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LIMIT CYCLES FOR PIECEWISE LINEAR
SYSTEMS WITH IMPROPER NODE∗

Hefei Zhao1 and Kuilin Wu1,†

Abstract This paper is concerned with the number of limit cycles of pla-
nar piecewise linear systems for improper node-improper node and improper
node-node types with a straight line of separation. We obtain some sufficient
conditions for the existence and stability of limit cycles and prove that the
systems have at least two nested limit cycles in some parameter regions.
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1. Introduction
Since the 1950s, piecewise smooth(PWS) systems are widely applied to some theo-
retical researches and practical applications, such as the mechanics, electrical engi-
neering and mathematical biology and so on, see [1, 3, 4, 21].

In particular, piecewise linear systems(PWLS) also have many applications in
many real-world systems, see [14,20]. There are still some open problems for PWLS,
such as the existence and number of limit cycles, which is related to Hilbert’s 16th
problem. Filippov [4] classified singular points for planar discontinuous systems.
In 1991, Lum and Chua [15] conjectured that continuous PWS systems have at
most one limit cycle. This conjecture was proved by Freire etc [5] in 1998. Gian-
nakopoulos and Pliete [8] considered a special class of planar PWLS and proved the
existence of at most two limit cycles. Freire etc [6] gave a Liénard-like canonical
form with seven parameters and proved the existence of two limit cycles surround-
ing the sliding set for focus-focus type. Han and zhang [9] proved that PWLS have
two limit cycles near a focus of either FF , FP or PP type (F and P represent
the focus and parabolic, respectively). Huan and Yang [10] provided an example
along with numerical simulations to illustrate the existence of 3 limit cycles for the
general PWLS, and Llibre and Ponce [16] gave a rigorous computer-assisted proof
of the quoted numerical result. Hou and Liu [13] considered the the number of limit
cycles for a class of piecewise Hamiltonian systems, and gave upper bounds of the
number of limit cycles bifurcated from a period annulus of a piecewise polynomial
Hamiltonian system.

In the following, we first introduce some definitions and concepts. Assume that
the plane divides into two regions by a straight line x = 0: the right half-plane R2

−
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and the left half-plane R2
+, i.e.

R2
− = {(x, y) ∈ R2 : x < 0},

R2
+ = {(x, y) ∈ R2 : x > 0}.

The general planar piecewise smooth linear system can be written as

ẋ =

{
F−(x) = (F−

1 (x), F−
2 (x))T = A−x+ b−, x ∈ R2

−,

F+(x) = (F+
1 (x), F+

2 (x))T = A+x+ b+, x ∈ R2
+,

(1.1)

where x = (x, y)T , A− and A+ are 2 × 2 constant matrices and b− and b+ are
constant vectors. If F−(0, y)=F+(0, y), system (1.1) is continuous. The equilib-
rium (x, y) is called visible(invisible) for the subsystem on R2

− if F−(x, y) = 0 for
x < 0(x > 0). Similarly, the equilibrium (x, y) is called visible(invisible) for the
subsystem on R2

+ if F+(x, y) = 0 for x > 0(x < 0). The point (0, y) is called a
crossing point if F−

1 (0, y)F+
1 (0, y) > 0 and the set of the crossing points is defined

as follows:
Σc = {(0, y) : F−

1 (0, y)F+
1 (0, y) > 0}.

The point (0, y) is called a sliding point if F−
1 (0, y)F+

1 (0, y) ≤ 0 and the set of the
sliding points is defined as follows:

Σs = {(0, y) : F−
1 (0, y)F+

1 (0, y) ≤ 0}.

The sliding set is attractive if F+
1 (0, y) < 0 and F−

1 (0, y) > 0, while the sliding set
is repulsive if F+

1 (0, y) > 0 and F−
1 (0, y) < 0. According to the convex method of

Filippov, the solutions of system (1.1) satisfy the equation

ẋ = λF−(x) + (1− λ)F+(x), x ∈ Σs,

where λ is selected so that the above vector field is tangent to the sliding set, that
is

λF−
1 (x) + (1− λ)F+

1 (x) = 0, x ∈ Σs.

Then, for x ∈ Σs and |F+
1 (x)|+ |F−

1 (x)| 6= 0, we have

λ(y) =
F+
1 (x)

F+
1 (x)− F−

1 (x)
,

and the so-called sliding solutions are given by

ẋ = 0,

ẏ = g(y)

=
F+
1 (x)F−

2 (x)− F−
1 (x)F+

2 (x)

F+
1 (x)− F−

1 (x)
, x ∈ Σs.

If |F+
1 (0, y)|+|F−

1 (0, y)| 6= 0 and F+
1 (0, y)·F−

1 (0, y) = 0, the point (0, y) is called
a tangency point. We call the point (0, y) is a singular sliding point if F+

1 (0, y) =
F−
1 (0, y) = 0. There are three cases: (1) both vector fields are tangent to the line

x = 0, (2) one of them is tangent while the other one vanishes, and (3) both vector
fields vanish. The points of case (1) are called double tangency points, while the
points of case (2) and (3) are called boundary equilibrium points.
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If (0, y′) ∈ Σs with g(y′) = 0, the point (0, y′) is called a pseudoequilibrium,
see [6]. An invisible double tangency point with close orbits spiraling around it is
called a pseudofocus. In the attractive sliding set, the pseudoequilibrium is a stable
pseudonode if g′(y) < 0 and a pseudosaddle if g′(y) > 0. In the repulsive sliding set,
the pseudoequilibrium is an unstable pseudonode if g′(y) > 0 and a pseudosaddle if
g′(y) < 0.

