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Abstract This study introduces the distributed-order fractional version of
the nonlinear two-dimensional Sobolev equation. The orthonormal Chebyshev
cardinal polynomials are used to construct a numerical method for this equa-
tion. To this end, some derivative matrices related to these polynomials are
obtained. The proposed approach turns to solve this equation into solving a
nonlinear system of algebraic equations by approximating the unknown solu-
tion using the expressed polynomials and employing their derivative matrices.
The applicability and validity of this method are examined by solving three
examples.
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1. Introduction
More features and capabilities of fractional derivatives compared to ordinary deriva-
tives have drawn more attention to this issue. The degree of higher freedom of order
of these derivatives (which is arbitrary) along with their memory property can be
mentioned as two important factors in the high use of these derivatives in model-
ing different problems [24]. In recent years, many problems have been formulated
with the help of this type of derivatives. For instance, see [3, 26]. An impor-
tant type of fractional derivatives that has received a lot of attention recently are
distributed-order fractional derivatives. This type of derivative is obtained by inte-
grating ordinary fractional derivatives with respect to their order [16,29]. In recent
years, many applications of this type of derivative have been reported in different
references. For instance, some of these applications can be seen in [1,19,22,23,30].
Simultaneously with the increase in the applications of this type of derivative, many
numerical methods have been presented to solve various problems modeled by these
derivatives. For instance, see [2, 5, 17,21,25,27,28].
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Linear and nonlinear Sobolev equations model many applicable problems, such
as the problem of humidity movement in the soil, heat flow through different ma-
terials, fluid flow through fractured rocks, propagation of long waves, etc. [7]. In
recent years, different techniques have been proposed to solve the classical fractional
forms of these equations. For instance, finite difference method [6], Crank-Nicolson
finite volume element method [31], Crank-Nicolson finite element method [18], a
hybrid technique based on the Müntz-Legender wavelets and Müntz-Legender func-
tions [8], local discontinuous Galerkin method [32], and discrete Legendre polyno-
mials method [9].

Because there is no study on the distributed-order fractional form of the non-
linear Sobolev equation (as far as we know), in this paper, we introduce such a
fractional form of this equation and present a suitable numerical method for its
solution. So, we focus on the below equation:

∫ 1

0

µ(α)C0D
α
t Ψ(x, t)dα− σ1∆Ψt(x, t)− σ2∆Ψ(x, t) + σ3∇ (Ψ(x, t)∇Ψ(x, t))

+ σ4Ψ
2(x, t) = g(x, t), (1.1)

where (x, t) ∈ Ω × [0, 1] with x = (x, y) and Ω = [0, 1] × [0, 1]; Ψ is the unknown
solution (which is assumed to be continuous), ∆ is the Laplacian operator, ∇ is
the gradient operator, σ (i = 1, 2, 3, 4) are given constants, C

0D
α
t Ψ is the fractional

differentiation of order α with respect to temporal variable of Ψ in the Caputo
form [24]. Here, µ : [0, 1] −→ R+ ∪ {0} is the distribution function with the
properties 0 <

∫ 1

0
µ(α)dα < ∞ [20]. Note that the above problem is assumed to

have a unique continuous solution.
In recent years, basic cardinal polynomials have been used to solve many frac-

tional problems. For instance, some of the numerical methods generated using such
polynomials for fractional problems can be found in [10–13]. The two main reasons
for the extensive use of these polynomials, can be found in the simplicity of cal-
culating their fractional derivatives and the high accuracy of their approximations.
The Chebyshev Cardinal polynomials (CCPs) [14] as a special family of these poly-
nomials have attracted more attention in recent years. The reason for this can be
seen in having an explicit formula for calculating the roots of Chebyshev polynomi-
als. Because these roots are the interpolation points that are used to construct the
CCPs.

In this study, we use the CCPs to solve the above problem. For this purpose, we
first define two-dimensional (2D) CCPs and get their partial derivatives matrices.
We also obtain a matrix for calculating the distributed-order fractional derivative
of the CCPs. By expanding the solution of the problem by these polynomials and
using the obtained matrices, the proposed method creates a system of algebraic
equations in which the unknowns are the coefficients of the expressed expansion.
By solving this system and calculating the expressed coefficients, a solution to the
main problem is obtained.

