hj(u)− hj(v)∥A ≤ Lh∥u− v∥A.

(H3) There exist positive constants r+, ζ, Mf , Mg, Mh such that

0 < r+ < 1,

∫ +∞

0

kij(θ)dθ ≤ ζ,

∥fj(u)∥A ≤Mf , ∥gj(u)∥A ≤Mg, ∥hj(u)∥A ≤Mh.

Lemma 2.1 (Krasnoselskii’s Fixed Point Theorem [6]). Let E be a closed convex
and nonempty subset of a Banach space X. Let Φ,Ψ be the operators such that

(i) Φx+Ψy ∈ E for every pair x, y ∈ E;
(ii) Φ is compact and continuous;
(iii) Ψ is a contraction mapping.

Then there exists x ∈ E such that Φx+Ψx = x .

Definition 2.1. A continuous function x =
(
x1, x2 · · · , xn

)T
: [0,+∞] → An is

said to be a solution of system (1.1), if

(i) xi(s) = φi(s), for s ∈ [−η, 0], φi ∈ C([−η, 0],A), i = 1, 2, · · · , n;
(ii) x(t) satisfies system (1.1) for t ≥ 0.

Definition 2.2. A solution x of system (1.1) is said to be ω
2 -anti-periodic solution

of system (1.1), if there exists ω > 0 such that

x(t+
ω

2
) = −x(t).

3. Main results
In this section, we will investigate the existence and global exponential synchro-
nization of anti-periodic solutions of delayed Clifford-valued neutral-type cellular
neural networks with D operator (1.1), based on the non-decomposition method,
Krasnoselskii’s Fixed Point Theorem, the proof by contradiction.
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Denote
X =

{
x ∈ C

(
[0, ω],An

)
: x(t+

ω

2
) = −x(t), t ∈ R

}
be a Banach spaces equipped with the norm

∥x∥X = max
t∈[0,ω]

∥x(t)∥An .

Let E ⊂ X is a closed subset, E =

{
x : x(t) ∈ C(R,An), x(t+ω

2 ) = −x(t), ∥x∥X ≤

ξ

}
, where

ξ :=
1

c−

[
c−r+ + c+r+ +

n∑
j=1

a+Lf +

n∑
j=1

b+Lg +

n∑
j=1

d+Lhζ

]
| xAi |∞

+
1

c−

[ n∑
j=1

a+Mf +

n∑
j=1

b+Mg +

n∑
j=1

d+Mhζ + I

]
,

and
| xAi |∞= max

t∈[0,ω]

{
| xAi (t) |

}
.

Theorem 3.1. Assume that assumptions (H1)-(H3) hold. Then system (1.1) has
at least an ω

2 -anti-periodic solution.

Proof. Let ui(t) = xi(t) − ri(t)xi(t − τi(t)) ∈ A, then xi(t) = ui(t) + ri(t)xi(t −
τi(t)) and system (1.1) can be described as following differential equations

u′i(t) = −ci(t)ui(t)− ci(t)ri(t)xi(t− τi(t)) +

n∑
j=1

aij(t)fj
(
xj(t)

)
+

n∑
j=1

bij(t)gj
(
xj(t− γij(t))

)
+

n∑
j=1

dij(t)

×
∫ +∞

0

kij(θ)hj
(
xj(t− θ)

)
dθ + Ii(t), (3.1)

where i = 1, 2, · · · , n.
It is well known that an ω

2 -anti-periodic solution of system (3.1) is equivalent to
find an ω

2 -anti-periodic solution of the integral equation

ui(t) =

∫ t+ω
2

t

− e
∫ s
t
ci(µ)dµ

1 + e
∫ ω

2
0 ci(µ)dµ

[
− ci(s)ri(s)xi(s− τi(s))

+

n∑
j=1

aij(s)fj
(
xj(s)

)
+

n∑
j=1

bij(s)gj
(
xj(s− γij(s))

)
+

n∑
j=1

dij(s)

∫ +∞

0

kij(θ)hj
(
xj(s− θ)

)
dθ + Ii(s)

]
ds, (3.2)

that is,

xi(t) = ri(t)xi(t− τi(t)) +

∫ t+ω
2

t

− e
∫ s
t
ci(µ)dµ

1 + e
∫ ω

2
0 ci(µ)dµ

[
− ci(s)
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×ri(s)xi(s− τi(s)) +

n∑
j=1

aij(s)fj
(
xj(s)

)
+

n∑
j=1

bij(s)

×gj
(
xj(s− γij(s))

)
+

n∑
j=1

dij(s)

∫ +∞

0

kij(θ)hj
(
xj(s− θ)

)
dθ + Ii(s)

]
ds,

where i = 1, 2, · · · , n.
Let E⊂X is a closed subset, E=

{
x : x(t)∈C(R,An), x(t+ω

2 )=−x(t), ∥x∥X≤ξ
}

,
we define one mapping T =Φ+Ψ as follows

(Tx)(t) =
(
(Φx+Ψx)1(t), · · · , (Φx+Ψx)n(t)

)T
,

where (Φx+Ψx)i(t) ∈ A,

(Φx)i(t) =

∫ t+ω
2

t

− e
∫ s
t
ci(µ)dµ

1 + e
∫ ω

2
0 ci(µ)dµ

[
− ci(s)ri(s)xi(s− τi(s))