Liénard canonical form [6] was given as follows:

 ẋ

ẏ

 =



 T− −1

D− 0

x

y

−

 0

a−

 , x < 0,

 T+ −1

D+ 0

x

y

−

−b

a+

 , x > 0.

(1.2)

System (1.2) is a linear refracting system if b = 0. In [18], Li and Chen proved
the uniqueness of crossing limit cycles for planar piecewise linear systems with a line
of discontinuity and without sliding sets. Buzzi, Medrado and Torres [2] studied
the generic bifurcation of refracted systems.

According to singularity type of the subsystems, system (1.2) can be divided
into 6 cases: FF , FN , FS, SS, SN , NN , where F, S and N represent the focus or
center, saddle and node, respectively. Huan and Yang [11] proved that system (1.2)
for SS has at least two limit cycles. Wang etc [22] showed that two limit cycles
can appear in the system (1.2) for FS. In [23], the authors showed that system
(1.2) for SN has two limit cycles. Freire etc [7] proved that there are at least three
limit cycles for FS, FN and FF . Llibre and Zhang [17] proved that the maximum
number of crossing limit cycles is two for systems (1.2) with a center. Huan and
Yang [12] showed the number of limit cycles is for NN (not including the improper
node N ′). Zhao etc [24] studied the global dynamics of refracting system (1.2) for
NN , N ′N and N ′N ′. Li and Chen [19] proved that there are no sliding periodic
orbits for NN , N ′N and N ′N ′.

In this paper, we consider the existence and number of crossing limit cycles
of system (1.2) for N ′N and N ′N ′. The paper is organized as follows. We deal
with the existence and number of limit cycles of system (1.2) for N ′N ′ and N ′N in
section 2 and 3, respectively.

2. Case N ′N ′

In this section, we consider the existence and number of limit cycles of system (1.2)
with N ′N ′. First, we analyse the Poincaré map of system (1.2) for N ′N ′.
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2.1. The Poincaré map of N ′N ′

If both the left and right subsystems of system (1.2) have improper nodes, then
system (1.2) can be written as

 ẋ

ẏ

 =



 T− −1

(T−)2

4 0

x

y

−

 0

a−

 , x < 0,

 T+ −1

(T+)2

4 0

x

y

−

−b

a+

 , x > 0.

(2.1)

The left subsystem (2.1) has an improper node N ′
L(

4a−

(T−)2 ,
4a−

T− ) with eigenvalues
λ−
1,2 = T−

2 and the right subsystem (2.1) has an improper node N ′
R(

4a+

(T+)2 ,
4a+

T+ + b)

with eigenvalues λ+
1,2 = T+

2 . Moreover, the invariant manifolds of the left and right
subsystems (2.1) are given by

l− : y = λ−x+
a−

λ− ,

and
l+ : y = λ+x+

a+

λ+
+ b,

respectively. Assume that l− and l+ intersect the straight line x = 0 at points
(0, y−m) and (0, b+ y+m) respectively, i.e.

y−m =
a−

λ− , y+m =
a+

λ+
.

2.1.1. The left Poincaré map

Figure 1. Illustration of PL(y−
0 ) and PR(y+

0 )(b > 0).

Suppose that the orbit of the left subsystem (2.1) starting at the initial point
(0, y−0 ) with y−0 > 0 goes into the left zone R2

− and reaches x = 0 again at some
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point (0, y−1 ) with y−1 < 0 after some finite time t−0 > 0, see Figure 1(a). Then we
can define a left Poincaré map PL satisfying

PL(0) = 0, PL(y
−
0 ) = y−1 , y−0 > 0 > y−1 .

The solution of the left subsystem (2.1) for the initial value (0, y−0 ) isx(t−)

y(t−)

 =

 −t−e
T−t−

2

(1− T−t−

2 ) · eT−t−
2

 y−0 +

 (2T−t−−4)·a−e
T−t−

2 +4a−

(T−)2

(t− − 4
T− ) · a−eT−t−

2 + 4a−

T−

 .

(2.2)
Substituting x(t−) = 0 into (2.2), we have that the parametric representations

of the left Poincaré map with respect to t− are

y−0 (t
−) =

2a− · [(T−t− − 2) · eT−t−
2 + 2]

t−(T−)
2
e

T−t−
2

,

y−1 (t
−) =

2a− · (T−t− − 2e
T−t−

2 + 2)

t−(T−)
2 , t− > 0.

(2.3)

From [24], we know that a− > 0 is necessary for the existence of limit cycles of
system (2.1). In what follows, we only deal with PL for a− > 0.

Lemma 2.1. For the left subsystem (2.1), the left Poincaré map PL is well defined
by (2.3) if and only if a− > 0. Moreover, the following conditions hold.

1. y−0 (t
−) is increasing and y−1 (t

−) is decreasing with respect to t−.
2. When T− > 0, the domain and range of PL are (0, y−m) and (−∞, 0),

respectively.
(I) PL is decreasing with respect to y−0 .
(II) PL has y−0 = y−m as an asymptote.
(III) P ′′

L(y
−
0 ) < 0.

3. When T− < 0, the domain and range of PL are (0, + ∞) and (y−m, 0),
respectively.

(I) PL is decreasing with respect to y−0 .
(II) PL has y−1 = y−m as an asymptote.
(III) P ′′

L(y
−
0 ) > 0.

