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OPTIMAL CONTROL OF
TUMOR-LYMPHATIC MODEL WITH

IMMUNO-CHEMOTHERAPY

Jingnan Wang1,† and Li Xu

Abstract To find optimal methods to inhibit tumors, we propose a tumor-
lymphocyte immune optimal model with immuno-chemotherapy. Firstly, we
investigate the therapeutic effects of high-dose single immunotherapy and
high-dose single chemotherapy for tumor logistic growth, respectively. Fur-
thermore, we apply the optimal control theory to investigate the optimal con-
trol problem of immuno-chemotherapy to eliminate tumors, maximize the re-
maining number of lymphocytes and minimize the cost caused by drugs over
a finite time interval. The necessary and sufficient conditions for the existence
of optimal control are also discussed. Finally, the numerical results indicate
that the effect of immuno-chemotherapy with strong killing rate to tumors and
weak killing rate to immune cells is the most effective strategy in inhibiting
tumor growth.

Keywords Tumor-lymphatic model, immuno-chemotherapy, optimal con-
trol, stability.
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1. Introduction
Cancer is a public health problem and one of the major diseases that cause people
to die. In recent years, although a lot of research has been devoted to curing
cancer, the treatment of cancer is still one of the most challenging problems of
modern medicine [20]. Traditionally, the strategies used to treat tumors include
surgery, radiotherapy and chemotherapy, but they all have side effects, and there
exists the probability of tumor relapse [13]. Nowadays, evidence suggests that
the immune system plays a crucial role in suppressing and eliminating tumors [1],
thus many medical workers pay attention to immunotherapy [9, 16, 24], but the
effect of immunotherapy on inhibiting some malignant tumors is low. Therefore,
many scholars begin to study how to combine surgical treatment, radiotherapy,
chemotherapy and immunotherapy organically to design more effective personalized
cancer treatment strategies [3, 14, 22, 23]. Recently, scholars have established many
mathematical models to explore the optimal dose, the optimal course of treatment
and the minimum cost of drugs used in the course of immuno-chemotherapy [4, 5,
17,21].
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Referring to the optimal control methods for tumor-immune model in [17], we
discuss a similar optimal control problem in the tumor-lymphocyte immune pro-
cess under the combined effect of immunotherapy and chemotherapy. Considering
different growth characteristics of different tumors [11], we improve the model pro-
posed by Pang et al. in [18] with the background that the growth of lymphoma
tumors [10] and colorectal tumors [8] is of Logistic type, and the specific modified
model is given by

dL1

dt
= µ− r1L1 + α1

TL2

η + T
− β1(1− e−C)L1,

dL2

dt
= r1L1 − α3L2 − β2(1− e−C)L2 + ũ,

dT

dt
= r2T (1−

T

K
)− α2TL2 − β3(1− e−C)T,

dC

dt
= ṽ − σC,

(1.1)

satisfying the following initial conditions

L1(0) = L10 ≥ 0, L2(0) = L20 ≥ 0, T (0) = T0 ≥ 0, C(0) = C0 ≥ 0, (1.2)

where L1, L2 and T denote the number of immature lymphocytes, mature lym-
phocytes and tumor cells, respectively. C denotes the blood drug concentration.
µ is the fixed rate of young lymphocytes generated by hematopoietic model in the
absence of tumors, r1 is the transformation rate from the immature lymphocytes to
the mature lymphocytes, α1 is the maximum recruitment rate of mature lympho-
cytes. α3 is the inactivation rate of the mature lymphocytes, ũ is the infusion dose
of mature lymphocytes with anti-tumour activity. r2 is the growth rate of tumors,
α2 is the rate of tumor cells killed by mature lymphocytes. βi(1− e−C)(i = 1, 2, 3)
indicates the fractional killing rate for the same quantity of drug C, β1, β2 and
β3 are the maximum killing rate of chemotherapy drugs on immature lymphocytes,
mature lymphocytes and tumor cells, respectively. ṽ is the increment of blood drug
concentration due to chemotherapy, σ is the attenuation rate of chemotherapy
drugs.

