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LONG-TIME ASYMPTOTIC BEHAVIOR OF
FISHER-KPP EQUATION FOR NONLOCAL

DISPERSAL IN ASYMMETRIC KERNEL
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Abstract In this paper, we main consider the asymptotic spreading speeds
and the long-time asymptotic behavior of a nonlocal with asymmetric kernel
diffusion Fisher-KPP equation

ut(t, x) = k ∗ u(t, x)− u(t, x) + f (u(t, x)) , t > 0, x ∈ R.

On the basis of the spreading speeds c∗r = c(λ∗
r) and c∗l = c(λ∗

l ), the long-
time asymptotic behavior is given by constructing a suitable upper solution
and lower solution and using the tool of comparison principle. In particular,
the core difficulty and breakthrough point is the lower bounds part. In this
regard, we improve the “forward-backward spreading” method which was first
proposed by Xu et al. (J Funct Anal 280(2021)108957) to fit the corresponding
lower solution so that the asymptotic behavior can be obtained for the initial
values that decays within a certain range of asymptotic decay rate λ1 ∈ (0, λ+)
and λ2 ∈ (λ−, 0).

Keywords Spreading speed, nonlocal diffusion, fisher-KPP, asymptotic, com-
parison principle.
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1. Introduction
This paper is concerned with the asymptotic spreading speeds (the concept proposed
by Aroson and Weinberger [1]) and long-time asymptotic behavior of the following
nonlocal reaction-diffusion equation{

ut(t, x) = k ∗ u(t, x)− u(t, x) + f (u(t, x)) , t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R,

(1.1)

where u0(x) ∈ C(R), f ∈ C1 ([0, 1]) and satisfies the condition of Fisher-KPP type:

(P) f(0) = f(1) = 0, f(u) > 0, f ′(0) > 0 and f(u) ≤ f ′(0)u for u ∈ (0, 1).

The convolution integral operator is given as follows

k ∗ u(t, x)− u(t, x) =

∫
R
k(x− y)u(t, y)dy − u(t, x), t > 0, x ∈ R.
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Here, the diffusion kernel function k(x) including the asymmetric case satisfy:

(K1)
∫
R
k(x)dx = 1 and exist some λ ∈ R such that

∫
R
k(x)eλxdx < +∞.

(K2) There exist x+ ∈ R+ and x− ∈ R− such that k(x±) > 0.

Therefore, we point out that the system (1.1) is exponentially bounded and light-
tailed (it is indicated by (K1)) which ensures the spatial propagation mode can
be consider the asymptotic spreading speeds. Moreover, fat-tailed kernel as well
as the property that u0(x) is compactly supported on R will causes acceleration
propagation, which means the average spreading speeds approaches infinity [7].

The important feature of (1.1) is not only the diffusion term is a convolution
integral operator k ∗ u(t, x) − u(t, x), but also the kernel function including the
asymmetric case. First of all, in terms of nonlocal diffusion it can better represent
natural phenomena as it also covers long distances motion. This topic has indeed
attracted the research and attention of many scholars. Therefore, for (1.1) and
its concrete form, we refer to some papers about the traveling wave solution [3–
5, 8], entire solution [6, 12, 14] and other problems including spreading speeds [2,
10, 15]. Secondly, the asymmetric kernel means the probability distribution of the
population jumping from location y to location x (that is, the value of k(x − y)
may be different from that of k(y − x)). As it do increased the difficulty, so there
are very few studies that we know of the contain only the article [9, 13, 16, 17].
In fact, it was not until 2008 that Coville et al. [5] began to deal with the case
of asymmetric kernel function, and only proposed symbols that would affect the
asymptotic spreading speed without giving specific instructions. In this regard,
understanding the asymptotic spreading speeds in nonlocal diffusion system with
asymmetric kernel is of great benefit to the future study of nonlocal dispersals.

As a type of spatial propagation, the asymptotic spreading speeds c∗r and c∗l of
the nonlocal diffusion equation are available in Lutscher et al [11]. Here, for any
non-negative and compactly supported initial data u0 and ε > 0, lim

t→+∞
supx∈(−∞,(c∗l −ε)t]∪[(c∗r+ε)t,+∞) |u(t, x)| = 0,

lim
t→+∞

infx∈((c∗l +ε)t, (c∗r−ε)t) |u(t, x)− 1| = 0.