4. We define PL(0) = 0. Then PL is continuous at y−0 = 0 and the first two
derivatives of PL at y−0 = 0 are

P ′
L(0) = −1, P ′′

L(0) = −4T−

3a−
.

Proof. It follows from (2.3) that

(y−0 (t
−))′ = − 2a− · g(t−)

(t−)2(T−)2e
T−t−

2

,

(y−1 (t
−))′ = − 2a− · h(t−)

(t−)2(T−)2
,

(2.4)

where
g(t−) = T−t− − 2e

T−t−
2 + 2,

h(t−) = (T−t− − 2) · eT−t−
2 + 2.
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Note that g′′(t−) < 0 and g′(0) = 0. We have that g′(t−) < g′(0) = 0 as t− > 0 and
g(t−) < g(0) = 0 as t− > 0. Similarly, we can know that h(t−) > 0 as t− > 0. Thus,
y−0 (t

−) and y−1 (t
−) are both monotone with respect to t− for a− > 0. Therefore,

the left Poincaré map PL : y−0 7→ y−1 is well defined by (2.3).
1. Since g(t−) < 0, h(t−) > 0 and a− > 0, we have (y−0 (t

−))′ > 0 and
(y−1 (t

−))′ < 0. Thus y−0 (t
−) is increasing and y−1 (t

−) is decreasing with respect to
t−.

2. When T− > 0, by (2.3), we obtain that

lim
t−→+∞

y−0 (t
−) = y−m,

lim
t−→+∞

y−1 (t
−) = −∞,

lim
t−→0+

y−0 (t
−) = lim

t−→0+
y−1 (t

−)

= 0.

(2.5)

Then, the domain and range of PL are (0, y−m) and (−∞, 0), respectively.
(I) From (2.4), we have

P ′
L(y

−
0 ) =

(y−1 (t
−))′

(y−0 (t
−))′

=
[(T−t− − 2) · eT−t−

2 + 2] · eT−t−
2

T−t− − 2e
T−t−

2 + 2

< 0.

(2.6)

Then PL is decreasing with respect to y−0 .
(II) By (2.5), we know that PL has y−0 = y−m as an asymptote.
(III) Direct computation from (2.4), it yields that

P ′′
L(y

−
0 ) =

(y−0 (t
−))′ · (y−1 (t−))′′ − (y−1 (t

−))′ · (y−0 (t−))′′

((y−0 (t
−))′)3

=
(T−)4(t−)3eT

−t− · l(t−)
2a− · (T−t− − 2e

T−t−
2 + 2)3

,

(2.7)

where
l(t−) = −T−t− · eT−t−

2 + eT
−t− − 1.

Note that l′(t−) = T−e
T−t−

2 · v(t−), where v(t−) = e
T−t−

2 − 1
2T

−t− − 1. We have
that v′(t−) > 0, v(t−) > v(0) = 0 as t− > 0 and l′(t−) > 0 as t− > 0, that is
l(t−) > l(0) = 0 as t− > 0. Therefore, P ′′

L(y
−
0 ) < 0.

3. When T− < 0, it follows from (2.3) that

lim
t−→0+

y−0 (t
−) = lim

t−→0+
y−1 (t

−) = 0, lim
t−→+∞

y−0 (t
−) = +∞, lim

t−→+∞
y−1 (t

−) = y−m.

Then the domain and range of PL are (0, +∞) and (y−m, 0) respectively and PL

has y−1 = y−m as an asymptote. By (2.6) and (2.7), PL is decreasing with respect to
y−0 and P ′′

L(y
−
0 ) > 0.
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4. From the proofs of statements 2 and 3, we know that PL is continuous at
y−0 = 0. Next, we calculate the first two derivatives of PL at y−0 = 0. By the first
equation of (2.3), we have

[t−(T−)2 · y−0 − 2a− · (t−T− − 2)] · eT−t−
2 − 4a− = 0. (2.8)

By Implicit Function Theorem, we obtain that

t− =
2

a−
· y−0 +

2T−

3(a−)2
· (y−0 )2 +

5(T−)2

18(a−)3
· (y−0 )3 +

17(T−)3

135(a−)4
· (y−0 )4 + · · · . (2.9)

Substituting (2.9) into the second equation of (2.3), it yields that

PL(y
−
0 ) = −y−0 − 2T−

3a−
· (y−0 )2 −

4(T−)2

9(a−)3
· (y−0 )3 −

79(T−)3

270(a−)4
· (y−0 )4 + · · · . (2.10)

Therefore, we have

PL(0) = 0, P ′
L(0) = −1, P ′′

L(0) = −4T−

3a−
.

2.1.2. The right Poincaré map

Suppose that the orbit of the right subsystem (2.1) starting at the initial point
(0, y+0 ) with y+0 < b goes into the left zone R2

+ and reaches x = 0 again at some
point (0, y+1 ) with y+1 > b after some finite time t+0 > 0, see Figure 1(b). Then we
can define the right Poincaré map PR satisfying

PR(b; b) = b, PR(y
+
0 ; b) = y+1 , y+1 > b > y+0 .

The solution of the right subsystem (2.1) for the initial value (0, y+0 ) isx(t+)

y(t+)

 =

 −t+e
T+t+

2

(1− T+t+

2 ) · eT+t+

2

 y+0 +

A(t+)

B(t+)

 , (2.11)

where

A(t+) =
(2T+t+ − 4) · a+eT+t+

2 + 4a+

(T+)2
+ bt+e

T+t+

2 ,

and
B(t+) = (t+ − 4

T+
) · a+eT+t+

2 +
4a+

T+
+ (

T+t+

2
− 1) · beT+t+

2 + b.