+

n∑
j=1

aij(s)fj
(
xj(s)

)
+

n∑
j=1

bij(s)gj
(
xj(s− γij(s))

)
+

n∑
j=1

dij(s)

∫ +∞

0

kij(θ)hj
(
xj(s− θ)

)
dθ + Ii(s)

]
ds, (3.3)

and

(Ψx)i(t) = ri(t)xi(t− τi(t)). (3.4)

Steep 1: For any x ∈ E and t ≥ 0, by (H1), from (3.3) and (3.4), we have that

(Φx)i(t+
ω

2
) =

∫ t+ω
2 +ω

2

t+ω
2

− e
∫ s
t+ω

2
ci(µ)dµ

1 + e
∫ ω

2
0 ci(µ)dµ

[
− ci(s)ri(s)xi(s− τi(s))

+

n∑
j=1

aij(s)fj
(
xj(s)

)
+

n∑
j=1

bij(s)gj
(
xj(s− γij(s))

)
+

n∑
j=1

dij(s)

∫ +∞

0

kij(θ)hj
(
xj(s− θ)

)
dθ + Ii(s)

]
ds

=

∫ t+ω
2

t

− e
∫ ν
t

ci(µ)dµ

1 + e
∫ ω

2
0 ci(µ)dµ

[
− ci

(
ν +

ω

2

)
ri

(
ν +

ω

2

)
×xi

(
ν +

ω

2
− τi

(
ν +

ω

2

))
+

n∑
j=1

aij

(
ν +

ω

2

)
×fj

(
xj

(
ν +

ω

2

))
+

n∑
j=1

bij(ν +
ω

2
)

×gj
(
xj

(
ν +

ω

2
− γij

(
ν +

ω

2

)))
+

n∑
j=1

dij

(
ν +

ω

2

)
×hj

(
xj

(
ν +

ω

2
− θ

))
+ Ii

(
ν +

ω

2

)]
dν
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=

∫ t+ω
2

t

− e
∫ ν
t

ci(µ)dµ

1 + e
∫ ω

2
0 ci(µ)dµ

[
ci(ν)ri(ν)xi(ν − τi(ν))

−
n∑

j=1

aij(ν)fj
(
xj(ν)

)
−

n∑
j=1

bij(ν)gj
(
xj(ν − γij(ν))

)
−

n∑
j=1

dij(ν)

∫ +∞

0

kij(θ)hj
(
xj(ν − θ)

)
dθ − Ii(ν)

]
dν

= −(Φx)i(t),

and

(Ψx)i(t+
ω

2
) = ri(t+

ω

2
)xi(t+

ω

2
− τi(t+

ω

2
))

= −ri(t)xi(t+ τi(t))

= −(Ψx)i(t),

which show that (Tx)(t) is ω
2 -anti-periodic.

Steep 2: We show that ∥Φx + Ψx∥X ≤ ξ. For any x ∈ E, i = 1, 2, · · · , n, we
have

∥(Φx+Ψx)(t)∥An = max
1≤i≤n

{
∥(Φx+Ψx)i(t)∥A

}
= max

1≤i≤n

{∥∥∥∥ri(t)xi(t− τi(t)) +

∫ t+ω
2

t

− e
∫ s
t
ci(µ)dµ

1 + e
∫ ω

2
0 ci(µ)dµ

×
[
− ci(s)ri(s)xi(s− τi(s)) +

n∑
j=1

aiij(s)fj
(
xj(s)

)
+

n∑
j=1

bij(s)gj
(
xj(s− γij(s))

)
+

n∑
j=1

dij(s)

×
∫ +∞

0

kij(θ)hj
(
xj(s− θ)

)
dθ + Ii(s)

]
ds

∥∥∥∥
A

}
≤ max

1≤i≤n

{
r+∥xi(t− τi(t))∥A +

∫ t+ω
2

t

e
∫ s
t
ci(µ)dµ

1 + e
∫ ω

2
0 ci(µ)dµ

×
[
c+r+∥xi(s− τp(s))∥A +

n∑
j=1

∥aij(s)∥A∥fj
(
xj(s)

)
−fj(0)∥A +

n∑
j=1

∥aij(s)∥A∥fj(0)∥A +

n∑
j=1

∥bij(s)∥A

×∥gj
(
xj(s− γij(s))

)
− gj(0)∥A +

n∑
j=1

∥bij(s)∥A

×∥gj(0)∥A +

n∑
j=1

∥dij(s)∥A
∫ +∞

0

kij(θ)∥hj
(
xj(s− θ)

)
−hj(0)∥Adθ +

n∑
j=1

∥dij(s)∥A
∫ +∞

0

kij(θ)∥hj(0)∥Adθ + ∥Ii(s)∥A
]
ds

}
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≤ max
1≤i≤n

{
r+∥xi∥A +

∫ t+ω
2

t

e
∫ s
t
ci(µ)dµ

1 + e
∫ ω

2
0 ci(µ)dµ

c+r+

×
[
∥xi∥A +

n∑
j=1

a+Lf∥xj∥A +
n∑

j=1

b+Lg∥xj∥A

+

n∑
j=1

d+Lh∥xj∥A
∫ +∞

0

kij(θ)dθ +

n∑
j=1

a+Mf

+

n∑
j=1

b+Mg +

n∑
j=1

d+Mh

∫ +∞

0

kij(θ)dθ + ∥Ii(s)∥A
]
ds

}

≤ 1

c−

[
c−r+ + c+r+ +

n∑
j=1

a+Lf +

n∑
j=1

b+Lg +

n∑
j=1

d+Lhζ

]
| xAi |∞

+
1

c−

[ n∑
j=1

a+Mf +

n∑
j=1

b+Mg +

n∑
j=1

d+Mhζ + I

]
≤ ξ.