The rest of this paper is organized as follows. In Sect.2, we discuss the basic
properties of solutions of the model and the stability conditions of the tumor-free
equilibrium (in the absence of immunotherapy or chemotherapy). In Sect.3, we
consider an optimal control problem of combination therapy for anti-tumor. The
necessary and sufficient conditions for the existence of optimal control are also
discussed. In Sect.4, we apply numerical simulation to compare the efficacy of single
immunotherapy, single chemotherapy and combination therapy, and characterize an
optimal combined treatment strategy. Finally, the conclusions of the paper are given
in Sect.5.

2. Qualitative analysis of the model
2.1. Non-negativity and boundedness of the solutions
Theorem 2.1. For any t ≥ 0, every solution of model (1.1) with initial condition
(1.2) remains positive and bounded through out the region R4

+ = {(L1, L2, T, C) :
L1, L2, T, C ∈ R+}.
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Proof. For any t ≥ 0, from the first equation of model (1.1), we have

dL1

dt
≥ −[r1 + β1(1− e−C)]L1. (2.1)

Solving equation (2.1), we obtain

L1(t) ≥ L1(0) exp{−
∫ t

0

[r1 + β1(1− e−C(θ))]dθ} > 0.

Similarly, we have

L2(t) ≥ L2(0) exp{−
∫ t

0

[α3 + β2(1− e−C(θ))]dθ} > 0.

From the third equation of model (1.1), we have

dT

dt
= [r2(1−

T

K
)− α2L2 − β3(1− e−C)]T,

then

T (t) = T (0) exp{
∫ t

0

[r2(1−
T (θ)

K
)− α2L2(θ)− β3(1− e−C(θ))]dθ} ≥ 0.

From the fourth equation of model (1.1), we obtain

C(t) =
ṽ

σ
+ [C(0)− ṽ

σ
]e−σt ≥ 0. (2.2)

Therefore, L1(t) ≥ 0, L2(t) ≥ 0, T (t) ≥ 0, C(t) ≥ 0 for any t ≥ 0.
Furthermore, from (2.2), we have

C(t) ≤ max{C(0), ṽ
σ
}.

Denote M = 1− e−C ≥ 0, from the third equation of model (1.1), we obtain

dT

dt
= r2T − r2

K
T 2 − α2TL2 − β3MT

= −r2
K

(T − K

2
)2 +

r2K

4
− (α2L2 + β3M)T

≤ r2K

4
− (α2L2 + β3M)T.

Since L2(t) ≥ 0 and T (t) ≥ 0, we have

dT

dt
≤ r2K

4
− β3MT,

which yields to

T (t) ≤ N
∆
= max{T (0), r2K

4β3M
}.
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In a similar way, the equations for L1(t) and L2(t) give

d(L1 + L2)

dt
= µ+ ũ+ α1

TL2

η + T
− β1ML1 − α3L2 − β2ML2

≤ µ+ ũ− β1ML1 − (α3 + β2M − α1N

η +N
)L2

≤ µ+ ũ−A(L1 + L2).

Thus,
L1(t) + L2(t) ≤ max{L1(0) + L2(0),

µ+ ũ

A
},

where A = min{β1M,α3 + β2M − α1N
η+N }. Hence for any t ≥ 0, every solution of

model (1.1) with initial condition (1.2) remains positive and bounded in the region
R4

+. This completes the proof.

2.2. Stability of tumor-free equilibrium
Referring to the optimal control methods for tumor-immune model in [17], we first
discuss the efficacy of single immunotherapy and single chemotherapy.

Suppose model (1.1) only involves immunotherapy, then model (1.1) is equivalent
to the following model 

dL1

dt
= µ− r1L1 + α1

TL2

η + T
,

dL2

dt
= r1L1 − α3L2 + ũ,

dT

dt
= r2T (1−

T

K
)− α2TL2.