Substituting x(t+) = 0 into (2.11), we have that the parametric representations
of the right Poincaré map PR with respect to t+ are

y+0 (t
+) =

2a+ · [(T+t+ − 2) · eT+t+

2 + 2]

t+(T+)2e
T+t+

2

+ b,

y+1 (t
+) =

2a+ · (T+t+ − 2e
T+t+

2 + 2)

t+(T+)2
+ b, t+ > 0.

(2.12)

For the right Poincaré map PR, we have the following Lemma.
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Lemma 2.2. For the right subsystem (2.1), the right Poincaré map PR is well
defined by (2.12) if and only if a+ < 0. Moreover, the following conditions hold.

1. y+0 (t
+) is decreasing and y+1 (t

+) is increasing with respect to t+.
2. When T+ > 0, the domain and range of PR are (b + y+m, b) and (b,+∞),

respectively.
(I) PR is decreasing with respect to y+0 .
(II) PR has y+0 = b+ y+m as an asymptote.
(III) P ′′

R(y
+
0 ; b) > 0.

3. When T+ < 0, the domain and range of PR are (−∞, b) and (b, b + y+m),
respectively.

(I) PR is decreasing with respect to y+0 .
(II) PR has y+1 = b+ y+m as an asymptote.
(III) P ′′

R(y
+
0 ; b) < 0.

4. We define PR(b; b) = b. Then PR is continuous at y+0 = b and the first two
derivatives of PR at y+0 = b are

P ′
R(b; b) = −1, P ′′

R(b; b) = −4T+

3a+
.

The proof of this Lemma is similar to the proof of Lemma 2.1 and we omit the
proof.

2.1.3. The full Poincaré map

Now, we define the full Poincaré map by P = PR ◦PL for a fixed parameter b. From
Lemma 2.1 and Lemma 2.2, we can directly obtain some properties of P as follows.

Lemma 2.3. For system (2.1), the full Poincaré map P is well defined if and only
if a− > 0 > a+. Moreover,

P ′(0) = 1, P ′′(0) =
4

3
· (T

−

a−
− T+

a+
).

2.2. The existence and number of limit cycles of N ′N ′

In this section, we consider the existence and number for system (1.2) with N ′N ′.
System (1.2) is invariant under the change of variables (x, y, t) → (x, − y, − t),
and the change of parameters

(D+, D−, T+, T−, a+, a−, b) → (D+, D−,−T+,−T−, a+, a−,−b). (2.13)

Moreover, the authors [24] studied the global dynamics of system (1.2) with b = 0
for all node cases. Then, we only study the limit cycles of system (1.2) for b > 0 in
the following.

The Poincaré return map can be defined as the composition of the right and left
Poincaré map, i.e., P (y0) = PR(PL(y0)). In order to compute the fixed points of
the return map P (y0), we study the zeros of the following map

D1(y0; b) = PL(y0)− (P−1
R |b>0)(y0; b), y0 ≥ b > 0,

see Figure 2. For any y0∈ [b,+∞), assume that the straight line l: y=x+P−1
R (y0; b)−

y0. Then l intersects the left Poincaré map PL at the point (yl0(y0; b), PL(y
l
0(y0; b))).

We introduce a new function

D2(y0; b) = yl0(y0; b)− y0, y0 ≥ b > 0.
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Figure 2. Illustration of D1(y0; b).

Setting Graph(f) represents the set of all points which are on the graph of the
function f . From (2.12) we obtain that

(y0, y1) ∈ Graph(P−1
R |b=0) ⇔ (y0 + b, y1 + b) ∈ Graph(P−1

R |b>0). (2.14)

Moreover, it yields that

P−1
R |b>0(y0; b) = P−1

R |b=0(y0 − b; b) + b, y0 > b. (2.15)

For y0 ≥ b > 0, we have the following lemma.

Lemma 2.4. For a− > 0 > a+ and y0 ≥ b > 0, the following statements hold.
1. Sgn(D1(y0; b))=sgn(D2(y0; b)).
2. When T+ < 0 and T− < 0: for y0 ∈ (b, b + y+m), D1(y0; b) is increasing

with respect to y0 if (T±)2 = 4D± > 0, and for y0 ∈ (b, b+ y+m1
), D1(y0; b) is also

increasing with respect to y0 if (T+)2 = 4D+ > 0 and (T−)2 > 4D− > 0.
3. D2(y0; b) = D2(y0 − b; 0)− b.

Proof. 1. If D1(y0) > 0 and D2(y0) ≤ 0, then PL(y0) > (P−1
R |b>0)(y0) and

yl0(y0; b) ≤ y0. In addition, by PL(y
l
0(y0; b)) − (P−1

R |b>0)(y0) = yl0(y0; b) − y0, we
have

PL(y
l
0(y0; b)) ≤ (P−1

R |b>0)(y0; b) < PL(y0), y0 ≥ b > 0.

However, from Lemma 2.1, we know that PL is decreasing with respect to y0 which
implies that PL(y

l
0(y0; b)) ≥ PL(y0). Then there is a contradiction.