This work is organized as follows: Some preparations regarding fractional deriva-
tives are provided in Section 2. The CCPs are given in Section 3. Required matrix
relationships for these polynomials are obtained in Section 4. The numerical method
is explained in Section 5. In Section 6, numerical simulations are given. The con-
clusion of the outcomes is investigated in Section 7.
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2. Preliminaries
Here, we have reviewed a few preparations that will be used in this study.

Definition 2.1 ( [24]). Suppose that f is a differentiable function in its domain
and 0 < α ≤ 1 is a given constant. The Caputo fractional differentiation of order α
of this function is defined as

C
0D

α
t f(t) =


1

Γ(1− α)

∫ t

0

(t− s)−αf ′(s)ds, 0 < α < 1,

f ′(t), α = 1.

(2.1)

Note that for α = 0, we have C
0D

0
t f(t) = f(t).

Corollary 2.1 ( [24]). For k ∈ N ∪ {0}, we achieve

C
0D

α
t t

k =


0, k = 0,

k!

Γ(k − α+ 1)
tk−α, k ≥ 1.

(2.2)

Definition 2.2 ( [4, 15]). An (M + 1)-point Legendre Gauss-Lobatto quadrature
integration can be defined over [0, 1] as follows:∫ 1

0

h(t)dt ≃ 1

2

M∑
i=0

w̄ih

(
1

2
(t̄i + 1)

)
, (2.3)

where t̄0 = −1, t̄M = 1 and t̄i (i = 1, 2, . . . ,M − 1) are the zeros of L′
M (where LM

is the Mth Legendre polynomial), and

w̄i =
2

M(M + 1)

1

(LM (t̄i))
2 . (2.4)

In this work, we consider M = 25 in all computations.

3. Cardinal polynomials
A set containing (m+ 1) CCPs of degree m can be generated on [0, 1] according to
the following formula [14]:

φ̄m,i(x) =
1

λ
(m)
i

m∑
k=0

b
(m)
ik xm−k, i = 0, 1, . . . ,m, (3.1)

where

λ
(m)
i =

m∏
l=0
l ̸=i

(xi − xl), b
(m)
ik =


1 k = 0,

−1

k

k∑
l=0

a
(m)
il b

(m)
ik−l, k ̸= 0,

a
(m)
il =

m∑
r=0
r ̸=i

xlr, (3.2)
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and xi = 1
2

(
1− cos

(
(2i+1)π
2(m+1)

))
for i = 0, 1, . . . ,m. We can approximate a continu-

ous function h̄ defined on [0, 1] by these polynomials as

h̄(x) ≃
m∑
i=0

h̄ (xi) φ̄m,i(x) ≜ H̄⊺
mΦm(x), (3.3)

where
H̄m =

[
h̄ (x0) h̄ (x1) . . . h̄ (xm)

]⊺
,

and
Φ̄m(x) = [φ̄m,0(x) φ̄m,1(x) . . . φ̄m,m(x)]

⊺
. (3.4)

Also, for m,n ∈ Z+, we can generate the two variables CCPs as

φmn,ij(x) = φ̄m,i(x)φ̄n,j(y), i = 0, 1, . . . ,m, j = 0, 1, . . . , n. (3.5)

In addition, for any continuous function with two variables h, we can consider the
below approximation:

h(x) ≃
m∑
i=0

n∑
j=0

hijφmn,ij(x) ≜ H⊺
mnΦmn(x), (3.6)

where

Hmn = [h00 h01 . . . h0n h10 h11 . . . h1n . . . hm0 hm1 . . . hmn]
⊺
,

with hij = h (xi, yj), and

Φmn(x) = [φmn,00(x) φmn,01(x) . . . φmn,0n(x) φmn,10(x) φmn,11(x) . . .

