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OPTIMALITY RESULTS FOR
NONDIFFERENTIABLE VECTOR

OPTIMIZATION PROBLEMS WITH
VANISHING CONSTRAINTS

Tadeusz Antczak1,†

Abstract At present, some real extremum problems related to the activ-
ity of modern man, for example, in industry, economy, optimal control, en-
gineering, mechanics, are modeled by optimization problems with vanishing
constraints. In this paper, a class of nondifferentiable vector optimization
problems with vanishing constraints is considered in which every component
of the involved functions is locally Lipschitz. This kind of extremum problems
is generally difficult to deal with, because of a special structure of constraints.
The Karush-Kuhn-Tucker necessary optimality conditions are established for
foregoing nonsmooth multicriteria optimization problems under the VC-Cottle
constraint qualification. Sufficient optimality conditions are also proved for
the considered nondifferentiable vector optimization problem with vanishing
constraints under convexity hypotheses.
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1. Introduction
A particular form of a mathematical programming problem which has attracted the
attention of the optimization community over more than the past decade is a so-
called optimization problem with vanishing constraints. This is a consequence of the
fact that many problems from structural and topology optimization can be reformu-
lated just as such an extremum problem. For example, vanishing constraints occur
in truss topology design problems if a bar is not realized in the optimal structure
so that constraints (like minimum thickness) disappear at the solution (see [1]). In
recent years, topology optimization become an accepted tool in many engineering,
mechanics and industrial applications such as airplane and car manufacturing. Fur-
ther, the corresponding research shows that the robot motion planning problem can
be transformed into the mathematical programming problem with vanishing con-
straints (see [22]). In addition, such optimization problems are also widely used in
the economic dispatch problem (see [18]) and the nonlinear integer optimal control

†The corresponding author.
Email: tadeusz.antczak@wmii.uni.lodz.pl

1Department of Mathematics and Computer Science, University of Lodz, Banacha 22,
90-238 Lodz, Poland

http://www.jaac-online.com
http://dx.doi.org/10.11948/20220465


2614 T. Antczak

(see [19, 22]). Achtziger and Kanzow [1] were the first who introduced the formu-
lation of a mathematical programming problem with vanishing constraints. Since
optimization problems with vanishing constraints, in their general form, are quite a
new class of mathematical programming problems, only few papers have been pub-
lished on this subject so far (see, for example, [2,3,9,10,12–14,16,17,25,29]). But the
most of them have been devoted to optimality and duality results for differentiable
scalar optimization problems with vanishing constraints. Recently, however, there
can be found in the literature first results on optimality conditions for some classes of
nondifferentiable optimization problems with vanishing constraints. In [20], Kazemi
and Kanzi analyzed a class of optimization problems with differentiable objective
functions and non-differentiable vanishing constraints for which, by using various
qualification conditions, they obtained several stationary conditions of Karush-
Kuhn-Tucker type. Unfortunately, based on the mistaken example, they gave an
incorrect statement that it is impossible to replace the smoothness condition for the
objective function of the considered optimization problem with vanishing constraints
by its Lipschitzian condition in order to prove the necessary optimality conditions.
Recently, Su and Hang [27] established the optimality conditions in terms of up-
per and lower Hadamard derivatives for the nonsmooth semi-infinite interval-valued
mathematical programming problem with vanishing constraints. However, the opti-
mality results for multiobjective programming problems with vanishing constraints
have been established in the literature mainly for differentiable optimization prob-
lems of such a type (see, [4,24,28]). Ardakani et al. [5] considered a multiobjective
optimization problem with vanishing constraints, in which its objective functions
are continuously differentiable and its constraints are convex and not necessar-
ily differentiable. They introduced two new Abadie-type constraint qualifications
and presented some necessary condition for properly efficient solutions of this vec-
tor optimization problem, using convex subdifferential. Nevertheless, there are
only a few works devoted to results for vector optimization problems with vanish-
ing constraints in which all involved functions are nondifferentiable (see, [6, 11]).
In [11], Guu et al. considered a nondifferentiable vector semi-infinite optimization
problem with vanishing constraints. For such nonsmooth multiobjective program-
ming problems, they derived various stationary conditions and proved the strong
Karush-Kuhn-Tucker type sufficient optimality conditions under generalized con-
vexity assumptions. Barilla et al. [6] formulated their results established for the
considered nonsmooth vector optimization problem in terms of Mordukhoivich sub-
differential. Therefore, the main purpose of this paper is to prove the aforesaid
necessary optimality conditions for the considered nondifferentiable multiobjective
programming problem with vanishing constraints in which all components of the
involved functions are locally Lipschitz. Namely, for the considered nondifferen-
tiable multiobjective programming problem with vanishing constraints, firstly, we
prove the Karush-Kuhn-Tucker necessary optimality conditions for a feasible solu-
tion to be its weak Pareto solution. We also use Karush-Kuhn-Tucker approach to
the considered nondifferentiable multicriteria optimization problem to exploit the
special structure of its vanishing constraints. Moreover, the present paper is also an
attempt at providing an extension of the well-known Cottle constraint qualification
from classical constrained optimization problems to the considered nondifferentiable
vector optimization problems with vanishing constraints. Thus, we introduce the so-
called VC-Cottle constraint qualification for such nonsmooth extremum problems,
under which we prove the Karush-Kuhn-Tucker necessary optimality conditions for
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nondifferentiable multiobjective programming problems with vanishing constraints.
Motivated to find a (weak) Pareto solution for the considered nondifferentiable mul-
tiobjective programming problem with vanishing constraints, we also generalize the
definition of a S-stationary point introduced by Achtziger and Kanzow [1] for the
considered multiobjective programming problem with vanishing constraints. Then,
we show the equivalence between a S-stationary point and the Karush-Kuhn-Tucker
necessary optimality condition. At the end, we correct the mistaken result and the
incorrect statement given by Kazem and Kanzi [20] that it is not possible to derive
the necessary optimality conditions for nonsmooth scalar optimization problems in
which objective functions are nondifferentiable. In this paper, not only we prove
the aforesaid necessary optimality conditions for nonsmooth scalar optimization
problems with vanishing constraints in which also objective functions are nondiffer-
entiable, but we establish them for nondifferentiable multiobjective programming
problems with vanishing constraints. At the end of the paper, we also analyze and
comment Example 4.1 [20].