2. We only consider the case (T±)2 = 4D± > 0. The proof of case (T+)2 =
4D+ > 0 and (T−)2 > 4D− > 0 is similar to the former case. By Lemma 2.1,
when T− < 0, PL(y0) is decreasing and (PL)

′′(y0) > 0 with the domain and range
of (0, +∞) and (y−m, 0). Then we have for y0 ∈ (0, +∞)

(PL)
′′(y0) > 0 ⇒ (PL)

′(y0) > (PL)
′(0) = −1. (2.16)

Similarly, by Lemma 2.2, we have for y0 ∈ (b, b+ y+m),

(P−1
R )′′(y0; b) < 0 ⇒ ((P−1

R |b>0))
′(y0; b) < ((P−1

R |b>0))
′(0; b) = −1. (2.17)
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By (2.16) and (2.17), we have

D′
1(y0; b) = P ′

L(y0)− ((P−1
R |b>0))

′(y0; b) > 0, y0 ∈ (b, b+ y+m).

Therefore, D1(y0; b) is increasing with respect to y0 for y0 ∈ (b, b+ y+m).
3. From PL(y

l
0(y0; b))− (P−1

R |b>0)(y0; b) = yl0(y0; b)− y0 and (2.15), we have for
any y0 ≥ b,

yl0(y0; b) = PL(y
l
0(y0; b))− (P−1

R |b>0)(y0; b) + y0

= PL(y
l
0(y0; b))− (P−1

R |b=0)(y0 − b; b) + (y0 − b)

= yl0(y0 − b; 0).

Then, for any y0 ≥ b we obtain that

D2(y0; b) = yl0(y0; b)− y0

= yl0(y0 − b; 0)− (y0 − b)− b

= D2(y0 − b; 0)− b.

By the above lemma, we have that the zeros of the map D1(y0; b) are equivalent
to the zeros of the map D2(y0; b).

Theorem 2.1. (b > 0) Suppose that a− > 0 > a+ and (T±)2 = 4D± > 0 for
system (1.2), we have the following results.

1. If T+ · T− > 0, then the following subcases hold.
(I) When T+b > 0, there don’t exist limit cycles.
(II) When T+b < 0, there exists a unique stable limit cycle.
2. If T+ > 0 > T−, then the following subcases hold.
(I) When a−

T− ≤ a+

T+ , there don’t exist limit cycles.
(II) When a−

T− > a+

T+ ,
(a) If y−m ≤ y+m + b, there don’t exist limit cycles if y−m < 0 ≤ y+m + b. If

y−m ≤ y+m + b < 0, there exists bm > 0 such that system (1.2) has at least two limit
cycles for bm > b > 0, and system (1.2) has no limit cycles for b > bm. Moreover,
when b ∈ (0, bm) is sufficiently small, system (1.2) has exactly two limit cycles in
which the inter one is stable and the outer one is unstable.

(b) If y−m > y+m + b, there exists at least a stable limit cycle.
3. If T− > 0 > T+, then the following subcases hold.
(I) When a−

T− ≤ a+

T+ , there don’t exist limit cycles.
(II) When a−

T− > a+

T+ ,
(a) If y−m ≤ y+m + b, there don’t exist limit cycles if y−m − b ≤ 0 < y+m. If

0 < y−m − b ≤ y+m, there exists bm > 0 such that system (1.2) has at least two limit
cycles for bm > b > 0, and system (1.2) has no limit cycles for b > bm. Moreover,
when b ∈ (0, bm) is sufficiently small, system (1.2) has exactly two limit cycles in
which the inter one is stable and the outer one is unstable.

(b) If y−m > y+m + b, there exists at least a stable limit cycle.

Proof.
1. (I) Since b > 0, T+ · T− > 0 and T+b > 0, we have T+ > 0 and T− > 0.

By Lemma 2.1 and Lemma 2.2, it yields that the graph of PL is below the graph
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of P−1
R . Indeed, the graph of PL is below the line y1 = −y0 and the graph of P−1

R

is above the line y1 = −y0 + 2b. Therefore, there don’t exist limit cycles.
(II) Since b > 0, T+ · T− > 0 and T+b < 0, we have T+ < 0 and T− < 0.

From Lemma 2.4, D1(y0; b) is increasing with respect to y0 for y0 ∈ (b, b+ y+m). In
addition, D1(b; b) = PL(b)− (P−1

R |b>0)(b; b) = PL(b)− b < PL(0)− b = −b < 0 and
D1(y0; b) > 0 as y0 → b+ y+m. Then, there exists a unique value y

(1)
0 ∈ (b, b+ y+m)

such that D1(y
(1)
0 ; b) = 0, that is, there exists a unique limit cycle for system (2.1).

Since PL(y0) < (P−1
R |b>0)(y0; b) for y0 ∈ [b, y

(1)
0 ) and PL(y0) > (P−1

R |b>0)(y0; b) for
y0 ∈ (y

(1)
0 , b+ y+m), the limit cycle is stable.

2. Freire etc [7] changed system (1.2) with b = 0 for N ′N ′ into the following
system to reduce the parameters, that is

 ẋ

ẏ

 =



 2γL −1

γ2
L 0

x

y

+

 0

aL

 , x ≤ 0,

2γR −1

γ2
R 0

x

y

+

 0

aR

 , x ≥ 0.

(2.18)

The authors [24] proved that the origin is a center if aRγL−aLγR = 0(i.e. a−

T− = a+

T+

for system (2.1) with b = 0) and system (2.18) has no limit cycles, i.e. system (2.1)
with b = 0 has no limit cycles.

(I) If a−

T− = a+

T+ and b = 0, then the origin is a center and

Graph(PL) = Graph(P−1
R |b=0).