(2.3)

Theorem 2.2. For single immunotherapy, the tumor-free equilibrium E∗
0=(

µ
r1
,µ+ũ
α3

, 0)

of model (2.3) is locally asymptotically stable for ũ > uc and unstable for ũ ≤ uc,
where

uc
.
=
α3r2
α2

− µ. (2.4)

Proof. Clearly, model (2.3) has a tumor free equilibrium E∗
0 = ( µr1 ,

µ+ũ
α3

, 0), and
the corresponding Jacobian matrix is

J(E∗
0 ) =


−r1 0 α1(µ+ũ)

ηα3

r1 −α3 0

0 0 r2 − α2(µ+ũ)
α3


then the characteristic equation of model (2.3) at E∗

0 is

(λ+ r1)(λ+ α3)(λ− r2 +
α2(µ+ ũ)

α3
) = 0 (2.5)

and the eigenvalues of (2.5) are given by λ1 = −r1 < 0, λ2 = −α3 < 0 and
λ3 = r2 − (µ+ũ)α2

α3
. Therefore, when ũ > α3r2

α2
− µ

.
= uc, λ3 < 0. According to the

Routh-Hurwitz criterion, E∗
0 is locally asymptotically stable. This completes the

proof.
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Remark 2.1. µ is always less than α3r2
α2

, i.e., uc > 0 in Theorem 2.2.

Suppose model (1.1) only involves chemotherapy. Then model (1.1) is equivalent
to the following model

dL1

dt
= µ− r1L1 + α1

TL2

η + T
− β1(1− e−C)L1,

dL2

dt
= r1L1 − α3L2 − β2(1− e−C)L2,

dT

dt
= r2T (1−

T

K
)− α2TL2 − β3(1− e−C)T,

dC

dt
= ṽ − σC.

(2.6)

Theorem 2.3. For single chemotherapy, the tumor-free equilibrium E0
∗ = ( µ

r1+β1Θ
,

r1µ
(r1+β1Θ)(α3+β2Θ) , 0,

ṽ
σ ) of model (2.6) is locally asymptotically stable for ṽ > vc and

unstable for ṽ ≤ vc, where

vc
.
= −σln(1− Θ̃),Θ = 1− e−

ṽ
σ (2.7)

and

Θ̃ =
3

√
−Q

2
+
√
∆+

3

√
−Q

2
−
√
∆− b

3a
(2.8)

where
∆ = (

Q

2
)2 + (

P

3
)3, P =

c

a
− b2

3a2
, Q = 2(

b

3a
)2 − bc

3a2
+
d

a
.

Proof. It is easy to know that model (2.6) has a tumor-free equilibrium E0
∗ =

(L∗
1, L

∗
2, T

∗, C∗) = ( µ
r1+β1Θ

, r1µ
(r1+β1Θ)(α3+β2Θ) , 0,

ṽ
σ ), and the corresponding Jacobian

matrix is

J(E0
∗) =


−r1 − β1Θ 0

α1L
∗
2

η −β1L∗
1e

− ṽ
σ

r1 −α3 − β2Θ 0 −β2L∗
2e

− ṽ
σ

0 0 r2 − α2L
∗
2 − β3Θ 0

0 0 0 −σ


then the characteristic equation of model (2.6) at E0

∗ is

(λ+ r1 + β1Θ)(λ+ α3 + β2Θ)(λ− r2 + α2L
∗
2 + β3Θ)(λ+ σ) = 0 (2.9)

and the eigenvalues of (2.9) are given by λ1 = −(r1+β1Θ) < 0, λ2 = −(α3+β2Θ) <
0, λ3 = −σ < 0 and λ4 = r2 − α2L

∗
2 − β3Θ.

Denote

F (Θ) = (r1 + β1Θ)(α3 + β2Θ)(−r2 + α2L
∗
2 + β3Θ) = aΘ3 + bΘ2 + cΘ+ d,

where
a = β1β2β3, b = r1β2β3 + α3β1β3 − r2β1β2,

c = r1α3β3 − r1r2β2 − α3r2β1, d = α2r1µ− α3r1r2.
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By the Kaldan formula, the cubic equation F (Θ) = 0 has a positive root

Θ̃ =
3

√
−Q

2
+

√
∆+

3

√
−Q

2
−

√
∆− b

3a
.