Hence, we have Φx+Ψx ∈ E.
Steep 3: We show Ψ is a contraction mapping. For any x, x∗ ∈ E, i = 1, 2, · · · , n,

we have
∥Ψx−Ψx∗∥X = max

t∈[0,ω]
∥(Ψx−Ψx∗)(t)∥An

= max
t∈[0,ω]

max
1≤i≤n

{
∥((Ψx)i − (Ψx∗)i)(t)∥A

}
= max

t∈[0,ω]
max
1≤i≤n

{
∥ri(t)xi(t− τi(t))− ri(t)x

∗
i (t− τi(t))∥A

}
≤ r+∥x− x∗∥X,

where r+i ∈ (0, 1). Thus, Ψ is a contraction mapping.
Steep 4: We show Φ is compact and continuous. First, we shall show Φ is

continuous. Let {xk} ∈ E be a convergent sequence of functions such that xk(t) →
x(t) as k → ∞. Since E is closed, then x ∈ E. for t ∈ [0, ω2 ], we have that

∥(Φxk)(t)− (Φx)(t)∥X = max
t∈[0,ω]

max
1≤i≤n

{
∥(Φxk)i(t)− (Φx)i(t)∥A

}
= max

t∈[0,ω]
max
1≤i≤n

{∥∥∥∥∫ t+ω
2

t

− e
∫ s
t
ci(µ)dµ

1 + e
∫ ω

2
0 ci(µ)dµ

[
− ci(s)ri(s)(xk)i(s− τi(s))

+

n∑
j=1

aij(s)fj
(
(xk)j(s)

)
+

n∑
j=1

bij(s)gj
(
(xk)j(s− γij(s))

)
+

n∑
j=1

dij(s)

∫ +∞

0

kij(θ)hj
(
(xk)j(s− θ)

)
dθ + Ii(s)

]
ds

−
∫ t+ω

2

t

− e
∫ s
t
ci(µ)dµ

1 + e
∫ ω

2
0 ci(µ)dµ

[
− ci(s)ri(s)xi(s− τi(s))

+

n∑
j=1

aij(s)fj
(
xj(s)

)
+

n∑
j=1

bij(s)gj
(
xj(s− γij(s))

)
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+

n∑
j=1

dij(s)

∫ +∞

0

kij(θ)hj
(
xj(s− θ)

)
dθ + Ii(s)

]
ds

∥∥∥∥
A

}

≤ max
t∈[0,ω]

max
1≤i≤n

{∫ t+ω
2

t

e
∫ s
t
ci(µ)dµ

1 + e
∫ ω

2
0 ci(µ)dµ

[
c+r+

∥∥∥(xk)i(s− τi(s))

−xi(s− τi(s))
∥∥∥
A
+

n∑
j=1

a+Lf

∥∥∥(xk)j(s)− xj(s)
∥∥∥
A

+

n∑
j=1

b+Lg

∥∥∥(xk)j(s− γij(s))− xj(s− γij(s))
∥∥∥
A

+

n∑
j=1

d+Lhζ
∥∥∥(xk)j(s− θ)− xj(s− θ)

∥∥∥
A

]
ds

}

≤ 1

c−

[
c+r+ +

n∑
j=1

a+Lf +

n∑
j=1

b+Lg +

n∑
j=1

d+Lhζ

]
∥xk − x∥X.

Since xk(t) → x(t) as k → ∞, thus lim
k→∞

∥xk − x∥X = 0, that is

lim
k→∞

∥(Φxk)(t)− (Φx)(t)∥X = 0.

Therefore Φx is continuous.
Second, we show Φ is compact. On the one hand, we prove the family of functions

{Φx : x ∈ E} is uniformly bounded. From (3.3), we can get

∥Φx∥X = max
t∈[0,ω]

max
1≤i≤n

{
∥(Φx)i(t)∥A

}
= max

t∈[0,ω]
max
1≤i≤n

{∥∥∥∥∫ t+ω
2

t

− e
∫ s
t
ci(µ)dµ

1 + e
∫ ω

2
0 ci(µ)dµ

[
− ci(s)ri(s)xi(s− τi(s))

+

n∑
j=1

aij(s)fj
(
xj(s)

)
+

n∑
j=1

bij(s)gj
(
xj(s− γij(s))

)
+

n∑
j=1

dij(s)

∫ +∞

0

kij(θ)hj
(
xj(s− θ)

)
dθ + Ii(s)

]
ds

∥∥∥∥
A

}

≤ max
t∈[0,ω]

max
1≤i≤n

{∫ t+ω
2

t

e
∫ s
t
ci(µ)dµ

1 + e
∫ ω

2
0 ci(µ)dµ

[
c+r+∥xi(s− τi(s))∥A

+

n∑
j=1

a+Lf∥xj(s)∥A +

n∑
j=1

b+Lg∥xj(s− γij(s))
)
∥A

+

n∑
j=1

d+Lhζ∥xj(s− θ)∥A +

n∑
j=1

a+Mf +

n∑
j=1

b+Mg

+

n∑
j=1

d+Mhζ + ∥Ii(s)∥A
]
ds

}

≤ 1

c−

[
c+r+ +

n∑
j=1

a+Lf +

n∑
j=1

b+Lg +

n∑
j=1

d+Lhζ

]
ξ
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+
1

c−

[ n∑
j=1

a+Mf +

n∑
j=1

b+Mg +

n∑
j=1

d+Mhζ + I

]
.