φmn,1n(x) . . . φmn,m0(x) φmn,m1(x) . . . φmn,mn(x)]
⊺
. (3.7)

Note that we can also rewrite (3.6) in the below form (for convenience):

h(x) ≃
(m+1)(n+1)−1∑

l=0

h̃lφ̃mn,l(x) ≜ H⊺
mnΦmn(x), (3.8)

where h̃l = hij and φ̃mn,l(x) = φmn,ij(x) with l = (n+ 1) i + j for i = 0, 1, . . . ,m
and j = 0, 1, . . . , n. Similarly, the CCPs can be used for approximating any three
variables continuous function ĥ on [0, 1]3 as

ĥ(x, t) ≃
(m+1)(n+1)−1∑

l=0

q∑
r=0

ĥlrφ̃mn,l(x)φ̄q,r(t) ≜ Φ⊺
mn(x)ĤmnqΦ̄q(t), (3.9)

where

Ĥmnq =



ĥ00 ĥ01 . . . ĥ0q

ĥ10 ĥ11 . . . ĥ1q

...
... . . .

...

ĥ(mn+m+n)0 ĥ(mn+m+n)1 . . . ĥ(mn+m+n)q


,

with ĥlr = ĥ (xl, tr), and

Φ̄q(t) = [φ̄q,0(t) φ̄q,1(t) . . . φ̄q,q(t)]
⊺
. (3.10)
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4. Matrix relationships
Here, we derive some relations related to the CCPs derivatives that will be needed
later.

Theorem 4.1. For the first- and second-order derivatives of Φ̄m(x) in (3.4), we
have

dΦ̄m(x)

dx
= D(1)

m Φ̄m(x),

d2Φ̄m(x)

dx2
= D(2)

m Φ̄m(x),

(4.1)

where

D
(1)
m =



d
(1)
00 d

(1)
01 . . . d

(1)
0m

d
(1)
10 d

(1)
11 . . . d

(1)
1m

...
... . . .

...

d
(1)
m0 d

(1)
m1 . . . d

(1)
mm


, D

(2)
m =



d
(2)
00 d

(2)
01 . . . d

(2)
0m

d
(2)
10 d

(2)
11 . . . d

(2)
1m

...
... . . .

...

d
(2)
m0 d

(2)
m1 . . . d

(2)
mm


,

with

d
(1)
ij =

1

λ
(m)
i

m−1∑
k=0

b
(m)
ik (m− k)xm−k−1

j ,

and

d
(2)
ij =

1

λ
(m)
i

m−2∑
k=0

b
(m)
ik (m− k)(m− k − 1)xm−k−2

j .

Proof. By computing the first- and second-order derivatives of the components
of Φ̄m(x), considering (3.1), and expanding the obtained outcomes in terms of the
CCPs, the expressed assertions are easily proved.

Theorem 4.2. The first- and second-order derivatives of Φmn(x) in (3.7) satisfy
the below equalities:

∂Φmn(x)

∂x
= P(1)

mnΦmn(x),

∂Φmn(x)

∂y
= Q(1)

mnΦmn(x),

(4.2)

and
∂2Φmn(x)

∂x2
= P(2)

mnΦmn(x),

∂2Φmn(x)

∂y2
= Q(2)

mnΦmn(x),

(4.3)
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where

P(1)
mn = D(1)

m ⊗ In =



d
(1)
00 In d

(1)
01 In . . . d

(1)
0mIn

d
(1)
10 In d

(1)
11 In . . . d

(1)
1mIn

...
... . . .

...

d
(1)
m0In d

(1)
m1In . . . d

(1)
mmIn


,

Q(1)
mn =



D
(1)
n On On . . . On On

On D
(1)
n On . . . On On

...
...

... . . .
...

...

On On On . . . D
(1)
n On

On On On . . . On D
(1)
n


,

and

P(2)
mn = D(2)

m ⊗ In =



d
(2)
00 In d

(2)
01 In . . . d

(2)
0mIn

d
(2)
10 In d

(2)
11 In . . . d

(2)
1mIn

...
... . . .

...

d
(2)
m0In d

(2)
m1In . . . d

(2)
mmIn


,

Q(2)
mn =



D
(2)
n On On . . . On On

On D
(2)
n On . . . On On

...
...

... . . .
...

...

On On On . . . D
(2)
n On

On On On . . . On D
(2)
n


,

in which P
(l)
mn and Q

(l)
mn for l = 1, 2 are (m+ 1) (n+ 1)-order square matrices,

D
(l)
m and D

(l)
n for l = 1, 2 are the matrices derived in Theorem 4.1, ⊗ denotes the

Kronecker product, On is an (n+ 1)-order zero matrix and In is an (n+ 1)-order
identity matrix.