By (2.14), it yields that Graph(PL) ∩ Graph(P−1
R |b>0) = ∅ and there don’t exist

limit cycles for system (2.1). When a−

T− < a+

T+ , system (2.1) with b = 0 has no limit
cycles, that is Graph(PL) ∩Graph(P−1

R |b=0) = {0, 0}. From Lemma 2.3, we have

P−1
R |b=0(0) = PL(0),

PL(y0) < P−1
R |b=0(y0; b), y0 > 0.

(2.19)

Then, by (2.19) and (2.15), we obtain that P−1
R |b>0(y0; b) = P−1

R |b=0(y0−b; b)+b >
PL(y0 − b) + b > PL(y0), y0 ≥ b. Hence, there don’t exist limit cycles for system
(2.1).

(II) When a−

T− > a+

T+ , system (2.1) with b = 0 has no limit cycles. Then
Graph(PL) ∩Graph(P−1

R |b=0) = {(0, 0)}. In addition, we have D1(b; b) = PL(b)−
(P−1

R |b>0)(b; b) = PL(b)− b < PL(0)− b = −b < 0 and

lim
y0→+∞

D1(y0; b) = lim
y0→+∞

PL(y0)− (P−1
R |b>0)(y0; b)

= y−m − y+m − b, y0 ≥ b.

(a) For y−m ≤ y+m + b, we prove this statement by considering the following two
cases.

(a1) If y−m < 0 ≤ y+m+ b, by Lemma 2.1 and Lemma 2.2, we know that the range
of (P−1

R |b>0)(y0; b) is (b+ y+m, b) for y0 ≥ b and y−m < PL(y0) ≤ 0 for y0 ≥ 0. Then
(P−1

R |b>0)(y0; b) > PL(y0) for y0 ≥ b and there don’t exist limit cycles.
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Figure 3. Graphs of PL and P−1
R |b>0 when y−

m ≤ y+
m + b < 0 and T+ > 0 > T− for b ∈ (0, bm) is

sufficiently small.

(a2) If y−m ≤ y+m + b < 0, then

lim
y0→+∞

D1(y0; b) ≤ 0.

By Lemma 2.4, we have D2(y0; b) ≤ 0 as y0 → +∞. Suppose that bm is the
maximum of D2(y0; 0) on the interval [0, +∞) and D2(y0; 0) reaches its maximum
at y0 = ym0 , that is D2(y

m
0 ; 0) = bm. Then D2(0; 0) = 0 and bm > D2(y0; 0) > 0 for

y0 > 0.
For b > bm, D2(y0; b) = D2(y0 − b; 0) − b ≤ bm − b < 0 for y0 ≥ b by Lemma

2.4. Then, there don’t exist limit cycles.
For bm > b > 0, it yields that D2(y

m
0 + b; b) = D2(y

m
0 ; 0)− b = bm− b > 0. Note

that ym0 + b ∈ [b, +∞). Then, D2(y0; b) has at least two zeros and system (2.1)
has at least two limit cycles. When b ∈ (0, bm) is sufficiently small, D2(y0; b) has
exactly two zeros by using the implicit function theorem as in Theorem 4.5 of [16],
see Figure 3. We denote two zeros of D2(y0; b) by y

(2)
0 and y

(3)
0 , respectively. By

Lemma 2.4, we know that PL(y0) < (P−1
R |b>0)(y0; b) for y0 ∈ [b, y

(2)
0 )∪ (y

(3)
0 , +∞)

and PL(y0) > (P−1
R |b>0)(y0; b) for y0 ∈ (y

(2)
0 , y

(3)
0 ). Then, the inter limit cycle is

stable and the outer one is unstable.
(b) When y−m > y+m + b,

lim
y0→+∞

D1(y0; b) > 0.

By Lemma 2.4, we have D2(y0; b) > 0 as y0 → +∞. Then, there is at least a
value y

(4)
0 such that D2(y

(4)
0 ; b) = 0 on the interval [b, + ∞) and there exists at

least a limit cycle. By Lemma 2.4, we obtain that PL(y0) < (P−1
R |b>0)(y0; b) for

y0 ∈ [b, y
(4)
0 ) and PL(y0) > (P−1

R |b>0)(y0; b) for y0 ∈ (y
(4)
0 , +∞). Then, the limit

cycle is stable.
3. The proof of this statement is similar to statement 2 and is omitted here.

The following theorem is a direct consequence of the above theorem by the
change of variables (x, y, t) → (x,−y,−t).



2732 H. Zhao & K. Wu

Theorem 2.2. (b < 0) Suppose that a− > 0 > a+ and (T±)2 = 4D± > 0 for
system (1.2). Then the following conditions hold.

1. If T+ · T− > 0, then the following subcases arise.
(I) When T+b > 0, there don’t exist limit cycles.
(II) When T+b < 0, there exists a unique unstable limit cycle.
2. If T+ > 0 > T−, then the following subcases arise.
(I) When a−

T− ≥ a+

T+ , there don’t exist limit cycles.
(II) When a−

T− < a+

T+ ,
(a) If y−m ≥ y+m + b, there don’t exist limit cycles if y−m − b > 0 > y+m, and if

0 > y−m − b ≥ y+m, there is a value bm > 0 such that system (1.2) has at least two
limit cycles for bm > −b > 0 and no limit cycles for −b > bm. Moreover, when
b ∈ (−bm, 0) is sufficiently small, system (1.2) has exactly two limit cycles in which
the inter one is unstable and the outer one is stable.