On the other hand, we prove Φ is equicontinuous on [0, ω2 ]. For t1, t2 ∈ [0, ω2 ], x ∈ E,
we obtain

∥(Φx)(t1)− (Φx)(t2)∥X = max
1≤i≤n

{
∥(Φx)i(t1)− (Φx)i(t2)∥A

}
= max

1≤i≤n

{∥∥∥∥∫ t1+
ω
2

t1

− e
∫ s
t1

ci(µ)dµ

1 + e
∫ ω

2
0 ci(µ)dµ

[
− ci(s)ri(s)xi(s− τi(s))

+

n∑
j=1

aij(s)fj
(
xj(s)

)
+

n∑
j=1

bij(s)gj
(
xj(s− γij(s))

)
+

n∑
j=1

dij(s)

∫ +∞

0

kij(θ)hj
(
xj(s− θ)

)
dθ + Ii(s)

]
ds

−
∫ t2+

ω
2

t2

− e
∫ s
t2

ci(µ)dµ

1 + e
∫ ω

2
0 ci(µ)dµ

[
− ci(s)ri(s)xi(s− τi(s))

+

n∑
j=1

aij(s)fj
(
xj(s)

)
+

n∑
j=1

bij(s)gj
(
xj(s− γij(s))

)
+

n∑
j=1

dij(s)

∫ +∞

0

kij(θ)hj
(
xj(s− θ)

)
dθ + Ii(s)

]
ds

∥∥∥∥
A

}

≤ max
1≤i≤n

{∫ ω
2

0

(
e
∫ s
t1

ci(µ)dµ

1 + e
∫ ω

2
0 ci(µ)dµ

− e
∫ s
t2

ci(µ)dµ

1 + e
∫ ω

2
0 ci(µ)dµ

)

×
[
c+r+

∥∥∥x(s− τi(s))
∥∥∥
A
+

n∑
j=1

a+Lf

∥∥∥xj(s)∥∥∥
A

+

n∑
j=1

b+Lg

∥∥∥xj(s− γij(s))
∥∥∥
A
+

n∑
j=1

d+Lhζ

×
∥∥∥xj(s− θ)

∥∥∥
A
+

n∑
j=1

a+Mf +

n∑
j=1

b+Mg

+

n∑
j=1

d+Mhζ + ∥Ii(s)∥A
]
ds

}

≤ c+ω

2

{[
c+r+ +

n∑
j=1

a+Lf +

n∑
j=1

b+Lg +

n∑
j=1

d+Lhζ

]
ξ

+

[ n∑
j=1

a+Mf +

n∑
j=1

b+Mg +

n∑
j=1

d+Mhζ + I

]}
· | t1 − t2 | .

Therefore, by Lemma 2.1, system (1.1) has at least an ω
2 -anti-periodic solution.

The proof is completed.

Remark 3.1. In this paper, we show that system (1.1) has an ω
2 -anti-periodic so-

lution by applying the different way as that in Theorem 3.1 of [11, 26], namely, by
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applying the non-decomposition method and Krasnoselskii’s Fixed Point Theorem.
Compared with Banach fixed point theorem, our proof process of proving the exis-
tence of anti-periodic solutions by applying Krasnoselskii’s Fixed Point Theorem is
very complicated.

Next, to investigate drive-response synchronization, we will consider the neural
network system (1.1) as the drive system, and the response system is given by

[yi(t)− ri(t)yi(t− τi(t))]
′

= −ci(t)yi(t) +
n∑

j=1

aij(t)fj
(
yj(t)

)
+

n∑
j=1

bij(t)gj
(
yj(t− γij(t))

)
+

n∑
j=1

dij(t)

∫ +∞

0

kij(θ)hj
(
yj(t− θ)

)
dθ + Ii(t) + εi(t), (3.5)

where i = 1, 2, · · · , n, yi(t) : R → A denotes the state of the response system,
εi(t) ∈ A is a state-feedback controller, other notations are the same as those in
system (1.1).

System (3.5) is supplemented with initial values given by

yi(s) = ψi(s), s ∈ [−η, 0],

where ψi ∈ C
(
[−η, 0],A

)
, i = 1, 2, · · · , n.