2. Preliminaries
The following convention for equalities and inequalities will be used in the paper.

For any x = (x1, x2, ..., xn)
T , y = (y1, y2, ..., yn)

T in Rn, we define:
(i) x = y if and only if xi = yi for all i = 1, 2, ..., n;
(ii) x > y if and only if xi > yi for all i = 1, 2, ..., n;
(iii) x ≧ y if and only if xi ≧ yi for all i = 1, 2, ..., n;
(iv) x ≥ y if and only if x ≧ y and x ̸= y.
In this paper, we will use the same notation for row and column vectors when

the interpretation is obvious. The notation ⟨·, ·⟩ is used in the paper to denote the
inner product. A nonempty set X ⊂ Rn is said convex if x+ α (y − x) ∈ X for all
x, y ∈ X and any α ∈ [0, 1].

Now, we recall some definitions and results for locally Lipschitz functions.

Definition 2.1. A function φ : Rn → R is locally Lipschitz at a point u ∈
Rn if there exist scalars Ku > 0 and ε > 0 such that, the following inequality
|φ (y)− φ(z)| ≦ Ku ∥y − z∥ holds for all y, z ∈ u+ εB, where B signifies the open
unit ball in Rn, so that u+ εB is the open ball of radius ε about u.

Definition 2.2 ( [7]). The Clarke generalized directional derivative of a locally
Lipschitz function φ : Rn → R at u ∈ Rn in the direction v ∈ Rn, denoted by
φ 0 (x; v), is given by

φ 0(u; v) = lim sup
y→u
λ↓0

φ (y + λv)− φ(y)

λ
.

Definition 2.3 ( [7]). The Clarke generalized subgradient of a locally Lipschitz
function φ : Rn → R at u ∈ Rn, denoted by ∂φ (x), is defined as follows:

∂φ (u) =
{
ξ ∈ Rn : φ 0(u; v) ≧ ⟨ξ, v⟩ for all v ∈ Rn

}
.

It is well-known that a function φ : X → R defined on a convex set X is
said to be convex provided that, for all x, u ∈ X and any α ∈ [0, 1], one has
φ (αx+ (1− α)u) ≦ αf (x) + (1− α)φ (u).
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Definition 2.4 ([7, 26]). The subdifferential of a convex function φ : Rn → R at
u ∈ Rn is defined as follows

∂φ (u) = {ξ ∈ Rn : φ (x)− φ(u) ≧ ⟨ξ, x− u⟩ for all x ∈ Rn} .

The following result in convex analysis is well-known.

Proposition 2.1 ([7]). Let φ be convex on Rn and locally Lipschitz at u ∈ Rn. Then
the Clarke generalized subgradient ∂φ (u) of φ at u coincides with the subdifferential
of φ at u in the sense of convex analysis, and φ 0(u; v) coincides with the classical
directional derivative φ′(u; v) := lim

α↓0
φ(u+αv)−φ(u)

α .

As it follows from the definition of a convex function and the definition of its
subdifferential, the following result is true:

Proposition 2.2 ([7, 26]). If φ : Rn → R is a convex function, then the inequality

φ (x)− φ (u) ≧ ⟨ξ, x− u⟩ (2.1)

holds for all x, u ∈ Rn and any ξ ∈ ∂φ (u).

Lemma 2.1 ([7]). Let φ : Rn → R be a locally Lipschitz function on Rn, u is an
arbitrary point of Rn and α ∈ R. Then ∂ (αφ) (u) = α∂φ (u) .

Proposition 2.3 ([7, 26]). Let φi : Rn → R, i = 1, ..., k, be locally Lipschitz func-
tions on Rn, u is an arbitrary point of Rn. Then ∂

(∑k
i=1 φi

)
(u) ⊆

∑k
i=1 ∂φi (u).

Equality holds in the above relation if all but at most one of the functions φi is
strictly differentiable at u.

Corollary 2.1 ([7]). For any scalars αi, one has ∂
(∑k

i=1αiφi

)
(u)⊆

∑k
i=1αi∂φi(u),

and equality holds if all but at most one of the φi is strictly differentiable at u.

Theorem 2.1 ([7]). Let the function φ : Rn → R be locally Lipschitz at a point
u ∈ Rn and attain its (local) minimum at u. Then 0 ∈ ∂φ (u) .

Proposition 2.4 ([7]). Let φ1 and φ2 be locally Lipschitz functions at u. Then
φ1φ2 also a locally Lipschitz function at u, and one has

∂ (φ1φ2) (u) ⊂ φ2 (u) ∂φ1 (u) + φ1 (u) ∂φ2 (u) .

If in addition φ1 (u) ≧ 0, φ2 (u) ≧ 0 and if φ1, φ2 are both regular in the sense of
Clarke at u, then the equality holds and φ1φ2 is regular in the sense of Clarke at u.