Therefore, when ṽ > vc, (1 − e
ṽ
σ ) > Θ̃. Then F (Θ) > 0, which reveals λ4 <

0. According to the Routh-Hurwitz criterion, E0
∗ is asymptotically stable. This

completes the proof.

Remark 2.2. The Θ̃ shown in Eq.(2.8) is always in the interval (0, 1), i.e., vc > 0
in Theorem 2.3.
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(a) Single immunotherapy
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(b) Single chemotherapy

Figure 1. The variations of the number of tumors with time for single therapy.

Based on the estimated values of every parameter in Table 1, we have uc =
5.3857 × 104 and vc = 0.0625. Taking ũ = 5.5 × 104 > uc and ṽ = 0.063 > vc,
we know that high-dose single immunotherapy and single chemotherapy need 600
days and 2000 days to eliminate the tumor with size 6 × 105 respectively, and the
tumor cannot be eliminated when ũ = 5.2× 104 < uc or ṽ = 0.062 < vc (as shown
in Fig.1). That is, both high-dose single immunotherapy and single chemotherapy
can wipe out tumors eventually, but it needs a long time. Therefore, in order to
alleviate the pain of patients and prolong their survival time, we will next consider
the anti-tumor effect of chemotherapy combined with immunotherapy, and seek an
optimal combined treatment strategy.

3. The optimal control problem

Since the dimensions of uc and vc are not consistent, referring to the optimal control
methods for tumor-immune model in [17], we make the following transformation for
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model (1.1): L1 = x1, L2 = ucx2, T = y, C = vcz, then a new model is given by

dx1
dt

= µ− r1x1 + α4
x2y

η + y
− β1(1− e−vcz)x1,

dx2
dt

= r3x1 − α3x2 − β2(1− e−vcz)x2 + u,

dy

dt
= r2y(1−

y

K
)− α5x2y − β3(1− e−vcz)y,

dz

dt
= v − σz,

(3.1)

where α4 = α1uc, r3 = r1
uc
, α5 = α2uc, u = ũ

uc
, v = ṽ

vc
.

From Theorem 2.2 and Theorem 2.3, the number of tumors will eventually reach
zero if and only if u > 1 or v > 1 for model (3.1). Based on the above analysis,
we take u and v as control variables and limit them in [0, 1]. Recording the state
variables and control variables of model (3.1) as O(t) = [x1(t), x2(t), y(t), z(t)]

T and
w(t) = [u(t), v(t)]T, then model (3.1) can be written as

O′(t) = f(t, O(t), w(t)), t ∈ [0, tf ]. (3.2)

In addition, the concentration of chemotherapy drugs in patients should not
exceed the maximum tolerable concentration zmax, otherwise it will produce toxicity
[15]. Thus, model (3.1) has a constraint condition

0 ≤ z(t) ≤ zmax. (3.3)

In [17], Pang et al. minimized the number of tumor cells as well as the costs
produced by immunotherapy and chemotherapy. Our aim is to design a combi-
nation therapy strategy to minimize the number of tumors, the number of killing
lymphocytes and the cost of combination therapy as much as possible. Thus, the
cost function is defined as

J(u(t), v(t)) = ε1y(tf )− ε2x1(tf )− ε3x2(tf ) +

∫ tf

0

[
1

2
(εuu

2(t) + εvv
2(t))]dt, (3.4)

where the linear function [ε1y(tf ) − ε2x1(tf ) − ε3x2(tf )] (denoted by Φ[tf , O(tf )]
([tf , O(tf )] ∈ S ⊂ R5

+)) is used to evaluate the killing degree of tumors, imma-
ture lymphocytes and mature lymphocytes after treatment, ε1, ε2 and ε3 are the
weight factors related to the number of tumors, immature lymphocytes and mature
lymphocytes, respectively. The quadratic function 1

2 [εuu
2(t)+ εvv

2(t)] (denoted by
L[t, w(t)]) represents the cost of immunotherapy and chemotherapy, εu and εv are
weight factors related to the cost of immunotherapy and chemotherapy, respectively.
Thus, the optimal problem can be transformed into seeking an optimal control pair
(u∗, v∗) such that

J(u∗, v∗) = min{J(u, v) : u, v ∈ V }, (3.5)

where V is the admissible control set and defined as

V = { (u(t), v(t))| (u(t), v(t)) ∈ L∞([0, tf ],R2
+), u(t), v(t) ∈ [0, 1]}. (3.6)
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3.1. Existence of optimal control
To prove the existence of optimal solutions for equation (3.4), we use Theorem 4.1
given by Fleming and Rishel in [7] and Theorem 9.2.1 given by Lukes in [12].