Proof. The proof is straightforward by considering the previous Theorem. So, we
leave it to the reader.

Theorem 4.3. The fractional derivative of order 0 ≤ α ≤ 1 of the vector Φ̄q(t) in
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(3.10) can be represented as

C
0D

α
t Φ̄q(t) ≃ Θ(α)

q Φ̄q(t), (4.4)

where

Θ(α)
q =



θ
(α)
00 θ

(α)
01 . . . θ

(α)
0q

θ
(α)
10 θ

(α)
11 . . . θ

(α)
1q

...
... . . .

...

θ
(α)
q0 θ

(α)
q1 . . . θ(α)qq


,

and

θ
(α)
ij =


1

λ
(q)
i

q∑
k=0

b
(q)
ik t

q−k
j , α = 0,

1

λ
(q)
i

q−1∑
k=0

b
(q)
ik (q − k)!

Γ(q − k − α+ 1)
tq−k−α
j , 0 < α ≤ 1.

Proof. We have

C
0D

α
t Φ̄q(t) =



C
0D

α
t φ̄q,0(t)

C
0D

α
t φ̄q,1(t)

...

C
0D

α
t φ̄q,q(t)


=



1

λ
(q)
0

q∑
k=0

b
(q)
0k

C
0D

α
t t

q−k

1

λ
(q)
1

q∑
k=0

b
(q)
1k

C
0D

α
t t

q−k

...

1

λ
(q)
q

q∑
k=0

b
(q)
qk

C
0D

α
t t

q−k


. (4.5)

Hence, for α = 0, we get

C
0D

α
t Φ̄q(t) =



1

λ
(q)
0

q∑
k=0

b
(q)
0k t

q−k

1

λ
(q)
1

q∑
k=0

b
(q)
1k t

q−k

...

1

λ
(q)
q

q∑
k=0

b
(q)
qk t

q−k


, (4.6)



Fractional nonlinear Sobolev equation 2637

and for 0 < α ≤ 1, from the property given in (2.1), we obtain

C
0D

α
t Φ̄q(t) =



1

λ
(q)
0

q−1∑
k=0

b
(q)
0k (q − k)!

Γ(q − k − α+ 1)
tq−k−α

1

λ
(q)
1

q−1∑
k=0

b
(q)
1k (q − k)!

Γ(q − k − α+ 1)
tq−k−α

...

1

λ
(q)
q

q−1∑
k=0

b
(q)
qk (q − k)!

Γ(q − k − α+ 1)
tq−k−α


. (4.7)

So, by approximating the results extracted for C
0D

α
t Φ̄q(t) in (4.6) and (4.7) via the

CCPs, we get

C
0D

α
t Φ̄q(t) ≃



θ
(α)
00 θ

(α)
01 . . . θ

(α)
0q

θ
(α)
10 θ

(α)
11 . . . θ

(α)
1q

...
... . . .

...

θ
(α)
q0 θ

(α)
q1 . . . θ(α)qq


Φ̄q(t) ≜ Θ(α)

q Φ̄q(t), (4.8)

where

θ
(α)
ij =


1

λ
(q)
i

q∑
k=0

b
(q)
ik t

q−k
j , α = 0,

1

λ
(q)
i

q−1∑
k=0

b
(q)
ik (q − k)!

Γ(q − k − α+ 1)
tq−k−α
j , 0 < α ≤ 1,

which completes the proof.

Theorem 4.4. The distributed-order fractional derivative of Φ̄q(t) in (3.10) can be
approximated as ∫ 1

0

µ(α)C0D
α
t Φ̄q(t)dα ≃ SqΦ̄q(t), (4.9)

where

Sq =



s00 z01 . . . s0q

s10 s11 . . . s1q

...
... . . .