Proposition 2.5 ( [7]). Let the functions φi : Rn → R, i ∈ I = {1, ..., k} , be
locally Lipschitz at a point u ∈ Rn. Then the function φ : Rn → R defined by
φ(x) := max

i=1,..,k
φi(x) is also locally Lipschitz at u. In addition,

∂φ (u) ⊂ conv {∂φi (u) : i ∈ I (u)} ,

where I(u) := {i ∈ I : φ(u) = φi(u)}. If φi is regular in the sense of Clarke for
each i ∈ I (u), then equality holds.
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3. Nondifferentiable vector optimization problem
with vanishing constraints and optimality condi-
tions

In the paper, we consider the following constrained vector optimization problem:

f(x) = (f1 (x) , ..., fp (x)) → V -min ,

s.t. gj(x) ≦ 0, j ∈ J = {1, ...m} ,

Ht (x) ≧ 0, t ∈ T = {1, ..., q} ,

Ht (x)Gt (x) ≦ 0, t ∈ T ,

(MPVC)

where fi : Rn → R, i ∈ I = {1, ..., p}, gj : Rn → R, j ∈ J , Ht : Rn → R, Gt : Rn →
R, t ∈ T , are assumed to be locally Lipschitz functions on Rn. We call (MPVC)
a multiobjective programming problem with vanishing constraints. The considered
multiobjective programming problem (MPVC) is called vector optimization problem
with vanishing constraints due to its implicit sign constraints Gt (x), t ∈ T , which
vanish immediately whenever Ht (x) = 0, t ∈ T .

Remark 3.1. If p = 1 and all functions constituting (MPVC) are continuously
differentiable, then (MPVC) reduces to the smooth scalar optimization problem
with vanishing constraints which was introduced for the first time to optimization
theory by Achtziger and Kanzow [1]. If p = 1, the objective function is continuously
differentiable and J = ∅, then (MPVC) reduces to the scalar optimization problem
with vanishing constraints considered by Kazemi and Kanzi [20]. Hence, the results
established in the paper for the considered multiobjective programming problem
(MPVC) extend similar results previously proved in the literature.

For the purpose of simplifying our presentation, we will next introduce some
notations which will be used frequently throughout this paper.

Let

D := {x ∈ Rn : gj(x) ≦ 0, j ∈ J , Ht (x) ≧ 0, t ∈ T , Gt (x)Ht (x) ≦ 0, t ∈ T}

be the set of all feasible solutions in the problem (MPVC). Now, for any feasible
solution x, let us denote the following index sets

J (x) = {j ∈ J : gj (x) = 0} ,
T+ (x) = {t ∈ T : Ht (x) > 0} ,
T0 (x) = {t ∈ T : Ht (x) = 0} .

Further, let us divide the index set T+ (x) into the following index subsets:

T+0 (x) = {t ∈ T : Ht (x) > 0, Gt (x) = 0} ,
T+− (x) = {t ∈ T : Ht (x) > 0, Gt (x) < 0} .

Similarly, the index set T0 (x) can be partitioned into the following three index
subsets:

T0+ (x) = {t ∈ T : Ht (x) = 0, Gt (x) > 0} ,
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T00 (x) = {t ∈ T : Ht (x) = 0, Gt (x) = 0} ,
T0− (x) = {t ∈ T : Ht (x) = 0, Gt (x) < 0} .

In multiobjective programming problems, the concept of (weak) Pareto opti-
mality (or (weak) efficiency) has an important role in all optimal decision problems
with noncomparable criteria.

Definition 3.1. A feasible point x is said to be a weak Pareto solution (a weakly
efficient solution) for (MPVC) if there is no other x ∈ D such that

f(x) < f(x).

Definition 3.2. A feasible point x is said to be a Pareto solution (an efficient
solution) for (MPVC) if there is no other x ∈ D such that

f(x) ≤ f(x).

In this paper, we use the modified Cottle constraint qualification in proving the
Karush-Kuhn-Tucker necessary optimality conditions for the considered multiob-
jective programming problem (MPVC) with vanishing constraints. We can call it
as the V C-Cottle constraint qualification (V C-CCQ).

Definition 3.3. It is said that the V C-Cottle constraint qualification (V C-CCQ)
is satisfied at x for (MPVC) if either gj (x) < 0 for all j = 1, ...,m, Ht(x) > 0 and
Gt(x) < 0 for all t ∈ T or

0 /∈ conv {∂gj(x), j ∈ J (x) ,−∂Ht(x), t ∈ T, ∂ (GtHt) (x) , t ∈ T} if T00 (x) = ∅,

0 /∈ conv {∂gj(x), j ∈ J (x) ,−∂Ht(x), t ∈ T, ∂Gt (x) , t ∈ T} if T00 (x) ̸= ∅.

(3.1)

Theorem 3.1 (Karush-Kuhn-Tucker necessary optimality conditions). Let x ∈ D
be a (weak) Pareto solution of the considered multiobjective programming problem
(MPVC) with vanishing constraints and the V C-Cottle constraint qualification (V C-
CCQ) be fulfilled at x. Then, there exist Lagrange multipliers λ ∈ Rp, µ ∈ Rm,
ϑ
H ∈ Rq and ϑ

G ∈ Rq such that the following conditions

0 ∈
p∑

i=1

λi∂fi(x) +

m∑
j=1

µj∂gj(x)−
q∑

t=1

ϑ
H

t ∂Ht(x) +

q∑
t=1

ϑ
G

t ∂Gt(x), (3.2)

µjgj(x) = 0, j ∈ J , (3.3)
λ ≥ 0, µ ≧ 0, (3.4)

ϑ
H

t Ht (x) = 0, t ∈ T , (3.5)

ϑ
G

t Gt (x) = 0, t ∈ T , (3.6)

ϑ
H

t = 0, t ∈ T+ (x) , ϑH

t ≧ 0, t ∈ T00 (x) ∪ T0− (x) , ϑH

t free, t ∈ T0+ (x) , (3.7)