(b) If y−m < y+m + b, there exists at least an unstable limit cycle.
3. If T− > 0 > T+, then the following subcases arise.
(I) When a−

T− ≥ a+

T+ , there don’t exist limit cycles.
(II) When a−

T− < a+

T+ ,
(a) If y−m ≥ y+m + b, there don’t exist limit cycles if y−m > 0 > y+m + b, and if

y−m ≥ y+m + b > 0, there is a value bm > 0 such that system (1.2) has at least two
limit cycles for bm > −b > 0 and no limit cycles for −b > bm. Moreover, when
b ∈ (−bm, 0) is sufficiently small, system (1.2) has exactly two limit cycles in which
the inter one is unstable and the outer one is stable.

(b) If y−m < y+m + b, there exists at least an unstable limit cycle.

3. Case N ′N

In this section, we consider the existence and number of limit cycles of system (1.2)
with N ′N . First, we deal with the Poincaré map of system (1.2) for N ′N .

3.1. The Poincaré map of N ′N

Assume the left subsystem of system (1.2) has an improper node and the right
subsystem has a node, then system (1.2) can be written as

 ẋ

ẏ

 =



 T− −1

(T−)2

4 0

x

y

−

 0

a−

 , x < 0,

 T+ −1

D+ 0

x

y

−

−b

a+

 , x > 0,

(3.1)

where (T+)2>4D+>0. The left subsystem (3.1) has an improper node N ′
L(

4a−

(T−)2
, 4a−

T− )

with eigenvalues λ−
1,2 = T−

2 and the right subsystem (3.1) has a node NR(
a+

D+ ,
a+T+

D+ +

b) with eigenvalues λ+
1,2 =

T+±
√

(T+)2−4D+

2 . Moreover, the invariant manifolds of
the left and right subsystems (3.1) are given by

l− : y = λ−x+
a−

λ− ,
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and
l+1 : y = λ+

2 x+
a+

λ+
2

+ b,

l+2 : y = λ+
1 x+

a+

λ+
1

+ b,

respectively. Assume that l− and l+1,2 intersect the straight line x = 0 at points
(0, y−m) and (0, b+ y+m1,2

) respectively, i.e.

y−m =
a−

λ− , y+m1
=

a+

λ+
2

, y+m2
=

a+

λ+
1

.

Note that the left Poincaré map PL of system (2.1) can be applied to system
(3.1). Here we only consider the right Poincaré map PR of system (3.1). Suppose
that the orbit of the left subsystem (3.1) starting at the initial point (0, y+0 ) with
y+0 < b goes into the left zone R2

+ and reaches x = 0 again at some point (0, y+1 )
with y+1 > b after some finite time t+0 > 0. Then we can define a right Poincaré
map PR satisfying

PR(b) = b, PR(y
+
0 ; b) = y+1 , y+1 > b > y+0 .

From [12], we obtain that the parametric representations of the right Poincaré
map are

y+0 (t
+) =

a+

D+
· Ψλ1,λ2

(t+)

eλ1t+ − eλ2t+
+ b,

y+1 (t
+) = −a+

D
· e

T+t+ ·Ψλ1,λ2(−t+)

eλ1t+ − eλ2t+
+ b, t+ > 0,

(3.2)

where Ψλ1,λ2
(t+) = λ1 − λ2 + λ2 · eλ1t

+

+ λ1 · eλ2t
+ . Some properties of PR are

proved in the following from [12].

Lemma 3.1 (Proposition 2.4, [12]). For the right subsystem (3.1), the right Poincaré
map PR is well defined if and only if a+ < 0. Moreover, the following conditions
hold.

1. y+0 (t
+) is decreasing and y+1 (t

+) is increasing with respect to t+.
2. When T+ > 0, the domain and range of PR are (b+ y+m2

, b) and (b, +∞).
(I) PR is decreasing with respect to y+0 .
(II) PR has y+0 = b+ y+m2

as an asymptote.
(III) P ′′

R(y
+
0 ; b) > 0.

3. When T+ < 0, the domain and range of PR are (−∞, b) and (b, b+ y+m1
).

(I) PR is decreasing with respect to y+0 .
(II) PR has y+1 = b+ y+m1

as an asymptote.
(III) P ′′

R(y
+
0 ; b) < 0.

4. We define PR(b; b) = b. Then PR is continuous at y+0 = b and the first two
derivatives of PR at y+0 = b are

P ′
R(b; b) = −1, P ′′

R(b; b) = −4T+

3a+
.

Now, we define the full Poincaré map by P = PR ◦ PL for a fixed parameter b.
From Lemma 2.1 and Lemma 3.1, we can directly obtain some properties of P as
follows.
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Lemma 3.2. For system (3.1), the full Poincaré map P is well defined if and only
if a− > 0 > a+. Moreover,

P ′(0) = 1, P ′′(0) =
4

3
· (T

−

a−
− T+

a+
).

3.2. The existence and number of limit cycles of N ′N

In the following, we investigate the existence and number of limit cycles for system
(1.2) with N ′N . We introduce the same functions D1(y0; b) and D2(y0; b) as in the
previous section.

Theorem 3.1. (b > 0) Suppose that a− > 0 > a+, (T+)2 > 4D+ > 0 and
(T−)2 = 4D− > 0 for system (1.2).