To realize synchronization between (1.1) and (3.5), the controller εi is designed
as

εi(t) = −σi(t)zi(t) +
n∑

j=1

νij(t)ϑj(zj(t)) +

n∑
j=1

µij(t)ρj(zj(t− αij(t))), (3.6)

where i = 1, 2, · · · , n, σi, αij : R −→ R+, νij , µij , ϑj , ρj ∈ A.
We are now in a position to discuss the problem of systems (1.1) and (3.5). Let

zi = yi − xi, i = 1, 2, . . . , n, Zi(t) = zi(t)− ri(t)zi(t− τi(t)), then the error system
is given by

Z ′
i(t) = −ci(t)zi(t) +

n∑
j=1

aij(t)
(
fj
(
yj(t)

)
− fj

(
xj(t)

))
+

n∑
j=1

bij(t)
(
gj
(
yj(t− γij(t))

)
− gj

(
xj(t− γij(t))

))
+

n∑
j=1

dij(t)

∫ +∞

0

kij(θ)
(
hj
(
yj(t− θ)

)
− hj

(
xj(t− θ)

))
dθ

−σi(t)zi(t) +
n∑

j=1

νij(t)ϑj(zj(t)) +

n∑
j=1

µij(t)ρj(zj(t− αij(t))). (3.7)

System (3.7) is supplemented with initial values given by

zi(s) = ψi(s)− φi(s), s ∈ [−η, 0]. (3.8)
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Definition 3.1. The drive system (1.1) and the response system (3.5) are said to
be globally exponentially synchronized, if there exist constants λ > 0 and M > 0
such that

∥y − x∥X ≤M∥ψ − φ∥Xe−λt, ∀t > 0,

where x = (x1, x2, · · · , xn)T is a solution of system (1.1) with the initial value
φ =

(
φ1, φ2, · · · , φn

)T and y =
(
y1, y2, · · · , yn

)T is a solution of system (3.5) with
the initial value ψ =

(
ψ1, ψ2, · · · , ψn

)T .

Theorem 3.2. Assume that (H1)-(H3) hold. If the following conditions are satis-
fied:

(H4) For i, j = 1, 2, · · · , n, σi(t), αij(t) ∈ C(R,R+), νij , µij , ϑj , ρj ∈ A, there
exists positive constant ω such that σi(t + ω

2 ) = σi(t), αij(t +
ω
2 ) = αij(t),

νij(t+
ω
2 )ϑj(u) = −νij(t)ϑj(−u), µij(t+

ω
2 )ρj(u) = −µij(t)ρj(−u).

(H5) For j = 1, 2, · · · , n, ϑj(0) = ρj(0) = 0, there exist positive constants Lϑ and
Lρ such that

∥ϑj(u)− ϑj(v)∥A ≤ Lϑ∥u− v∥A,
∥ρj(u)− ρj(v)∥A ≤ Lρ∥u− v∥A.

(H6) There exist positive constants λ and δ such that

1− r+eλτ > 0,

∫ +∞

0

kij(θ)e
λθdθ ≤ δ,

and

0 <
1

c− + σ− − λ

[
(c+ + σ+)r+eλτ +

n∑
j=1

a+Lf

+

n∑
j=1

b+Lge
λγ +

n∑
j=1

d+Lhδ +

n∑
j=1

ν+Lϑ

+

n∑
j=1

µ+Lρe
λα

]
1

1− r+eλτ
< 1,

where

ν+ = max
1≤i,j≤n

∥νij(t)∥A,

σ− = min
1≤i≤n

inf
[0,ω]

σi(t), σ
+ = max

1≤i≤n
sup
[0,ω]

σi(t),

µ+ = max
1≤i,j≤n

∥µij(t)∥A, α = max
1≤i,j≤n

{
sup

t∈[0,ω]

αij(t)

}
.

Then the drive system (1.1) and the response system (3.5) are globally exponentially
synchronized.

Proof. Let Zi(t) = zi(t)− ri(t)zi(t− τi(t)), we have that

eλt∥zi(t)∥A = eλt∥zi(t)− ri(t)zi(t− τi(t)) + ri(t)zi(t− τi(t))∥A
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≤ eλt∥zi(t)− ri(t)zi(t− τi(t))∥A + r+eλτeλt∥zi(t)∥A.

Hence, we have

eλt∥zi(t)∥A ≤ eλt∥Zi(t)∥A
1− r+eλτ

.

By (H6), let

M : = (c− + σ−)

[
(c+ + σ+)r+eλτ +

n∑
j=1

a+Lf

+

n∑
j=1

b+Lge
λγ +

n∑
j=1

d+Lhδ +

n∑
j=1

ν+Lϑ

+

n∑
j=1

µ+Lρe
λα

]−1

(1− r+eλτ ) > 1,

then

1

M
=

1

c− + σ−

[
(c+ + σ+)r+eλτ +

n∑
j=1

a+Lf

+

n∑
j=1

b+Lge
λγ +

n∑
j=1

d+Lhδ +

n∑
j=1

ν+Lϑ

+

n∑
j=1

µ+Lρe
λα

]
1

1− r+eλτ

≤ 1

c− + σ− − λ

[
(c+ + σ+)r+eλτ +

n∑
j=1

a+Lf

+

n∑
j=1

b+Lge
λγ +

n∑
j=1

d+Lhδ +

n∑
j=1

ν+Lϑ

+

n∑
j=1

µ+Lρe
λα

]
1

1− r+eλτ
.