The principle of construction is that the spreading speeds and traveling wave so-
lution which is a special form of solution that satisfies u(t, x) = q(x − ct), as two
spatial propagation modes, have certain similarities. That is, in monotone dynam-
ics, the minimum wave speed is numerically consistent with spreading speeds. In
addition, to the best of our knowledge, the conclusion of system (1.1) is also that
the signs of c∗r and c∗l are dependent on f ′(0) and the function

E(k) ≜ sign

(∫
R
k(x)xdx

)[
1− inf

λ∈R

{∫
R
k(x)eλxdx

}]
,

which can describe the asymmetry of diffusion kernel [17].
The purpose of this paper is to further explore the spreading speeds on the

above basis and deduce the corresponding long-time asymptotic behavior under the
initial value conditions of a wide range of exponential decay rates λ1 ∈ (0, λ+),
λ2 ∈ (λ−, 0). The basis tool is upper and lower solutions method and our im-
proved “forward-backward spreading” method which plays an important role in
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lower bound part. Furthermore, the key difficulty is to improve the “forward-
backward spreading” method (naming follows the classical case that c∗r = −c∗l > 0)
such that the desired asymptotic result is obtained by combining with the corre-
sponding lower solutions.

2. Asymptotic spreading speeds
In this section, first denote some useful notations, definitions and lemmas about
spreading speeds and lower solution in Subsection 2.1. Then the proof of long-time
asymptotic behavior is presented in Subsection 2.2.

2.1. Mathematical preliminaries
Denote

λ+ ≜ sup

{
λ > 0 |

∫
R
k(x)eλxdx < +∞

}
,

λ− ≜ inf

{
λ < 0 |

∫
R
k(x)eλxdx < +∞

}
,

which implies that λ ∈ (λ−, λ+) satisfy the second half of the requirement (K1).
Actually, condition (K2) is related to the function E(k), which also ensures the
species did not just spread in one direction.

Asymptotic spreading speeds
To characterize the asymptotic spreading speeds, here we summarize the speeds

of corresponding traveling wave solutions. For system (1.1), By defining the function
u(t, x) = q(x− ct) and plugging it into the equation and linearizing it, we have

−cq′(x) =

∫
R
k(x− y)q(y)dy − q(x)− f ′(0)q(x).

Using the eigenroot method, do the exponential transformation eλx and simplifica-
tion, finally get

c(λ) =

∫
R k(x)eλxdx− 1 + f ′(0)

λ
, λ ∈ (−∞, 0) ∪ (0,+∞).

In this regard, for λ ∈ (λ−, 0) ∪ (0, λ+), the spreading speeds can be expressed
as

c∗r = inf
λ∈(0,λ+)

{c(λ)} = c (λ∗
r) =

∫
R k(x)eλ

∗
rxdx− 1 + f ′(0)

λ∗
r

=

∫
R
k(x)eλ

∗
rxxdx,

c∗l = sup
λ∈(λ−,0)

{c(λ)} = c (λ∗
l ) =

∫
R k(x)eλ

∗
l xdx− 1 + f ′(0)

λ∗
l

=

∫
R
k(x)eλ

∗
l xxdx.

In fact, the existence of parameters λ∗
r and λ∗

l can be obtained by the property of
c(λ). Corresponding the following function can be defined

cξ(λ) =

∫
R k(x)eλxdx− 1 + f ′(0)− ξ

λ
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with the arbitrary constant ξ ∈ (0, f ′(0)). Function cξ(λ) is actually a little bit
closer to the origin than function c(λ), essentially for use with the lower solutions
constructed later. For any small ε > 0, there have the arbitrary constants ξ1, ξ2 ∈
(0, f ′(0)) to satisfies that

c∗r (ξ1) ≜ inf
λ1∈(0,λ+)

{cξ1(λ1)} = c∗r−ε, c∗l (ξ2) ≜ sup
λ2∈(λ−,0)