ϑ
G

t = 0, t ∈ T0+ (x) ∪ T0− (x) ∪ T00 (x) ∪ T+− (x) , ϑG

t ≧ 0, t ∈ T+0 (x) (3.8)

hold.
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Proof. By assumption, x ∈ D is a weak Pareto solution in the considered multi-
objective programming problem (MPVC) with vanishing constraints. At first, we
define the following auxiliary function F : Rn → R as follows

F (x) := max {fi(x)− fi(x), gj(x),−Ht(x),Ht (x)Gt (x) : i ∈ I, j ∈ J , t ∈ T} .
(3.9)

We now show that, for all x ∈ Rn,

F (x) ≧ 0. (3.10)

We proceed by contradiction. Suppose, contrary to the result, that there exists
x̃ ∈ Rn such that F (x̃) < 0. Then, by (3.9), it follows that

gj(x̃) < 0 ∀j ∈ J , −Ht(x̃) < 0, Ht (x̃)Gt (x̃) < 0 ∀t ∈ T.

This means that x̃ is feasible in (MPVC). Moreover, we have that the inequalities

fi(x̃)− fi(x) < 0 ∀i ∈ I

hold. Since x̃ ∈ D, this is a contradiction to the assumption that x ∈ D is a weak
Pareto solution in (MPVC). Hence, the inequality (3.10) must be true.

From the feasibility of x in (MPVC), it follows that

gj(x) ≦ 0 ∀j ∈ J , Ht(x) ≧ 0, Ht (x)Gt (x) ≦ 0 ∀t ∈ T. (3.11)

Thus, (3.11) implies that F (x) = 0. By this equality and (3.10), we conclude that
the function F attains its global minimum at x. By assumptions, all functions con-
stituting the considered multiobjective programming problem (MPVC) with vanish-
ing constraints are locally Lipschitz on Rn. Since fi, i ∈ I, gj , j ∈ J , Ht, Gt, t ∈ T ,
are locally Lipschitz functions on Rn, by Proposition 2.5, likewise the function F is
locally Lipschitz on Rn. Hence, by Theorem 2.1, it follows that

0 ∈ ∂F (x) . (3.12)

Further, by Proposition 2.3, it follows that

∂ (fi(x)− fi(x)) = ∂fi(x) ∀i ∈ I. (3.13)

Now, we designate by J (x) the set of indices j ∈ J for which F (x) = gj(x), by
TH (x) the set of indices t ∈ T for which F (x) = −Ht(x) and by THG (x) the set
of indices t ∈ T for which F (x) = Ht(x)Gt(x). Hence, using Proposition 2.5, by
(3.13), we get that

∂F (x) ⊂conv {∂fi(x), ∂gj(x), ∂ (−Ht(x)) , ∂ (Ht (x)Gt (x)) : (3.14)
i ∈ I, j ∈ J (x) , t ∈ TH (x) , t ∈ THG (x)} .

Firstly, we assume that gj(x) < 0, j = 1, ...,m, Ht(x) > 0 and Gt(x) < 0 for all
t ∈ T . Then, (3.12) and (3.14) yield

0 ∈ conv {∂fi(x), i ∈ I} .

Hence, by the definition of a convex hull, there exists λ ∈ Rp, λ ≥ 0,
∑p

i=1 λi = 1,
such that

0 ∈
p∑

i=1

λi∂fi(x).
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In this case, we obtain the conditions (3.2)-(3.8) setting µj = 0, j ∈ J , ϑ
H

t = 0,
t ∈ T+(x), ϑ

G

t = 0, t ∈ T+− (x).
Now, we assume that there exist j ∈ J , such that gj(x) = 0 or t ∈ T such that

Ht(x) = 0 or Gt(x) = 0. Hence, by the definition of a convex hull, there exist
vectors λ ∈ Rp, λ ≧ 0, µ ∈ RJ(x), µ ≧ 0, β ∈ RTH(x), β ≧ 0 and υ ∈ RTHG(x),
υ ≧ 0, not all equal to zero, such that

0 ∈
p∑

i=1

λi∂fi(x)+
∑

j∈J(x)

µj∂gj(x)+
∑

t∈TH(x)

βt∂ (−Ht) (x)+
∑

t∈THG(x)

υt∂ (GtHt) (x) .

(3.15)
Observe that, in (3.15), we can set µj = 0, j /∈ J (x), βt = 0, t /∈ TH (x), υt = 0,
t /∈ THG (x). Thus, (3.15) yields

0 ∈
p∑

i=1

λi∂fi(x) +

m∑
j=1

µj∂gj(x) +

q∑
t=1

βt∂ (−Ht) (x) +

q∑
t=1

υt∂ (HtGt) (x) . (3.16)

By Lemma 2.1, it follows that

∂ (−Ht) (x) = −∂Ht(x), t ∈ T . (3.17)

Using (3.17) in (3.16), we get

0 ∈
p∑

i=1

λi∂fi(x) +

m∑
j=1

µj∂gj(x)−
q∑

t=1

βt∂Ht(x) +

q∑
t=1

υt∂ (HtGt) (x) . (3.18)

By Proposition 2.4, one has

∂ (GtHt) (x) ⊂ Gt (x) ∂Ht (x) +Ht (x) ∂Gt (x) . (3.19)

Combining (3.18) and (3.19), we get

0∈
p∑

i=1

λi∂fi(x)+

m∑
j=1

µj∂gj(x)−
q∑

t=1

(
βt − υtGt (x)

)
∂Ht(x)+

q∑
t=1

υtHt (x) ∂Gt (x) .