Theorem 3.1. There exists an optimal solution (O∗, u∗, v∗) ∈ V 1,∞([0, tf ],R4
+)×

L∞([0, tf ],R2
+) for the optimal control problem (3.2)-(3.4) such that

J(u∗, v∗) = min{J(u, v) : u, v ∈ V }, (3.7)

where O∗ = (x∗1, x
∗
2, y

∗, z∗)T and V is the admissible control set defined on [0, 1]. if
the following conditions are satisfied:

(i) The admissible control set V and the corresponding variables with initial con-
ditions are non-empty;

(ii) The admissible control set V is convex and closed;
(iii) The set S is compact and Φ[tf , O(tf )] is continuous on S;
(iv) The right-hand side of the state equation (3.2) is continuous and satisfies

the Lipschitz condition with respect to the state variables. Furthermore, it is
bounded by a linear combination of the state and control variables and can be
written as a linear function of control variables;

(v) The integrand L[t, w(t)] of the cost function is convex on V and is bounded
below.

Proof. (1) From Theorem 1.1, it is easy to see that the solutions of model (3.1)
are also non-negative and bounded. Furthermore, the coefficients of model (3.1) are
positive. Therefore, the state variables and control variables of V with the initial
conditions are non-empty.

(2) By the definition of the control set V , it is clear that the control set V is
bounded and convex.

(3) The set S is closed and bounded, thus S is compact. Obviously, Φ[tf , O(tf )]
is continuous on S.

(4) Clearly, right-side function f(t, O(t), w(t)) of state equation (3.2) is contin-
uous, and model (3.1) can be expressed as

f(t, O(t), w(t)) = ϖ1O(t) +ϖ2(t, O(t), w(t)),

where

ϖ1 =


−r1 − β1 0 0 0

r3 −α3 − β2 0 0

0 0 r2 − β3 0

0 0 0 −σ


and

ϖ2(t, O(t), w(t)) =


µ+ α4

x2y
η+y + β1x1e

−vcz

β2x2e
−vcz + u

− r2y
2

K − α5x2y + β3ye
−vcz

v

 .
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Since the state variables of model (3.1) are bounded, there is a constant C1 > 0
such that ∣∣ϖ2(t, Ō(t), w(t))−ϖ2(t, O(t), w(t))

∣∣ ≤ C1

∣∣Ō(t)−O(t)
∣∣ ,

then we get ∣∣f(t, Ō(t), w(t))− f(t, O(t), w(t))
∣∣ ≤ C2

∣∣Ō(t)−O(t)
∣∣ ,

where C2 = ∥ϖ1∥ + C1. That is, f(t, O(t), w(t)) satisfies the Lipschitz condition
with respect to O(t).

Furthermore, model (3.1) can also be expressed as

f(t, O(t), w(t)) = σ1(t, O(t)) + σ2w(t), (3.8)

where

σ1(t, O(t)) =


µ− r1x1 + α4

x2y
η+y − β1(1− e−vcz)x1

r3x1 − α3x2 − β2(1− e−vcz)x2

r2y(1− y
K )− α5x2y − β3(1− e−vcz)y

−σz

 , σ2 =


0 0

1 0

0 0

0 1

 .