{cξ2(λ2)} = c∗l +ε. (2.1)

The signs of spreading speeds
It follows from λ∗

r > 0, λ∗
l < 0 that the signs of spreading speeds determined by∫

R k(x)eλ
∗
rxdx−1+f ′(0) and 1−

∫
R k(x)eλ

∗
l xdx−f ′(0), respectively. As a matter of

fact, the diffusion kernel function k(x) largely determines the signs of the spreading
speeds. On the one hand, in order to better describe the influence of the kernel
function k(x), and on the other hand, to avoid accurate solving of corresponding
parameters λ∗

r and λ∗
l , function E(k) is used here to replace the original ground

variable
∫
R k(x)eλ

∗
rxdx− 1 and 1−

∫
R k(x)eλ

∗
l xdx.

After a series of verification, the following conclusion is reached:

sign (c∗r) = sign (E(k) + f ′(0)) = sign

(∫
R
k(x)eλ(k)xdx− 1 + f ′(0)

)
,

sign (c∗l ) = sign (E(k)− f ′(0)) = sign

(
1−

∫
R
k(x)eλ(k)xdx− f ′(0)

)
,

where λ(k) ∈ (λ−, λ+) such that∫
R
k(x)eλ(k)xdx = min

λ∈(λ−,λ+)

{∫
R
k(x)eλxdx

}
.

That is the core of Theorem 2.4 in the literature [17] and how it works.
The next step is to prepare for the long-time asymptotic behavior, which includes

the Comparison principle and the construction and property analysis of many func-
tions.

Denote functions

G(c, λ) = cλ−
∫
R
k(x)eλxdx+ 1− f ′(0),

Gξ(c, λ) = cλ−
∫
R
k(x)eλxdx+ 1− f ′(0) + ξ for c ∈ R, λ ∈ (λ−, λ+).

The definition idea is closely related to the form of the Eq. (1.1) and the expansion
and contraction of the reaction term f(u).

Lemma 2.1 (Comparison principle). Suppose that the bounded continuous func-
tions ū(t, x) and u(t, x) are respectively the upper-solution and lower-solution of
equation (1.1) for t ∈ (0, T ], in the sense that

ūt − k ∗ ū+ ū− f(ū) ⩾ 0 ⩾ ut − k ∗ u+ u− f(u) for t ∈ (0, T ], x ∈ R.

If ū(0, x) ⩾ u(0, x) for x ∈ R, then ū(t, x) ⩾ u(t, x) for t ∈ [0, T ], x ∈ R.

Lemma 2.2. For any c1 ∈ (c(λ1)− ε, c(λ1)) and c2 ∈ (c(λ2), c(λ2) + ε) with ε > 0
small enough and λ1 ∈ (0, λ+), λ2 ∈ (λ−, 0), there are four unique constants
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θ1 (c1) > λ∗
r > θ̃1 (c1) > 0 (denoted also by θ1 and θ̃1 for short) and θ2 (c2) < λ∗

l <

θ̃2 (c2) < 0 (denoted also by θ2 and θ̃2 for short) such that

Gξ1(c1, θ1) = Gξ1(c1, θ̃1) = 0 and Gξ1(c1, ρ) > 0 for ρ ∈ (θ̃1, θ1),

Gξ2(c2, θ2) = Gξ2(c2, θ̃2) = 0 and Gξ2(c2, ρ) > 0 for ρ ∈ (θ2, θ̃2).

Proof. It follows from the definition of Gξ(c, λ) that

Gξi(ci, 0) = ξi − f ′(0) < 0 and ∂2

∂λ2
Gξi(ci, λ) < 0, i = 1, 2.

After a series of calculations, whether it’s λ± = ±∞ or λ± < ±∞, we can conclude
that

lim
λ→λ±

Gξ(c, λ) = −∞.