(3.20)
Now, let us set

ϑ
G

t = υtHt(x), t = 1, ..., q, (3.21)

ϑ
H

t = βt − υtGt(x), t = 1, ..., q. (3.22)

Combining (3.18) and (3.19), we obtain

0 ∈
p∑

i=1

λi∂fi(x) +

m∑
j=1

µj∂gj(x)−
q∑

t=1

ϑ
H

t ∂Ht(x) +

q∑
t=1

ϑ
G

t ∂Gt (x) . (3.23)

Now, we determine the value of Lagrange multipliers ϑ
H

t and ϑ
G

t . We consider the
following cases:

1) Let t ∈ T+− (x). Then Ht(x) > 0 and Gt(x) < 0, which implies that t /∈
TH (x) and t /∈ THG (x). The last two relations give, respectively, βt = 0 and υt = 0.
Hence, by (3.21) and (3.22), we obtain ϑ

H

t = 0 and ϑ
G

t = 0 for all t ∈ T+− (x).
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2) Let t ∈ T+0 (x). Then Ht(x) > 0 and Gt(x) = 0. The first condition implies
that t /∈ THG (x), and consequently, βt = 0. Since we have always υt ≧ 0, conditions
(3.21) and (3.22) give ϑ

H

t = 0 and ϑ
G

t ≧ 0 for all t ∈ T+0 (x).
3) Let t ∈ T00 (x). Then Ht(x) = 0 and Gt(x) = 0. Since we always have βt ≧ 0,

conditions (3.21) and (3.22) give ϑ
H

t ≧ 0 and ϑ
G

t = 0 for all t ∈ T00 (x).
4) Let t ∈ T0+ (x). Then Ht(x) = 0 and Gt(x) > 0. These conditions imply that

t ∈ TH (x) and t ∈ THG (x). Since we have always βt ≧ 0 and υt ≧ 0, conditions
(3.21) and (3.22) give that ϑ

H

t is free and ϑ
G

t = 0 for all t ∈ T0+ (x).
5) Let t ∈ T0− (x). Then Ht(x) = 0 and Gt(x) < 0. These conditions imply that

t ∈ TH (x) and t ∈ THG (x). Since we have always βt ≧ 0 and υt ≧ 0, conditions
(3.21) and (3.22) give ϑ

H

t ≧ 0 and ϑ
G

t = 0 for all t ∈ T0− (x).
Further, note that, by the V C-Cottle constraint qualification (V C-CCQ) (see

(3.1)), Lagrange multiplier λ associated to the objective function is not equal to 0.
Based on the above cases, we conclude that the necessary optimality conditions

(3.2)-(3.8) hold. We see that (3.23) is exactly the necessary optimality conditions
(3.2). Further, note that also the Karush-Kuhn-Tucker necessary optimality condi-
tion (3.4) is also fulfilled. Indeed, if gj(x) < 0 for all j /∈ J (x), then µj = 0 for all
j /∈ J (x). Hence, we get that µj ≧ 0, j = 1, ...,m. Moreover, Lagrange multiplier
λ is not equal to 0 as it was shown above. This means that λ ≥ 0 and completes
the proof of this theorem.

Various stationarity concepts are widely studied in the literature devoted to dif-
ferentiable optimization problems with vanishing constraints and known to be im-
portant optimality conditions for such mathematical programming problems (see,
for example, [1, 13]). Now, we generalize the definition one of them to the nondif-
ferentiable vectorial case. Namely, we extend the definition of a S-stationary point
given by [15] to the considered nonsmooth multiobjective programming problem
with vanishing constraints.

Definition 3.4. A feasible solution x is called a S-stationary point for the nons-
mooth vector optimization problem (MPVC) with vanishing constraints if there are
Lagrange multipliers λ ∈ Rp, µ ∈ Rm, ϑH ∈ Rq and ϑ

G ∈ Rq, not equal to 0, such
that

0 ∈
p∑

i=1

λi∂fi(x) +

m∑
j=1

µj∂gj(x)−
q∑

t=1

ϑ
H

t ∂Ht(x) +

q∑
t=1

ϑ
G

t ∂Gt(x), (3.24)

λ ≥ 0, µj ≧ 0, j ∈ J (x) , µj = 0, j /∈ J (x) , (3.25)

ϑ
H

t = 0, t ∈ T+ (x) , ϑH

t ≧ 0, t ∈ T00 (x) ∪ T0− (x) , ϑH

t free, t ∈ T0+ (x) , (3.26)

ϑ
G

t = 0, t ∈ T0+ (x) ∪ T0− (x) ∪ T00 (x) ∪ T+− (x) , ϑG

t ≧ 0, t ∈ T+0 (x) . (3.27)

Here, it is worth mentioning that the concept of a S-stationary point is equivalent
to the standard KKT condition.

Definition 3.5.
(
x, λ, µ, ϑ

H
, ϑ

G
)
∈ Rn×Rp×Rm×Rq×Rq is said to be a Karush-

Kuhn-Tucker point (a KKT point in short) if the Karush-Kuhn-Tucker necessary
optimality conditions (3.2)-(3.8) are fulfilled at x with Lagrange multipliers λ, µ,
ϑ
H and ϑ

G.
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Proposition 3.1. Let
(
x, λ, µ, ϑ

H
, ϑ

G
)

∈ Rn × Rp × Rm × Rq × Rq be a KKT
point of (MPVC). Then x is a S-stationary point of (MPVC). Conversely, let x be
a S-stationary point of (MPVC). There are Lagrange multipliers λ ∈ Rp, µ ∈ Rm,
ϑ
H ∈ Rq and ϑ

G ∈ Rq such that
(
x, λ, µ, ϑ

H
, ϑ

G
)
∈ Rn × Rp × Rm × Rq × Rq is a

KKT point of (MPVC).

Based on the foregoing results and the definition of a S-stationary point, we
now formulate the Karush-Kuhn-Tucker necessary optimality conditions of a S-
stationary type.