Since the solution of model (3.1) is bounded, there are some constants h1, h2, h3 > 0
such that

|f(t, O(t), w(t))| = |σ1(t, O(t)) + σ2w(t)|
≤ |σ1(t, O(t))|+ |σ2| |w(t)|
≤ h1 + h2 |O(t)|+ h3 |w(t)|
≤ h0(1 + |O(t)|+ |w(t)|)

where h0 = max{h1, h2, h3}.
(5) In order to verify the convexity of the integrand L[t, w(t)] on the control set

V , we need to prove that the inequality

L(t, (1− q)w1 + qw2) ≤ (1− q)L(t, w1) + qL(t, w2) (3.9)

always holds for any q ∈ (0, 1) and w1 = (w11, w12), w2 = (w21, w22) ∈ V . We can
easily get

L(t, (1− q)w1 + qw2) =

2∑
i=1

εi[(1− q)w1i + qw2i]
2

2
,

(1− q)L(t, w1) + qL(t, w2) =

2∑
i=1

εi[(1− q)w2
1i + qw2

2i]

2
,

then we have

L(t, (1− q)w1 + qw2)− [(1− q)L(t, w1) + qL(t, w2)]

=

2∑
i=1

εi
2
[(1− q)

2
w2

1i + q2w2
2i + 2q(1− q)w1iw2i − (1− q)w2

1i − qw2
2i]
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=

2∑
i=1

εi
2
[q(q − 1)w2

1i + q(q − 1)w2
2i + 2q(1− q)w1iw2i]

=

2∑
i=1

εi
2
q(q − 1)(w1i − w2i)

2

and q(q − 1) ≤ 0, so equation (3.9) always holds. That is, L[t, w(t)] is a convex
function on the control set V .

Finally, we only need to prove that the integrand L[t, w(t)] is bounded below.
It is easy to obtain

L[t, w(t)] =
1

2
[εuu

2(t) + εvv
2(t)] ≥M1[u

2(t) + v2(t)] ≥M1[u
2(t) + v2(t)]−M2

≥M1|w|κ −M2

where M1 = 1
2 min{εu, εv},M2 > 0 and κ = 2. This completes the proof.

3.2. Characterization of optimal control
In the previous subsection, we obtained the existence of optimal control. Now, we
evaluate the necessary conditions for optimal control by using Pontryagin’s Maxi-
mum Principle [19]. In order to deduce the system optimality, we have formulated
the Hamiltonian function including state constraint as follows:

H =
1

2
(εuu

2(t) + εvv
2(t)) +

4∑
i=1

ψi(t)f(t, O(t), w(t)) + ξ(t)k (3.10)

where

ξ(t) =

{
pf, k ≥ 0

0, k < 0

and k = z(t)−zmax, pf is a penalty factor [4]. The adjoint variables ψi(i = 1, 2, 3, 4)
are the solution of the following system

ψ′
1 = − ∂H

∂x1
= ψ1[r1 + β1(1− e−vcz)]− ψ2r3,

ψ′
2 = − ∂H

∂x2
= −ψ1

α4y

η + y
+ ψ2[α3 + β2(1− e−vcz)] + ψ3α5y,

ψ′
3 = −∂H

∂y
= −ψ1

α4ηx2

(η + y)
2 + ψ3[r2(

2y

K
− 1) + α5x2 + β3(1− e−vcz)],

ψ′
4 = −∂H

∂z
= (ψ1β1x1 + ψ2β2x2 + ψ3β3y)vce

−vcz + ψ4σ − ξ(t),

(3.11)

with transversality condition

ψ1(tf ) =
∂Φ[tf , O(tf )]

∂x1
= −ε2, ψ2(tf ) =

∂Φ[tf , O(tf )]

∂x2
= −ε3,

ψ3(tf ) =
∂Φ[tf , O(tf )]

∂y
= ε1, ψ4(tf ) =

∂Φ[tf , O(tf )]

∂z
= 0,

(3.12)

where Φ[tf , O(tf )] is the terminal performance index of the cost function (3.4).
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Theorem 3.2. There exists an optimal control (u∗, v∗) ∈ V and optimal state
O∗ = (x∗1, x

∗
2, y

∗, z∗)T such that

J(u∗, v∗) = min{J(u, v) : u, v ∈ V },

then the characterization of the optimal control pair are given by

u∗ = max{min{−ψ2

εu
, 1}, 0}, v∗ = max{min{−ψ4

εv
, 1}, 0}, (3.13)

where ψi(i = 1, 2, 3, 4) satisfy the adjoint equation (3.11) subject to the transversality
conditions (3.12).