Moreover, noticing the fact of (2.1) and

Gξ1(c1, λ1) = (c1 − cξ1(λ1))λ1 = (c1 − c∗r(ξ1))λ1 + (c∗r(ξ1)− cξ1(λ1))λ1,

Gξ2(c2, λ2) = (c2 − cξ2(λ2))λ2 = (c2 − c∗l (ξ2))λ2 + (c∗l (ξ2)− cξ2(λ2))λ2,

we obtain there do have some λ̄1 and λ̄2 such that

Gξ1(c1, λ̄1) > 0 and Gξ2(c2, λ̄2) > 0.

Therefore, according to the continuous property in mathematical analysis, there
exists four unique constants as above. This completes the proof.

For the construction of lower solution, we give the corresponding function and
obtain the desired function properties through the following lemma.

Lemma 2.3 ( [17, Lemma 3.2]). For any δ ∈ (0, 1), define a function

L(z) = z − z1+δ − ℓz1−δ for z > 0.

We have the following conclusions:

Lmax > 0 for ℓ ∈ (0, 1/4) and Lmax → 0+, α− β → 0+ as ℓ− 1/4 → 0−,

where
Lmax ≜ sup

z>0
{L(z)} = L (z0) for some z0 ∈ (α, β)

and (α, β) ≜ {z > 0 | L(z) > 0} for ℓ ∈ (0, 1/4) . Moreover, for any ℏ > 0, there
exists ℓ(ℏ) ∈ (0, 1/4) such that

Lmax = ℏ and ℓ(ℏ) → 1

4
as ℏ → 0+.

2.2. Asymptotic behavior
In this subsection, prove the asymptotic behavior with defining some necessary
parameters. Here, the proof is divided into two parts. it is worth noting that
the initial value here is an exponential function which satisfies a certain range
λ1 ∈ (0, λ+) , λ2 (λ

−, 0) of exponential decay rates. The Step 2 is the core content
of the article, where utilize the improved “forward-backward spreading” method
with constructing the lower solutions that can be combined with this method.
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Theorem 2.1 (Long-time asymptotic behavior). Suppose that the assumptions (P),
(K1) and (K2) hold. If u0(·) satisfies that 0 ⩽ u0(x) ⩽ 1 for x ∈ R, u0 (x0) > 0 for
some x0 ∈ R and

u0(x) ∼ O
(
e−λ1x

)
, for x ≥ x̃, u0(x) ∼ O

(
e−λ2x

)
, for x ≤ −x̃,

where λ1 ∈ (0, λ+) , λ2 ∈ (λ−, 0) and x̃ ≥ 0. Then there is some constant ℏ ∈ (0, 1)
such that the solution u(t, x) of equation (1.1) has the following properties:

lim
t→+∞

sup
x−x0⩽(c(λ2)−ε)t

u(t, x) = 0, (a)

inf
(c(λ2)+ε)t⩽x−x0⩽(c(λ1)−ε)t

u(t, x) ⩾ ℏ, (b)

lim
t→+∞

sup
x−x0⩾(c(λ1)+ε)t

u(t, x) = 0, (c)

for all t > 0.

Proof. Step 1: Proof of the (a) and (c) in the above theorem.
Construct a function ū(t, x) satisfying

ū(t, x) = min
{
1,Γ0e

λ1(−x+c(λ1)t),Γ0e
λ2(−x+c(λ2)t)

}
,

where Γ0 ⩾ 1 is large enough to establish ū(0, x) ⩾ u0(x). Since the definition of
G(c, λ) and λ1 ∈ (0, λ+) , λ2 ∈ (λ−, 0) , we get G (c(λ1), λ1) = G (c(λ2), λ2) = 0.
Further, a series of calculations implies that:

(1) if x ≤ c(λ2)t+ λ−1
2 ln Γ0, then ū(t, x) = Γ0e

λ2(−x+c(λ2)t),

(2) if x ≥ c(λ1)t+ λ−1
1 ln Γ0, then ū(t, x) = Γ0e

λ1(−x+c(λ1)t),

(3) if c(λ2)t+ λ−1
2 ln Γ0 < x < c(λ1)t+ λ−1

1 ln Γ0, then ū(t, x) = 1.