Theorem 3.2 (Karush-Kuhn-Tucker necessary optimality conditions of S-stationary
type). Let x ∈ D be a (weak) Pareto solution of the considered multiobjective pro-
gramming problem (MPVC) with vanishing constraints and the V C-Cottle constraint
qualification be fulfilled at x. Then, there exist Lagrange multipliers λ ∈ Rp, µ ∈ Rm,
ϑ
H ∈ Rq and ϑ

G ∈ Rq such that x is a S-stationary point in (MPVC).

In the next theorem, we present the Karush-Kuhn-Tucker type sufficient opti-
mality conditions for (MPVC) under convexity assumptions. In order to prove this
result for a S-stationary point of (MPVC), we introduce extra denotations. Namely,
if x ∈ D is a S-stationary point of (MPVC) and hence, by Definition 3.4, there exist
Lagrange multipliers λ ∈ Rp, µ ∈ Rm, ϑH ∈ Rq and ϑ

G ∈ Rq such that (3.2)-(3.8)
are fulfilled at x, then we introduce the following denotations:

TH+
0+ (x) :=

{
t ∈ T0+ (x) : ϑ

H

t > 0
}

,

TH−
0+ (x) :=

{
t ∈ T0+ (x) : ϑ

H

t < 0
}

,

TG+
+0 (x) :=

{
t ∈ T+0 (x) : ϑ

G

t > 0
}
.

Theorem 3.3. Let x ∈ D be a S-stationary point of (MPVC). Further, assume that
the conditions (3.24)-(3.27) be fulfilled with Lagrange multipliers λ ∈ Rp, µ ∈ Rm,
ϑ
H ∈ Rq and ϑ

G ∈ Rq such that the following conditions be satisfied:

a) DG+ (x) :=
⋃

t∈T+0(x)

{x ∈ D\ {x} : Gt (x) > 0} = ∅ or TG+
+0 (x) = ∅,

b) TH−
0+ (x) = ∅.

Further, assume that fi, i ∈ I, are (strictly) convex on D, gj, j ∈ J (x), −Ht,
t ∈ T00 (x) ∪ T0− (x) ∪ TH+

0+ (x), Gt, t ∈ T+0 (x), are convex and D is a convex set.
Then, x is a weak Pareto solution (a Pareto solution) in (MPVC).

Proof. By assumption, x ∈ D is a S-stationary point for (MPVC). Then, by
Definition 3.4, there exist Lagrange multipliers λ ∈ Rp, µ ∈ Rm, ϑ

H ∈ Rq and
ϑ
G ∈ Rq such that the relation

0 =

p∑
i=1

λiξi +

m∑
j=1

µjζj −
q∑

t=1

ϑ
H

t ςt +

q∑
t=1

ϑ
G

t γt (3.28)

holds for some ξi ∈ ∂fi(x), i ∈ I, ζj ∈ ∂gj(x), j ∈ J , ςt ∈ ∂Ht(x), γt ∈ ∂Gt(x),
t ∈ T . We proceed by contradiction. Suppose, contrary to the result, that x is not a
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weak Pareto solution of (MPVC). Then, by Definition 3.1, there exists x̃ ∈ D such
that

fi (x̃) < fi(x), i ∈ I. (3.29)
By the definition of a S-stationary point for (MPVC) (see Definition 3.4), (3.29)
yields

p∑
i=1

λifi (x̃) <

p∑
i=1

λifi (x) . (3.30)

Moreover, by assumptions a) and b), we conclude from Definition 3.4 and x̃ ∈ D
that

m∑
j=1

µjgj (x̃) ≦
m∑
j=1

µjgj (x) , (3.31)

Ht(x̃) ≧ 0, Ht(x) > 0, ϑ
H

t = 0, t ∈ T+ (x) ,

Ht(x̃) ≧ 0, Ht(x) = 0, ϑ
H

t ≧ 0, t ∈ T00 (x) ∪ T0− (x) ∪ TH+
0+ (x) ,

Ht(x̃) ≧ 0, Ht(x) = 0, ϑ
H

t < 0, t ∈ TH−
0+ (x) = ∅ by assumption


=⇒ −

q∑
t=1

ϑ
H

t Ht (x̃) ≦ −
q∑

t=1

ϑ
H

t Ht (x) , (3.32)

Gt(x̃) ∈ R, ϑ
G

t = 0, t ∈ T0+ (x) ∪ T0− (x) ∪ T00 (x) ∪ T+− (x) ,

(Gt(x̃) ≦ 0, ϑG

t ≧ 0, t ∈ T+0 (x) by assumption or

Gt(x̃) > 0, ϑG

t = 0, t ∈ T+0 (x) by assumption)


=⇒

q∑
t=1

ϑ
G

t Gt(x̃) ≦
q∑

t=1

ϑ
G

t Gt(x) = 0. (3.33)

Hence, using again Definition 3.4 together with (3.33), we get
q∑

t=1

ϑ
G

t Gt(x̃) ≦
q∑

t=1

ϑ
G

t Gt(x). (3.34)

By convexity hypotheses, the inequalities

fi (x̃)− fi(x) ≧ ⟨ξi, x̃− x⟩ ∀ξi ∈ ∂fi(x), i ∈ I,
gj (x̃)− gj (x) ≧ ⟨ζj , x̃− x⟩ ∀ζj ∈ ∂gj(x), j ∈ J (x) ,
−Ht (x̃)+Ht (x)≧⟨−ςt, x̃−x⟩ ∀(−ςt)∈∂ (−Ht(x)) , t∈T00 (x)∪T0− (x)∪TH+

0+ (x) ,
Gt (x̃)−Gt (x) ≧ ⟨γt, x̃− x⟩ ∀γt ∈ ∂Gt(x), t ∈ T+0 (x)

hold. Hence, by Definition 3.4, the above inequalities yield, respectively,
p∑

i=1

λifi (x̃)−
p∑

i=1

λifi(x) ≧
〈

p∑
i=1

λiξi, x̃− x

〉
∀ξi ∈ ∂fi(x), (3.35)