Proof. According to the Pontryagin’s Maximum Principle, the control variable
(u∗, v∗) is the minimum point of the cost function J(u, v) and the Hamiltonian
function H. By equating to zero the derivatives of H with respect to the control
variables, we obtain

∂H

∂u
= εuu

∗ + ψ2 = 0,

∂H

∂v
= εvv

∗ + ψ4 = 0.

Thus we have u∗(t) = −ψ2

εu
, v∗(t) = −ψ4

εv
. Using the property of the control set, we

have

u∗(t) =



0,
ψ2

εu
≥ 0,

− ψ2

εu
,

ψ2

εu
∈ (−1, 0),

1,
ψ2

εu
≤ −1

and

v∗(t) =



0,
ψ4

εv
≥ 0,

− ψ4

εv
,

ψ4

εv
∈ (−1, 0),

1,
ψ4

εv
≤ −1.

This completes the proof.
Therefore, we obtained an optimization model consisting of initial conditions,

state equation (3.1), adjoint equation (3.11), transversality conditions (3.12) and
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optimal control pairs (3.13) as follows:

dx∗1
dt

= µ− r1x
∗
1 + α4

x∗2y
∗

η + y∗
− β1(1− e−vcz

∗
)x∗1,

dx∗2
dt

= r3x
∗
1 − α3x

∗
2 − β2(1− e−vcz

∗
)x∗2 +max{min{−ψ2

εu
, 1}, 0},

dy∗

dt
= r2y

∗(1− y∗

K
)− α5x

∗
2y

∗ − β3(1− e−vcz
∗
)y∗,

dz∗

dt
= max{min{−ψ4

εv
, 1}, 0} − σz∗,

x∗1(0) = x∗10, x
∗
2(0) = x∗20, y

∗(0) = y∗0 , z
∗(0) = z∗0 ,

ψ′
1 = ψ1[r1 + β1(1− e−vcz

∗
)]− ψ2r3,

ψ′
2 = −ψ1

α4y
∗

η + y∗
+ ψ2[α3 + β2(1− e−vcz

∗
)] + ψ3α5y

∗,

ψ′
3 = −ψ1

α4ηx
∗
2

(η + y∗)
2 + ψ3[r2(

2y∗

K
− 1) + α5x

∗
2 + β3(1− e−vcz

∗
)],

ψ′
4 = (ψ1β1x

∗
1 + ψ2β2x

∗
2 + ψ3β3y

∗)vce
−vcz∗ + ψ4σ − ξ(t),

ψ1(tf ) = −ε2, ψ2(tf ) = −ε3, ψ3(tf ) = ε1, ψ4(tf ) = 0.

(3.14)

4. Numerical simulations
In this section, numerical simulations are performed to illustrate the treatment
effect for three different therapeutic strategies (i.e., single immunotherapy, single
chemotherapy and immuno-chemotherapy). We implement the so-called forward-
backward sweep method by using the scheme proposed in [2] to solve the optimality
system (3.14), and to show the change states of lymphocytes and tumors in each
therapeutic strategy of 100 days.

Without loss of generality, we choose the initial conditions as follows:

x1(0) = 2.1× 104, x2(0) = 70, y(0) = 6× 105, z(0) = 0

and the rest of the parameters of model (1.1) are given in Table 1. Meanwhile,
we assumed the maximum drug concentration zmax = 1.4426, penalty factor pf =
10000, weight coefficient ε1 = 2000, ε2 = 1500, ε3 = 1500, εu = 500 and εv = 500
by referring to [17]. Then the optimal states and the optimal controls corresponding
to three different treatment strategies are shown in Fig.2, and the numerical results
are:

Single immunotherapy : x∗1(100) = 2.253× 104, x∗2(100) = 31.03, y∗(100) = 1668,

Single chemotherapy : x∗1(100) = 2.240× 104, x∗2(100) = 5.981, y∗(100) = 84.68,

Immuno− chemotherapy : x∗1(100)=2.246× 104, x∗2(100)=28.01, y∗(100)=1.154.