...

sq0 sq1 . . . sqq


, (4.10)

and sij =
1

2

M∑
r=0

w̄rµ

(
1

2
(t̄r + 1)

)
θ
( 1

2 (t̄r+1))
ij , in which θ

(α)
ij is defined in Theorem

4.3.
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Proof. By employing the results obtained in Theorem 4.3, we have∫ 1

0

µ(α)C0D
α
t Φ̄q(t)dα ≃

(∫ 1

0

µ(α)Θ(α)
q dα

)
Φ̄q(t) ≜ SqΦ̄q(t),

where Sq is in the form of (4.10), and its elements are calculated as

sij =

∫ 1

0

µ(α)θ
(α)
ij dα. (4.11)

By evaluating the integrals in (4.11) using an (M+1)-point Legendre Gauss-Lobatto
quadrature method, we have

sij =
1

2

M∑
r=0

w̄rµ

(
1

2
(t̄r + 1)

)
θ
( 1

2 (t̄r+1))
ij ,

which ends the proof.

5. The proposed method
In this section, we use the CCPs to solve the problem expressed in (1.1) under the
below conditions:

Ψ(x, 0) = Ψ̄0(x), (5.1)

and
Ψ(0, y, t) = Ψ̄1(y, t), Ψ(1, y, t) = Ψ̄2(y, t),

Ψ(x, 0, t) = Ψ̄3(x, t), Ψ(x, 1, t) = Ψ̄4(x, t),
(5.2)

where Ψ̄l, l = 0, 1, . . . , 4 are given functions (that are assumed to be continuous).
To this aim, we assume that

Ψ(x, t) ≃
(m+1)(n+1)−1∑

l=0

q∑
r=0

ψlrφ̃mn,l(x)φ̄q,r(t) ≜ Φ⊺
mn(x)Ψ̂mnqΦ̄q(t), (5.3)

where

Ψ̂mnq =



ψ00 ψ01 . . . ψ0q

ψ10 ψ11 . . . ψ1m3

...
... . . .

...

ψ(mn+m+n)0 ψ(mn+m+n)1 . . . ψ(mn+m+n)q


.

Relation (5.3) and Theorems 4.1 and 4.2 yield

∇Ψ(x, t) ≃ Φ⊺
mn(x)

[(
P(1)

mn

)⊺
+

(
Q(1)

mn

)⊺]
Ψ̂mnqΦ̄q(t), (5.4)
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and
∆Ψ(x, t) ≃ Φ⊺

mn(x)
[(

P(2)
mn

)⊺
+
(
Q(2)

mn

)⊺]
Ψ̂mnqΦ̄q(t),

∆Ψt(x, t) ≃ Φ⊺
mn(x)

[(
P(2)

mn

)⊺
+
(
Q(2)

mn

)⊺]
Ψ̂mnqD

(1)
q Φ̄q(t).

(5.5)

Also, using the cardinal property of the CCPs and (5.3) and (5.4), we obtain

Ψ2(x, t) ≃ Φ⊺
mn(x)UmnqΦ̄q(t), (5.6)

where

Umnq =



ψ2
00 ψ2

01 . . . ψ2
0q

ψ2
10 ψ2

11 . . . ψ2
1m3

...
... . . .

...

ψ2
(mn+m+n)0 ψ

2
(mn+m+n)1 . . . ψ

2
(mn+m+n)q


,

and
Ψ(x, t)∇Ψ(x, t) ≃ Φ⊺

mn(x)VmnqΦ̄q(t), (5.7)

where

Vmnq =



v00 v01 . . . v0q

v10 v11 . . . v1m3

...
... . . .

...

v(mn+m+n)0 v(mn+m+n)1 . . . v(mn+m+n)q


,

and
vij =

[
Ψ̂mnq

]
ij

[((
P(1)

mn

)⊺
+

(
Q(1)

mn

)⊺)
Ψ̂mnq

]
ij
.