Moreover, take the first case, we get that

ūt(t, x)− k ∗ ū(t, x) + ū(t, x)− f(ū(t, x))

≥Γ0e
λ2(−x+c(λ2)t)

[
c(λ2)λ2 −

∫
R
k(x)eλ2xdx+ 1− f ′(0)

]
≥Γ0e

λ2(−x+c(λ2)t)G (c(λ2), λ2)

=0,

for any x ∈ R. Other cases can be the same, that is, prove that the function ū is
the super solution. Therefore, for t → +∞

sup
x⩽(c(λ2)−ε)t

u(t, x) ⩽ sup
x⩽(c(λ2)−ε)t

ū(t, x) ⩽ Γ0e
λ2εt,

sup
x⩾(c(λ1)+ε)t

u(t, x) ⩽ sup
x⩾(c(λ1)+ε)t

ū(t, x) ⩽ Γ0e
−λ1εt.

Naturally, (a) and (c) in the above theorem be obtained.
Step 2: Proof of the (b) in the above theorem.
It follows from u0(x0) > 0 that there must have some positive constants ℏ1 and

d satisfying
u0(x) ⩾ ℏ1 for x ∈ [−d, d] (2.2)
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by translating the x-axis. Since f(u) ∈ C1([0, 1]) and f ′(0) > 0, there exist some
constants ℏ2 ∈ (0, ℏ1] such that

f(u) ⩾
(
f ′(0)− ξ

2

)
u for u ∈ [0, ℏ2] ,

where ξ = min {ξ1, ξ2}. Therefore, for any δ ∈ (0, 1), by taking H(δ) = ξℏ−δ
2 /2, we

can get that

f(u) ⩾ (f ′(0)− ξi)u+H(δ)u1+δ for u ∈ [0, ℏ2] .

Furthermore, there must have some δ1 > 0, δ2 > 0 (small enough) and corre-
sponding ρ1 ∈ (θ̃1, θ1), ρ2 ∈ (θ2, θ̃2), which not only satisfies

{ρ1(1− δ1), ρ1(1 + δ1) = c(λ1)} ⊆ (θ̃1, θ1),

{ρ2(1− δ2), ρ2(1 + δ2) = c(λ2)} ⊆ (θ2, θ̃2),

but also satisfies another important condition

G+
i +H(δi)−

√(
G+

i +H(δi)
)2 − 3H(δi)(1 + δi) [G0

i +H(δi)(1 + δi)ℓi]

≥3H(δi)(1 + δi),
(2.3)

where i = 1, 2,

G+
i = Gξi (ci, ρi(1 + δi)) , G0

i = Gξi (ci, ρi(1 + δi)) , G−
i = Gξi (ci, ρi(1 + δi)) .

In order to better characterize the form of the equation after plugging in the
following solution, denote two functions

gi(x) = H(δi)(1 + δi)x
3 −

(
G+

i +H(δi)
)
x2 +

(
G0

i +H(δi)(1 + δi)ℓi
)
x− ℓiG

−
i ,

and two important parameters i = 1, 2,

x̃i =
G+

i +H(δi)−
√(

G+
i +H(δi)

)2 − 3H(δi)(1 + δi) [G0
i +H(δi)(1 + δi)ℓi]

3H(δi)(1 + δi)
.

Moreover,we declare that

gi(x̃i) = 0 and g′i(x̃i) = 0. (2.4)

Indeed, the idea here is that the function gi(x) satisfies certain properties, that is,

gi(x) =H(δi)(1 + δi) (x− x̃i)
2
(x− xi3)

=H(δi)(1 + δi)
[
x3 − (2x̃i + xi3)x

2 +
(
x̃2
i + 2x̃ixi3

)
x− x̃2

ixi3

]
,

which ensures that the corresponding parameters are exactly equal and here xi3 is
another root of gi(x).

Whereafter, using the nature of diffusion, the time is divided into two segments
and the lower solution functions are assigned “forward” and “backward” speeds,
respectively.
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Divide the time period of [0, τ ] into [0, κτ ] and [κτ, τ ], where τ > 0 is an arbitrary
constant and

κ =
X − c2τ

c1τ − c2τ
∈ [0, 1] , X ∈ [c2τ, c1τ ] .