From (3.7), For i = 1, 2 · · · , n, we can have that

Zi(t) = Zi(0)e
−

∫ t
0
(ci(ξ)+σi(ξ))dξ +

∫ t

0

e−
∫ t
s
(ci(ξ)+σi(ξ))dξ

[
−

(
ci(s)

+σi(s)
)
ri(s)zi(s− τi(s)) +

n∑
j=1

aij(s)
(
fj
(
yj(s)

)
− fj

(
xj(s)

))
+

n∑
j=1

bij(s)
(
gj
(
yj(s− γij(s))

)
− gj

(
xj(s− γij(s))

))
+

n∑
j=1

dij(t)

∫ +∞

0

kij(θ)
(
hj
(
yj(t− θ)

)
− hj

(
xj(t− θ)

))
dθ

+

n∑
j=1

νij(s)ϑj(zj(s)) +

n∑
j=1

µij(s)ρj(zj(s− αij(s)))

]
ds.
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When t ∈ [−η, 0], it is easy to see that there exist two constants ϵ > 0 and M > 1
such

∥Zi(0)∥A < ∥ϕ∥X + ϵ

and
∥Z(t)∥X = max

1≤i≤n

{
∥Zi(t)∥A

}
< M(∥ϕ∥X + ϵ)e−λt,

that is,
∥z(t)∥X <

M

1− r+eλτ
(∥ϕ∥X + ϵ)e−λt,

where ∥ϕ∥X = ∥ψ − φ∥X. We claim that

∥Z(t)∥X < M(∥ϕ∥X + ϵ)e−λt, t ∈ [0,+∞). (3.9)

If it is not true, then there must be some t̂ > 0 such that

∥Z(t̂)∥X = max
1≤i≤n

{∥Zi(t̂)∥A} =M(∥ϕ∥X + ϵ)e−λt̂ (3.10)

and

∥Z(t)∥X < M(∥ϕ∥X + ϵ)e−λt, t ∈ [−η, t̂).

Hence, we have

∥Zi(t̂)∥A =

∥∥∥∥Zi(0)e
−

∫ t̂
0
(ci(ξ)+σi(ξ))dξ +

∫ t̂

0

e−
∫ t̂
s
(ci(ξ)+σi(ξ))dξ

[
−

(
ci(s)

+σi(s)
)
ri(s)zi(s− τi(s)) +

n∑
j=1

aij(s)
(
fj
(
yj(s)

)
− fj

(
xj(s)

))
+

n∑
j=1

bij(s)
(
gj
(
yj(s− γij(s))

)
− gj

(
xj(s− γij(s))

))
+

n∑
j=1

dij(t)

∫ +∞

0

kij(θ)
(
hj
(
yj(t− θ)

)
− hj

(
xj(t− θ)

))
dθ

+

n∑
j=1

νij(s)ϑj(zj(s)) +

n∑
j=1

µij(s)ρj(zj(s− αij(s)))

]
ds

∥∥∥∥
A

≤ ∥Zi(0)∥Ae−
∫ t̂
0
(ci(ξ)+σi(ξ))dξ +

∫ t̂

0

e−
∫ t̂
s
(ci(ξ)+σi(ξ))dξ

[
(c+ + σ+)

×r+∥zi(s− τi(s))∥A +

n∑
j=1

∥aij(s)∥A
∥∥∥(fj(yj(s))− fj

(
xj(s)

))∥∥∥
A

+

n∑
j=1

∥bij(s)∥A
∥∥∥(gj(yj(s− γij(s))

)
− gj

(
xj(s− γij(s))

))∥∥∥
A

+

n∑
j=1

∥dij(t)∥A
∫ +∞

0

kij(θ)
∥∥∥(hj(yj(t− θ)

)
− hj

(
xj(t− θ)

))∥∥∥
A
dθ

+

n∑
j=1

∥νij(s)∥A∥ϑj(zj(s))∥A +

n∑
j=1

∥µij(s)∥A∥ρj(zj(s− αij(s)))∥A
]
ds
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≤ (∥ϕ∥X + ϵ)e−(c−+σ−)t̂ +M(∥ϕ∥X + ϵ)

∫ t̂

0

e−
∫ t̂
s
(ci(ξ)+σi(ξ))dξ

×
[
(c+ + σ+)r+eλτ +

n∑
j=1

a+Lf +

n∑
j=1

b+Lge
λγ +

n∑
j=1

d+Lhδ

+

n∑
j=1

ν+Lϑ +

n∑
j=1

µ+Lρe
λα

]
e−λs

1− r+eλτ
ds

≤ M(∥ϕ∥X + ϵ)e−λt̂

{
e(λ−c−−σ−)t̂

M
+

1

c− + σ− − λ

[
(c+ + σ+)r+

×eλτ +

n∑
j=1

a+Lf +

n∑
j=1

b+Lge
λγ +

n∑
j=1

d+Lhδ +

n∑
j=1

ν+Lϑ

+

n∑
j=1

µ+Lρe
λα

]
1− e(λ−c−−σ−)t̂

1− r+eλτ

}

≤ M(∥ϕ∥X + ϵ)e−λt̂

{
e(λ−c−−σ−)t̂

(
1

M
− 1

c− + σ− − λ

[
(c+ + σ+)