∑
j∈J(x)

µjgj (x̃)−
∑

j∈J(x)

µjgj (x) ≧
〈 ∑

j∈J(x)

µjζj , x̃− x

〉
∀ζj ∈ ∂gj(x), (3.36)
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−
∑

t∈T00(x)∪T0−(x)∪TH+
0+ (x)

ϑ
H

t Ht (x̃) +
∑

t∈T00(x)∪T0−(x)∪TH+
0+ (x)

ϑ
H

t Ht (x) (3.37)

≧
〈
−

∑
t∈T00(x)∪T0−(x)∪TH+

0+ (x)

ϑ
H

t ςt, x̃− x

〉
∀ (−ςt) ∈ ∂ (−Ht(x)) ,

∑
t∈T+0(x)

ϑ
G

t Gt (x̃)−
∑

t∈T+0(x)

ϑ
G

t Gt (x) ≧
〈 ∑

t∈T+0(x)

ϑ
G

t γt, x̃− x

〉
∀γt ∈ ∂Gt(x).

(3.38)

Combining (3.30) and (3.35), (3.31) and (3.36), (3.32) and (3.37), (3.33) and (3.38),
we get, respectively,〈

p∑
i=1

λiξi, x̃− x

〉
< 0 ∀ξi ∈ ∂fi(x), (3.39)〈 ∑

j∈J(x)

µjζj , x̃− x

〉
≦ 0 ∀ζj ∈ ∂gj(x), (3.40)

〈
−

∑
t∈T00(x)∪T0−(x)∪TH+

0+ (x)

ϑ
H

t ςt, x̃− x

〉
≦ 0 ∀ (−ςt) ∈ ∂ (−Ht(x)) , (3.41)

〈 ∑
t∈T+0(x)

ϑ
G

t γt, x̃− x

〉
≦ 0 ∀γt ∈ ∂Gt(x). (3.42)

By Lemma 2.1, we have that ∂ (−Ht(x)) = −∂Ht(x), t ∈ T . Hence, (−ςt) ∈
∂ (−Ht(x)), t ∈ T , implies ςt ∈ ∂Ht(x), t ∈ T . Then, (3.41) is satisfied for any
ςt ∈ ∂Ht(x), t ∈ T . Taking also Lagrange multipliers equal to 0 and then summing
(3.39)-(3.42), we get that the inequality〈

p∑
i=1

λiξi +

m∑
j=1

µjζj −
q∑

t=1

ϑ
H

t ςt +

q∑
t=1

ϑ
G

t γt, x̃− x

〉
< 0 (3.43)

holds for any ξi ∈ ∂fi(x), i ∈ I, ζj ∈ ∂gj(x), j ∈ J , ςt ∈ ∂Ht(x), t ∈ T , γt ∈ ∂Gt(x),
t ∈ T . This is a contradiction to (3.28). In order to prove that x is a Pareto solution
in (MPVC), the convexity assumption imposed on the objective functions should
be replaced by the assumption of strictly convexity. However, the proof is similar
in such a case and, therefore, it is omitted. Thus, the proof of this theorem is
completed.

In order to illustrate the result established in Theorem 3.3, we present the ex-
ample of a convex multiobjective programming problem (MPVC) with vanishing
constraints.

Example 3.1. Consider the following multiobjective programming problem (MPVC)
with vanishing constraints defined by

f (x1, x2) =
(
x2
1 − x1 , |x1|+ |x2|

)
→ V -min

s.t. g1 (x1, x2) = |x1|+ x2 ≦ 0, (MPVC1)
H1 (x1, x2) = x1 ≧ 0,
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H1 (x1, x2)G1 (x1, x2) = x1 (|x1|+ |x2| − 1) ≦ 0.

Note that D =
{
(x1, x2) ∈ R2 : |x1|+ x2 ≦ 0, x1 ≧ 0, x1 (|x1|+ |x2| − 1) ≦ 0

}
and

x = (0, 0) is a feasible solution of (MPVC1). We shall show by using the sufficient
optimality conditions established in Theorem 3.3 that x = (0, 0) is a weak Pareto
solution of (MPVC1). First, we shall show that is a S-stationary point of (MPVC1).
In fact, we have that the condition (3.24) implies

− λ1 + λ2ξ1 + µ1ζ1 + ϑ
H

1 + ϑ
G

1 γ1 = 0,

λ2ξ2 + µ1 + ϑ
G

1 γ2 = 0,

where ξ1 ∈ [−1, 1], ξ2 ∈ [−1, 1], ζ1 ∈ [−1, 1], γ1 ∈ [−1, 1], γ2 ∈ [−1, 1]. Moreover,
note that T0−(x) = {1} and T+0 (x) = ∅. If we set λ1 = 1

2 , λ2 = 1
2 , µ1 = 1

2 , ϑH

1 = 1
2 ,

ϑ
G

1 = 0, then, in fact, the conditions (3.24)-(3.27) are fulfilled. This means by
Definition 3.4 that x = (0, 0) is a S-stationary point of (MPVC1). Further, note that
the conditions a) and b) in Theorem 3.3 are fulfilled and all functions constituting
(MPVC1) are convex. Then, by Theorem 3.3, we conclude that x = (0, 0) is a weak
Pareto solution of (MPVC1).

In [20], Kazemi and Kanzi presented an example of a nondifferentiable scalar
optimization problem with vanishing constraints to justify the fact that it is not
possible to replace the smoothness condition of the objective function f by its Lip-
schitzian condition in the necessary optimality conditions established in the above-
mentioned paper. Unfortunately, the analysis provided by these authors in the
aforesaid example is incorrect. We shall improve this mistake and show that it
is possible to consider nondifferentiable optimization problem with vanishing con-
straints, also with locally Lipschitz objective functions.