From some simple analyzing, it is sufficient to justify that for any c1 ∈ (c(λ1)− ε,
c(λ1)) and c2 ∈ (c(λ2), c(λ2) + ε), there is a constant ℏ ∈ (0, 1) such that

u(τ,X) ⩾ ℏ for any given τ > 0, X ∈ [c2τ, c1τ ] . (2.5)

In [0, κτ ], construct a lower solution which spread at “forward” speed c1 ∈
(c(λ1)− ε, c(λ1)) as follows

u1 (t, x; η1) =max
{
0, L1

(
eρ1(−x+c1t+η1)

)}
=

{
0 for x− c1κτ /∈ Ω1,

L1

(
eρ1(−x+c1t+η1)

)
for x− c1κτ ∈ Ω1,

with

η1 ∈
[
−d+ ρ−1

1 lnβ1, d+ ρ−1
1 lnα1

]
, Ω1 =

(
η1 − ρ−1

1 lnβ1, η1 − ρ−1
1 lnα1

)
.

(2.6)
Therefore, from Lemma 2.3 we can choose ℓ1 ∈

(
0, 1

4

)
close to 1

4 such that

Lmax
1 ≜ max

z>0
{L1(z)} ⩽ ℏ2 ⩽ ℏ1, ρ−1

1 (lnβ1 − lnα1) ⩽ d/2. (2.7)

Next we verify that u1 (t, x; η1) is a lower solution of equation (1.1). Firstly, Eq.
(2.6) implies that Ω1 ⊆ (−d, d) and then combing (2.2) and (2.7), it is easy to get
that

u1 (0, x; η1) ⩽ u0(x) for x ∈ R.

If x− c1t ∈ Ω1, we have that u1 (t, x; η1) = L1

(
eρ1(−x+c1t+η1)

)
. Further, for short,

denote z̃1 = eρ1(−x+c1t+η1), and some calculations show that

∂tu1 (t, x; η1)− k ∗ u1 (t, x; η1) + u1 (t, x; η1)− f (u1 (t, x; η1))

<G0
1z̃1 −G+

1 z̃
1+δ1
1 − ℓ1G

−
1 z̃

1−δ1
1 −H(δ1)z̃

1+δ1
1

[
1− (1 + δ1)

(
z̃δ11 + ℓ1z̃

−δ1
1

)]
=z̃1−δ1

1

{
H(δ1)(1+δ1)z̃

3δ1
1 −

(
G+

1 +H(δ1)
)
z̃2δ11 +

[
G0

1+H(δ1)(1+δ1)ℓ1
]
z̃δ11 −ℓ1G

−
1

}
.

Combining the fact from (2.3) that x̃1 ≥ 1 and (2.4), we assert that

∂tu1 (t, x; η1)− k ∗ u1 (t, x; η1) + u1 (t, x; η1)− f (u1 (t, x; η1)) < 0. (2.8)

If x − c1t /∈ Ω̄1, it is easy to check that u1 (t, x; ξ1) = 0 and (2.8) is valid in this
case. Furthermore, Lemma 2.1 implies that

u(t, x) ⩾ u1 (t, x; η1) for t ∈ [0, κτ ], x ∈ R.

Define x1(t) := c(λ1)t+η1−ρ−1
1 ln z1 with t ∈ [0, κτ ] and z1 ∈ (α1, β1) satisfying

L1(z1) = Lmax
1 , then it is clear that

u (t, x1(t)) ⩾ u1 (t, x1(t); η1) = Lmax
1 for t ∈ [0, κτ ].
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The arbitrariness of the parameter η1 in (2.6) shows that

u(t, x) ⩾ Lmax
1 for t ∈ [0, κτ ], x ∈ [c1t− d/2, c1t+ d/2] .

Therefore, we get valid information about the initial value for the next period of
time [κτ, τ ], that is

u(κτ, x) ≥ Lmax
1 , x ∈ [c1κτ − d/2, c1κτ + d/2] .