×r+eλτ +

n∑
j=1

a+Lf +

n∑
j=1

b+Lge
λγ +

n∑
j=1

d+Lhδ +

n∑
j=1

ν+Lϑ

+

n∑
j=1

µ+Lρe
λα

]
1

1− r+eλτ

)
+

1

c− + σ− − λ

[
(c+ + σ+)r+

×eλτ +

n∑
j=1

a+Lf +

n∑
j=1

b+Lge
λγ +

n∑
j=1

d+Lhδ +

n∑
j=1

ν+Lϑ

+

n∑
j=1

µ+Lρe
λα

]
1

1− r+eλτ

}

≤ M(∥ϕ∥X + ϵ)e−λt̂

{
1

c− + σ− − λ

[
(c+ + σ+)r+eλτ

+

n∑
j=1

a+Lf +

n∑
j=1

b+Lge
λγ +

n∑
j=1

d+Lhδ +

n∑
j=1

ν+Lϑ

+

n∑
j=1

µ+Lρe
λα

]
1

1− r+eλτ

}
< M(∥ϕ∥X + ϵ)e−λt̂.

Hence,

∥Z(t̂)∥X < M(∥ϕ∥X + ϵ)e−λt̂,

which contradicts the equality (3.10), and so (3.9) holds. Letting ϵ→ 0+, then

∥Z(t)∥X ≤M∥ϕ∥Xe−λt,

that is,
∥z(t)∥X ≤ M

1− r+eλτ
∥ϕ∥Xe−λt,
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where
∥ϕ∥X = ∥ψ − φ∥X.

Therefore, the drive system (1.1) and the response system (3.5) are globally
exponentially synchronized. The proof is complete.

Remark 3.2. Compared with Theorem 3.2 of [11], we show the synchronization
of anti-periodic solutions for system (1.1) by applying the same way. Unlike the
method in literature [12], we gain the synchronization of anti-periodic solutions for
system (1.1) by applying the proof by contradiction.

4. Illustrative example
In this section, we give one example to illustrate the feasibility and effectiveness of
main results.

Example 4.1. Consider the following delayed Clifford-valued neutral-type cellular
neural networks with two neurons as the drive system:

[xi(t)− ri(t)xi(t− τi(t))]
′

= −ci(t)xi(t) +
n∑

j=1

aij(t)fj
(
xj(t)

)
+

n∑
j=1

bij(t)gj
(
xj(t− γij(t))

)
+

n∑
j=1

dij(t)

∫ +∞

0

kij(θ)hj
(
xj(t− θ)

)
dθ + Ii(t). (4.1)

The corresponding response system is given by

[yi(t)− ri(t)yi(t− τi(t))]
′

= −ci(t)yi(t) +
n∑

j=1

aij(t)fj
(
yj(t)

)
+

n∑
j=1

bij(t)gj
(
yj(t− γij(t))

)
+

n∑
j=1

dij(t)

∫ +∞

0

kij(θ)hj
(
yj(t− θ)

)
dθ + Ii(t) + εi(t), (4.2)

and the controller is as follows:

εi(t) = −σi(t)zi(t) +
n∑

j=1

νij(t)ϑj(zj(t))

+

n∑
j=1

µij(t)ρj(zj(t− αij(t))), (4.3)

where n = m = 2, i = 1, 2, c1(t) = 3.2 + 0.1 sin 2t, c2(t) = 3.5 + 0.3 sin 2t, ri(t) =
1
10 + 1

10 sin 2t, τi(t) = 1
15 + 1

15 sin 2t, γij = 1
10 + 1

15 sin 2t, αij = 1
16 + 1

32 sin 2t,
σ1(t) = 1.5 + 0.2 sin 2t, σ2(t) = 1.3 + 0.1 sin 2t, kij(θ) = 1

2e
−0.7θ and

a11 = 0.13e0 sin t+ 0.2e1 sin t+ 0.15e2 sin t+ 0.16e12 sin t,

a12 = 0.2e0 sin t+ 0.12e1 sin t+ 0.14e2 sin t+ 0.18e12 sin t,

a21 = 0.2e0 sin t+ 0.2e1 sin t+ 0.11e2 sin t+ 0.13e12 sin t,
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a22 = 0.14e0 sin t+ 0.15e1 sin t+ 0.17e2 sin t+ 0.3e12 sin t,