Unfortunately, based on the wrong example, they gave also an incorrect state-
ment that it is impossible to generalize their optimality results for optimization
problems with vanishing constraints in which also objective functions are nondif-
ferentiable. Namely, they stated that it is not possible to replace the smoothness
condition imposed on the objective function of the considered optimization problem
with vanishing constraints by its Lipschitzian condition in order to prove the neces-
sary optimality conditions. They illustrated this incorrect statement by an example
of a scalar optimization problem with vanishing constraints in which the set of all
feasible solutions has been calculated incorrectly.

Example 3.2. We consider the nondifferentiable optimization problem with van-
ishing constraints presented in Example 4.1 [20] which it is defined as follows

− x2 + |x1 − x2| → min

s.t. H1 (x1, x2) = x2 ≧ 0, (MPVC2)
H2 (x1, x2) = x1 ≧ 0,
H1 (x1, x2)G1 (x1, x2) = x2 (−x1) ≦ 0,
H2 (x1, x2)G2 (x1, x2) = x1 (−x2) ≦ 0,

where H1 (x1, x2) = x2, H2 (x1, x2) = x1, G1 (x1, x2) = −x1, G2 (x1, x2) = −x2.
In Example 4.1 [20], the set of all feasible solutions in (MPVC2) has been defined
by S = ({0} × R+) ∪ (R+ × {0}), which is completely incorrect if the constraint
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functions H1, H2, G1 and G2 are defined as in the formulation of the optimization
problem (MPVC2). The correct set of all feasible solutions in (MPVC2) is defined
by D =

{
(x1, x2) ∈ R2 : x1 ≧ 0 ∧ x2 ≧ 0

}
. However, if we define correctly the set

D of all feasible solutions in (VP), then we observe that x = (0, 0) is not its optimal
solution, contrary to the result given in Example 4.1 [20]. Since x = (0, 0) is not a
minimizer in (MPVC2), therefore, it is not possible to use the necessary optimal-
ity conditions at such a point. However, the necessary optimality conditions have
been used by the Authors in Example 4.1 [20] at such a nonoptimal point. Hence,
it is not possible to conclude any results from such an incorrect example. Thus,
it is not true the statement given in [20] that it is not possible to give the neces-
sary optimality conditions for optimization problems with vanishing constraints in
which the smoothness condition of the objective function f is replaced by its locally
Lipschitzan condition.

Remark 3.2. Now, we improve the formulation of the optimization problem with
vanishing constraints considered in Example 4.1 [20] in order to obtain its set of all
feasible solutions defined by S = ({0} × R+) ∪ (R+ × {0}), that is, as it was given
in Example 4.1 [20]. Therefore, we have to modify the constraint functions G1 and
G2 as follows: G1 (x1, x2) = x1, G2 (x1, x2) = x2. Then, we consider the following
optimization problem with vanishing constraints:

− x2 + |x1 − x2| → min

s.t. H1 (x1, x2) = x2 ≧ 0,
H2 (x1, x2) = x1 ≧ 0, (MPVC3)
H1 (x1, x2)G1 (x1, x2) = x2x1 ≦ 0,
H2 (x1, x2)G2 (x1, x2) = x1x2 ≦ 0.

Note that x = (0, 0) is an optimal solution in (MPVC3) and, moreover, T00 (x) =
{1, 2}. However, we cannot use the Karush-Kuhn-Tucker necessary optimality con-
ditions for (MPVC3) since the suitable constraint qualification is not fulfilled at x.
For example, note that the V C-Cottle constraint qualification is not fulfilled at x
for (MPVC3) since there exist Lagrange multipliers β1 = 0, β2 = 0, υ1 = 1 and
υ2 = 1, not all equal to 0, for which (3.1) is not satisfied. This means that the V C-
Cottle constraint qualification is violated and, therefore, the Karush-Kuhn-Tucker
necessary optimality conditions cannot be applied for such an extremum problem.
In such a case, the Fritz John optimality conditions should be used, that is, the
necessary optimality conditions in which a Lagrange multiplier associated to the
objective function may be equal to 0 (see [21] in the differentiable scalar case).

4. Conclusion
In the paper, a class of nondifferentiable vector optimization problems with van-
ishing constraints has been considered in which each component of the involved
functions is locally Lipschitz. The Karush-Kuhn-Tucker necessary optimality con-
ditions established in the paper show that it is possible to prove such optimality
results also for such extremum problems with vanishing constraints in which the
smoothness condition assumed for the objective function of the considered opti-
mization problem is replaced by its Lipschitzian condition. What is more, we have
proved these optimality results for a much broader class of such extremum problems
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in comparison to scalar optimization problems with vanishing constraints considered
in [20]. Namely, we have derived the aforesaid necessary optimality conditions and,
under convexity hypotheses, sufficient optimality conditions for nondifferentiable
multiobjective programming problems with vanishing constraints in which not only
constraints are nonsmooth as in [20], but also each component of the multiple objec-
tive function is locally Lipschitz. Moreover, we have generalized to the nonsmooth
case the definition of a S-stationary point introduced in the literature for smooth
scalar optimization problems with vanishing constraints and the classical Cottle
constraint qualification to the case of nondifferentiable extremum problems with
vanishing constraints. Based on such generalizations, we have proved the Karush-
Kuhn-Tucker necessary optimality conditions and their equivalence to the aforesaid
stationary point. At the end, we have improved the incorrect result and statement
given in [20].

It seems that the techniques employed in this paper can be used in proving
similar results for other classes of nondifferentiable multiobjective programming
problems with vanishing constraints. We shall investigate these problems in the
subsequent papers.
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