By observing the above numerical results, it can be noted that immunotherapy
has the least killing effect on lymphocytes, followed by immuno-chemotherapy, and
chemotherapy has the greatest killing effect on lymphocytes. Although the number
of tumors is significantly reduced when the above three treatment strategies are
implemented respectively, immuno-chemotherapy is the best strategy in eliminating
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Table 1. Parameter descriptions and estimated values of (1.1)

Parameter: Description Value Source

µ: Rate of immature lymphocyte production 1.35× 104 day−1 Estimated
r1: Maturation rate of immature lymphocytes 0.62 cells−1day−1 Estimated
r2: Tumor cells growth rate 0.18 day−1 [10]
K: Tumor cells carrying capacity 5× 106 cells [10]
α1: Maximum mature lymphocytes recruitment rate 0.1254 day−1 [10]
η: Steepness coefficient of mature lymphocytes recruitment 2.019× 107 cells [10]
α2: Decay rate of tumour cells by mature lymphocytes 1.101× 10−7 cells−1day−1 [10]
α3: The inactivation rate of the mature lymphocytes 0.0412 day−1 [10]
β1: Fractional immature lymphocytes killed by chemotherapy 0.034 day−1 [6]
β2: Fractional mature lymphocytes killed by chemotherapy 0.034 day−1 [6]
β3: Fractional tumor cells killed by chemotherapy 0.9 day−1 [6]
σ: Rate of chemotherapy drug decay 0.3466 day−1 [17]

tumors. To further verify the effectiveness of the optimal control strategy, the
efficacy of immuno-chemotherapy strategy with fixed drug dosage (i.e., u and v are
equal to the initial or terminal values of the optimal control variables u∗ and v∗)
or optimal control (i.e., u = u∗, v = v∗) are compared in Fig.3, which shows that
immuno-chemotherapy with optimal control is still the most effective strategy in
reducing the number of inactivated lymphocytes and inhibiting tumor growth.

In order to exhibit the efficacy of optimal combination therapy clearly, we define
the efficacy function as

E(t) =
y(0)− y∗(t)

y(0)
,

where y(0) is the initial number of tumor cells, and y∗ is the optimal state cor-
responding to optimal controls u∗ and v∗. From Fig.4(b), it can be seen that the
elimination rate of tumors can reach more than 99 percent after 26 days by adopting
the optimal immuno-chemotherapy of r = 0.18.

Moreover, when the growth rate of tumor cells increases to r = 0.39, the drug
dose of the optimal immuno-chemotherapy strategy used in the early stage changes
to the combination of low-dose immunotherapy (with gradually increasing dose) and
low-dose chemotherapy, and single immunotherapy is used in the post-treatment
period (as shown in Fig.4(a)). Meanwhile, the elimination rate of tumors can reach
99 percent after only 8 days (as shown in Fig.4(b)). The results indicate that the
inhibitory effect of drugs on tumor growth is more effective in the acute stage of
cancer, but less obvious in the chronic advanced stage.

5. Conclusion
In this paper, through investigating the effects of the immuno-chemotherapy on
killing tumors, we obtain that high-dose single immunotherapy and high-dose sin-
gle chemotherapy are not enough to eliminate tumor cells, which means that mono-
therapy for tumor cells is not the best choice for patients. Using the optimization
function with the minimal cost of drugs, maximal number of killing tumor cells
and minimal number of killing lymphocytes, we discuss the effects of combination
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Figure 2. Time series plots of optimal states and optimal control variables of the optimality system for
different therapeutic strategies.

therapy by applying the optimal control theory, and obtain the optimal drug strat-
egy to suppress the tumor growth. Numerical simulation results of three different
strategies in 100 days show that the optimal immuno-chemotherapy can eliminate
tumors effectively, and it is more effective in the acute stage of tumor growth. The
development of new drugs with strong killing rate to tumor and weak killing rate
to immune cells is an effective strategy.
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Figure 3. Efficacy of immuno-chemotherapy for different drug doses.
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Figure 4. Time series plots of optimal control variables and efficacy function for the optimal immuno-
chemotherapy.
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