Theorem 4.2 and (5.7) result in

∇ (Ψ(x, t)∇Ψ(x, t)) ≃ Φ⊺
mn(x)

[(
P(1)

mn

)⊺
+
(
Q(1)

mn

)⊺]
VmnqΦ̄q(t). (5.8)

Moreover, from (5.3) and Theorem 4.4, we have∫ 1

0

µ(α)C0D
α
t Ψ(x, t)dα ≃ Φ⊺

mn(x)Ψ̂mnqSqΦ̄q(t). (5.9)

Substituting (5.5), (5.6), (5.8), and (5.9) into (1.1) gives

Φ⊺
mn(x)

{
Ψ̂mnqSq − σ1

[(
P(2)

mn

)⊺
+

(
Q(2)

mn

)⊺]
Ψ̂mnqD

(1)
q

− σ2

[(
P(2)

mn

)⊺
+
(
Q(2)

mn

)⊺]
+ σ3

[(
P(1)

mn

)⊺
+

(
Q(1)

mn

)⊺]
Vmnq

+σ4Umnq} Φ̄q(t)− g(x, t) ≜ R(x, t) ≃ 0. (5.10)
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Furthermore, using (5.1)-(5.3), we get

Φ⊺
mn(x)Ψ̂mnqΦ̄q(0)− Ψ̄0(x) ≜ Π0(x) ≃ 0, (5.11)

and
Φ⊺
mn(0, y)Ψ̂mnqΦ̄q(t)− Ψ̄1(y, t) ≜ Π1(y, t) ≃ 0,

Φ⊺
mn(1, y)Ψ̂mnqΦ̄q(t)− Ψ̄2(y, t) ≜ Π2(y, t) ≃ 0,

Φ⊺
mn(x, 0)Ψ̂mnqΦ̄q(t)− Ψ̄3(x, t) ≜ Π3(x, t) ≃ 0,

Φ⊺
mn(x, 1)Ψ̂mnqΦ̄q(t)− Ψ̄4(x, t) ≜ Π4(x, t) ≃ 0.

(5.12)

Eventually, using (5.10)-(5.12), we extract the system

R (xi, yj , tl) = 0, 2 ≤ i ≤ m, 2 ≤ j ≤ n, 2 ≤ l ≤ q + 1,

Π0 (xi, yj) = 0, 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ n+ 1,

Πr (yj , tl) = 0, r = 1, 2, 1 ≤ j ≤ n+ 1, 2 ≤ l ≤ q + 1,

Πr (xi, tl) = 0, r = 3, 4, 2 ≤ i ≤ m, 2 ≤ l ≤ q + 1,

(5.13)

where
xi =

1

2

(
1− cos

(
(2i− 1)π

2 (m+ 1)

))
,

yj =
1

2

(
1− cos

(
(2j − 1)π

2 (n+ 1)

))
,

tl =
1

2

(
1− cos

(
(2l − 1)π

2 (q + 1)

))
.

By solving the above system and determining Ψ̂mnq, we get a solution for the main
problem using (5.3). Note that this system is solved by ”fsolve” command of Maple
18 (with a precision 25 decimal digits).

6. Numerical examples
In this section, we inquire about the accuracy of the expressed approach on two
examples. The following formulas are applied to evaluate the accuracy of the out-
comes:

E2 =

(∫ 1

0

∫ 1

0

(
Ψ(x, 1)− Ψ̃(x, 1)

)2

dxdy

)1/2

,

E∞ = max
x∈Ω

∣∣∣Ψ(x, 1)− Ψ̃(x, 1)
∣∣∣ ,

in which Ψ is the true solution, and Ψ̃ is the numerical solution. The order of
convergence (CO) of the established scheme is computed as

CO =

∣∣∣∣log(ε2ε1
)∣∣∣∣/log

(
N2

N1

)
,
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where ε1 and ε2 are respectively the values of E∞ obtained in the first and second
implementations. Here, Ni = (mi + 1)(ni + 1)(qi + 1) for i = 1, 2 is the number of
the CCPs.

Example 6.1. Consider the problem (1.1) with µ(α) = Γ(4−α), σ1 = σ2 = 2,σ3 =
0, σ4 = 1, and

g(x, t) =

(
6t2(t− 1)

ln(t)
+

2t (3t ln(t)− 2 ln(t)− t+ 1)

ln2(t)
− 4t3 − 16t2 − 8t

)
ex−y

+ (t3 + t2)2e2(x−y).

The exact solution Ψ(x, t) =
(
t3 + t2

)
ex−y can be used to obtain other information.

The outcomes derived from the presented approach are shown in Table 1. The high
accuracy of the outcomes can be deduced from these results. We can also observe
the high order of convergence of the results from this table. The graphical behaviors
of the outcomes for (m = n = q = 8) at the final time are displayed in Figure 1.