b11 = 0.11e0 sin t+ 0.14e1 sin t+ 0.17e2 sin t+ 0.2e12 sin t,

b12 = 0.22e0 sin t+ 0.15e1 sin t+ 0.2e2 sin t+ 0.1e12 sin t,

b21 = 0.21e0 sin t+ 0.3e1 sin t+ 0.15e2 sin t+ 0.17e12 sin t,

b22 = 0.2e0 sin t+ 0.18e1 sin t+ 0.16e2 sin t+ 0.14e12 sin t,

d11 = 0.12e0 sin t+ 0.14e1 sin t+ 0.15e2 sin t+ 0.2e12 sin t,

d12 = 0.2e0 sin t+ 0.13e1 sin t+ 0.16e2 sin t+ 0.18e12 sin t,

d21 = 0.21e0 sin t+ 0.2e1 sin t+ 0.15e2 sin t+ 0.14e12 sin t,

d22 = 0.2e0 sin t+ 0.15e1 sin t+ 0.18e2 sin t+ 0.13e12 sin t,

ν11 = 0.15e0 sin t+ 0.16e1 sin t+ 0.2e2 sin t+ 0.2e12 sin t,

ν12 = 0.13e0 sin t+ 0.14e1 sin t+ 0.18e2 sin t+ 0.21e12 sin t,

ν21 = 0.21e0 sin t+ 0.12e1 sin t+ 0.2e2 sin t+ 0.11e12 sin t,

ν22 = 0.12e0 sin t+ 0.2e1 sin t+ 0.13e2 sin t+ 0.15e12 sin t,

µ11 = 0.15e0 sin t+ 0.17e1 sin t+ 0.18e2 sin t+ 0.2e12 sin t,

µ12 = 0.22e0 sin t+ 0.13e1 sin t+ 0.14e2 sin t+ 0.17e12 sin t,

µ21 = 0.18e0 sin t+ 0.19e1 sin t+ 0.2e2 sin t+ 0.18e12 sin t,

µ22 = 0.2e0 sin t+ 0.22e1 sin t+ 0.15e2 sin t+ 0.18e12 sin t,

Ii = 0.3e0 sin t+ 0.2e1 sin t+ 0.2e2 sin t+ 0.1e12 sin t,

fj =
1

25
sinx0je0 +

1

25
sinx1je1 +

1

25
sinx2je2 +

1

25
sinx12j e12,

gj =
1

30
sinx0je0 +

1

30
sinx1je1 +

1

30
sinx2je2 +

1

30
sinx12j e12,

hj =
1

40
sinx0je0 +

1

40
sinx1je1 +

1

40
sinx2je2 +

1

40
sinx12j e12,

ϑj =
1

45
sin z0j e0 +

1

45
i sin z1j e1 +

1

45
sin z2j e2 +

1

45
sin z12j e12,

ρj =
1

50
sin z0j e0 +

1

50
i sin z1j e1 +

1

50
sin z2j e2 +

1

50
sin z12j e12.

Let λ = 0.5, and by calculating, we have

c− = 3.1, c+ = 3.8, r+ =
1

5
, σ− = 1.2, σ+ = 1.7,

a+ = 0.3, b+ = 0.21, d+ = 0.22, ν+ = 0.21, µ+ = 0.22,

Lf =
1

25
, Lg =

1

30
, Lh =

1

40
, Lϑ =

1

45
, Lρ =

1

50
, ω = 2π,

1− r+eλτ ≈ 0.7862 > 0,

and

0 <
1

c− + σ− − λ

[
(c+ + σ+)r+eλτ +

n∑
j=1

a+Lf +

n∑
j=1

b+Lge
λγ +

n∑
j=1

d+Lhδ

+

n∑
j=1

ν+Lϑ +

n∑
j=1

µ+Lρe
λα

]
1

1− r+eλτ

≈ 0.4221 < 1,
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It is not difficult to verify that all conditions (H1)-(H6) are satisfied. Therefore,
by Theorem 3.1, from Figures 1-4, we have that system (4.1) has a unique π-
anti-periodic solution, which is globally exponentially stable. From Figures 5-8,
we have that system (4.2) has a unique π-anti-periodic solution, which is globally
exponentially stable.

When applying a nonlinear controller (4.3), Theorem 3.2 implies that system
(4.1) and system (4.2) are globally exponentially synchronized, namely, from Fig-
ures 9, we can see the drive and response system can reach globally exponentially
synchronized.
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Figure 1. Transient states of the solutions x0
i , i = 1, 2.
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Figure 2. Transient states of the solutions x1
i , i = 1, 2.

Remark 4.1. When m = 2, the considered Clifford-valued neural network is a
quaternion-valued neural network. Compared with [11,12,26], by applying the non-
decomposition method, Krasnoselskii¡¯s Fixed Point Theorem and the proof by
contradiction, we get the main result. By using the Simulink toolbox in MATLAB,
from Figures 1-9, we get the effectiveness and efficiency of the proposed method.
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Figure 3. Transient states of the solutions x2
i , i = 1, 2.
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Figure 4. Transient states of the solutions x12
i , i = 1, 2.

0 5 10 15 20 25

t

-0.4

-0.2

0

0.2

0.4

y i0
(t

),
 i=

1,
2.

y
1

0
(t)

y
2

0
(t)

Figure 5. Transient states of the solutions y0
i , i = 1, 2.

5. Conclusion
This paper discusses a class of Clifford-valued neutral-type cellular neural networks
with D operator and delays. To overcome the complexity of the calculation, we
obtain several sufficient conditions for the existence of anti-periodic solutions for
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Figure 6. Transient states of the solutions y1
i , i = 1, 2.
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Figure 7. Transient states of the solutions y2
i , i = 1, 2.
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Figure 8. Transient states of the solutions y12
i , i = 1, 2.

Clifford-valued neutral-type cellular neural networks with D operator and delays by
using the non-decomposition method and the Krasnoselskii’s Fixed Point Theorem.
We obtain the anti-periodic synchronization for Clifford-valued neutral-type cellular
neural networks with D operator by using the proof by contradiction, one example is
given. Our method can be extended to discuss the existence and synchronization (or
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Figure 9. State response curve of four parts of synchronization error.

stability) of periodic (or anti-periodic) solutions for other types of Clifford-valued
neural networks.
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