In [κτ, τ ], similarly, construct a lower solution which spreads at “backward”
speed c2 ∈ (c(λ2), c(λ2) + ε) as follows

u2 (t, x; η2) =max
{
0, L2

(
eρ2(−x+c2t+η2)

)}
=

{
0 for x− c2κτ /∈ Ω2,

L2

(
eρ2(−x+c2t+η2)

)
for x− c2κτ ∈ Ω2,

with

η2 ∈
[
(c1 − c2)κτ + ρ−1

2 lnβ2 − d/2, (c1 − c2)κτ + ρ−1
2 lnα2 + d/2

]
,

and
Ω2 =

(
η2 − ρ−1

2 lnβ2, η2 − ρ−1
2 lnα2

)
.

Let us choose ℓ2 ∈
(
0, 1

4

)
close to 1

4 such that

Lmax
2 ≜ max

z>0
{L2(z)} ≤ Lmax

1 ⩽ ℏ2 ⩽ ℏ1, ρ−1
2 (lnβ2 − lnα2) ⩽ d/2.

Therefore, we easily get

u2(κτ, x, η2) ≤ Lmax
2 ≤ Lmax

1 ≤ u(κτ, x), x ∈ R.

If x− c2t ∈ Ω2, we get that u2 (t, x; η2) = L2

(
eρ2(−x+c2t+η2)

)
and

∂tu2 (t, x; η2)− k ∗ u2 (t, x; η2) + u2 (t, x; η2)− f (u2 (t, x; η2))

⩽Gξ2 (c2, ρ2) e
ρ2(−x+c2t+η2) − [Gξ2 (c2, ρ2 (1 + δ2))−H (δ2)] e

ρ2(1+δ2)(−x+c2t+η2)

− ℓ2Gξ2 (c2, ρ2 (1− δ2)) e
ρ2(1−δ2)(−x+c2t+η2).

Similarly, noticing g2(x̃2) = 0, g′2(x̃2) = 0 and the fact from (2.3) that x̃2 ≥ 1, we
assert that

∂tu2 (t, x; η2)− k ∗ u2 (t, x; η2) + u1 (t, x; η2)− f (u2 (t, x; η2)) < 0. (2.9)

If x− c2t /∈ Ω̄2, we have u2 (t, x; ξ1) = 0 and (2.9). Further, Lemma 2.1 implies that

u(t, x) ⩾ u2 (t, x; η2) for t ∈ [κτ, τ ], x ∈ R.

Define x2(t) := c2t + η2 − ρ−1
2 ln z2, where z2 ∈ (α2, β2) and satisfying Lmax

2 =
L2 (z2). We get

u(t, x2(t)) ≥ u2(t, x2(t); η2) = L2(z2) = Lmax
2 .
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Then by choosing η2 := (c1 − c2)κτ + ρ−1
2 ln z2, we can verify that at time t = τ

x2(τ) = c1κτ + c2(1− κ)τ = X and u(τ,X) ≥ Lmax
2 .

Noting the arbitrariness of the parameters κ ∈ [0, 1], we conclude that u(t, x) ≥ ℏ
for any t > 0 and x ∈ [c2t, c1t] by taking ℏ = Lmax

2 . Furthermore,

min
(c(λ2)+ε)t≤x≤(c(λ1)−ε)t

u(t, x) ≥ ℏ for any t > 0,

which mean Eq. (2.5) holds. This completes the proof.

Remark 2.1. To be clear, when λ1 = λ∗
r , λ2 = λ∗

l , the conclusion becomes that
there is some constant ℏ ∈ (0, 1) such that the solution u(t, x) of equation (1.1) has
the following properties:

lim
t→+∞

sup
x−x0⩽(c∗l −ε)t

u(t, x) = 0,

inf
(c∗l +ε)t⩽x−x0⩽(c∗r−ε)t

u(t, x) ⩾ ℏ,

lim
t→+∞

sup
x−x0⩾(c∗r+ε)t

u(t, x) = 0,

for all t > 0.

This corresponds exactly to the long-time asymptotic behavior in the first kind of
initial value case in [17].

In fact, our conclusion extends the range of initial asymptotic decay rate, or
in other words, by an improved method achieves the long-time asymptotic behav-
ior under a wide range of initial values in the case of asymmetric diffusion kernel
function.
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