Table 1. The errors and CO regarding the outcomes of Example 6.1.

(m,n, q) (4, 4, 4) (5, 5, 5) (6, 6, 6) (7, 7, 7) (8, 8, 8)

E2 5.2195× 10−05 2.8578× 10−06 8.0147× 10−08 3.3125× 10−09 7.1606× 10−11

E∞ 1.7541× 10−04 7.6081× 10−06 2.7977× 10−07 8.9857× 10−09 2.4802× 10−10

CO – 4.6874 6.0387 7.4350 8.9613
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0.5
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0.5

6

0 0

0
1

1

1

10-10

2

x
0.5

y

0.5

3

0 0

Figure 1. The outcomes obtained for Ψ(x, 1) (up) and related absolute error (down) with (m = n =
q = 8) in Example 6.1.

Example 6.2. Consider the problem (1.1) with µ(α) = Γ(4 − α), σi = 1 for
i = 1, 2, 3, 4, and

g(x, t) =

(
6t2(t− 1)

ln(t)
+ 6t2 + 2t3

)
sin(x) cos(y) + t9 (cos(x) cos(y)− sin(x) sin(y))

2

− t6 sin2(x) cos2(y).

Other information can be extracted of the true solution Ψ(x, t) = t3 sin(x) cos(y).
Table 2 shows the errors and CO of the results obtained by the expressed method.
These outcomes confirm the high accuracy of the scheme. For the case (m = n =
8, q = 7) the extracted results are illustrated in Figure 2.
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Table 2. The errors and CO regarding the outcomes of Example 6.2.

(m,n, q) (4, 4, 3) (5, 5, 4) (6, 6, 5) (7, 7, 6) (8, 8, 7)

E2 1.3284× 10−05 5.5694× 10−07 2.0491× 10−08 6.4836× 10−10 1.8242× 10−11

E∞ 3.0694× 10−05 1.4564× 10−06 5.3950× 10−08 1.6827× 10−09 5.2103× 10−11

CO – 4.1528 5.6069 7.0678 8.2498
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Figure 2. The outcomes obtained for Ψ(x, 1) (up) and related absolute error (down) with (m = n =
8, q = 7) in Example 6.2.

Example 6.3. Consider the problem (1.1) with µ(α) = Γ(5 − α) and σ1 = σ2 =
2, σ3 = σ4 = 1. The right hand function g(x, t) and other information can be
derived from the exact solution Ψ(x, t) = t4ex−y sin(πx) sin(πy). Table 3 is used to
provide the results obtained by the explained methodology. The high convergence
of the outcomes can be observed in this table. In the case of (m = n = 9, q = 8),
the derived results are displayed in Figure 3.

Table 3. The errors and CO regarding the outcomes of Example 6.3.

(m,n, q) (5, 5, 4) (6, 6, 5) (7, 7, 6) (8, 8, 7) (9, 9, 8)

E2 3.2902× 10−04 1.0073× 10−04 1.1441× 10−05 5.1660× 10−07 1.1738× 10−07

E∞ 9.1611× 10−04 2.8646× 10−04 2.2830× 10−05 1.4850× 10−06 2.4117× 10−07

CO – 0.8249 4.8049 6.4875 4.9246

0
1

1

0.6

x

0.5

y

0.5

1.2

0 0

0
1

1

1

10-7

2

x

0.5

y

0.5

3

0 0

Figure 3. The outcomes obtained for Ψ(x, 1) (up) and related absolute error (down) with (m = n =
9, q = 8) in Example 6.3.
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7. Conclusion
The distributed-order fractional form of nonlinear 2D Sobolev equation was defined
in this study. The orthonormal CCPs were reviewed, and some derivative matrices
were obtained for them. A matrix approach was established based on these func-
tions for this equation. In the expressed method, by approximating the unknown
solution using these polynomials and employing the mentioned matrices, a nonlin-
ear algebraic system was extracted and solved to obtain a solution for the main
equation. By solving three examples, the high accuracy of the scheme was shown.
Note that the expressed approach can be easily adopted for other 2D fractional
linear and nonlinear fractional problems.
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