1. If T+ · T− > 0, then the following subcases arise.
(I) When T+b > 0, there don’t exist limit cycles.
(II) When T+b < 0, there exists a unique stable limit cycle.
2. If T+ > 0 > T−, then the following subcases arise.
(I) When a−

T− ≤ a+

T+ , there don’t exist limit cycles.
(II) When a−

T− > a+

T+ ,
(a) If y−m ≤ y+m2

, there is a value bm > 0 such that system (1.2) has no limit
cycles for b > bm, and system (1.2) has at least two limit cycles for bm > b > 0.
Moreover, when b ∈ (0, bm) is sufficiently small, system (1.2) has exactly two limit
cycles in which the inter one is stable and the outer one is unstable.

(b) If y−m > y+m2
, then

(b1) When y−m > y+m2
+ b, there exists at least a stable limit cycle.

(b2) When y−m ≤ y+m2
+ b, there don’t exist limit cycles if y−m < 0 < y+m2

+ b, and
if y−m ≤ y+m2

+ b < 0, there is a value bm > 0 such that system (1.2) has at least
two limit cycles for bm > b > 0 and no limit cycles for b > bm. Moreover, when
b ∈ (0, bm) is sufficiently small, system (1.2) has exactly two limit cycles in which
the inter one is stable and the outer one is unstable.

3. If T− > 0 > T+, then the following subcases arise.
(I) When a−

T− ≤ a+

T+ , there don’t exist limit cycles.
(II) When a−

T− > a+

T+ ,
(a) If y−m ≤ y+m1

, there is a value bm > 0 such that system (1.2) has no limit
cycles for b > bm, and system (1.2) has at least two limit cycles for bm > b > 0 .
Moreover, when b ∈ (0, bm) is sufficiently small, system (1.2) has exactly two limit
cycles in which the inter one is stable and the outer one is unstable.

(b) If y−m > y+m1
, then

(b1) When y−m > y+m1
+ b, there exists at least a stable limit cycle.

(b2) When y−m ≤ y+m1
+ b, there don’t exist limit cycles if y−m − b < 0 < y+m1

, and
if 0 < y−m − b ≤ y+m1

, there is a value bm > 0 such that system (1.2) has at least
two limit cycles for bm > b > 0 and no limit cycles for b > bm. Moreover, when
b ∈ (0, bm) is sufficiently small, system (1.2) has exactly two limit cycles in which
the inter one is stable and the outer one is unstable.

Proof.
1. The proof of this statement is similar to the proof of the statement 1 of

Theorem 2.1 and hence is omitted here.
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2. Freire etc [7] changed system (1.2) with b = 0 for N ′N into the following
system to reduce the parameters, that is

 ẋ

ẏ

 =



 2γL −1

γ2
L 0

x

y

+

 0

aL

 , x ≤ 0,

 2γR −1

γ2
R − 1 0

x

y

+

 0

aR

 , x ≥ 0.

(3.3)

The authors [24] proved that system (3.3) with b = 0 has no limit cycles if aRγL −
aLγR ≥ 0 or 0 > aL ≥ aRγL − aLγR(i.e. a−

T− ≤ a+

T+ or a−

T− > a+

T+ and y−m ≥ y+m2
for

system (3.1) with b = 0) and has an unstable limit cycle if 0 > aRγL−aLγR > aL(i.e.
a−

T− > a+

T+ and y−m < y+m2
for system (3.1) with b = 0).

(I) If a−

T− ≤ a+

T+ , then system (3.1) with b = 0 has no limit cycles. Then, we have
Graph(PL) ∩Graph(P−1

R |b=0) = {0, 0}. By Lemma 3.2, it yields that

P−1
R |b=0(0) = PL(0),

PL(y0) ≤ P−1
R |b=0(y0; b), y0 > 0.

(3.4)

From (3.4) and (2.15), we obtain that P−1
R |b>0(y0; b) = P−1

R |b=0(y0 − b; b) + b ≥
PL(y0 − b; b) + b > PL(y0), y0 ≥ b. Hence, there don’t exist limit cycles for system
(3.1).

(II) (a) We only need to consider the following two cases.
(a1) If a−

T− > a+

T+ and y−m < y+m2
, then system (3.1) with b = 0 has an unstable

limit cycle, that is, Graph(PL) ∩Graph(P−1
R |b=0) = {(0, 0), (y

(5)
0 , y

(5)
1 )} and

P−1
R |b=0(0) = PL(0),

PL(y
(5)
0 ) = P−1

R |b=0(y
(5)
0 ; b),

PL(y0) > P−1
R |b=0(y0; b), ∀y0 ∈ (0, y

(5)
0 ),

PL(y0) < P−1
R |b=0(y0; b), ∀y0 ∈ (y

(5)
0 , +∞).

(3.5)

By (3.5) and (2.15), we obtain that P−1
R |b>0(y0; b) = P−1

R |b=0(y0 − b; b) + b >

P−1
R |b=0(y0; b) ≥ PL(y0) for y0 ≥ y

(5)
0 . Then, there don’t exist limit cycles for

y0 ≥ y
(5)
0 . In the following we investigate the existence and number of limit cycles

on the interval [b, y
(5)
0 ).

Let bm be the maximum of D2(y0; 0) on the interval [0, y
(5)
0 ] and D2(y0; 0)

reaches its maximum at y0 = ym0 , that is D2(y
m
0 ; 0) = bm. Then D2(0; 0) = 0 and

bm > D2(y0; 0) > 0 for y0 ∈ [b, y
(5)
0 ).

For b > bm, D2(y0; b) = D2(y0 − b; 0) − b ≤ bm − b < 0 for y0 ∈ [b, y
(5)
0 ) by

Lemma 2.4. Then, there don’t exist limit cycles.
For bm > b > 0, by (3.5) and (2.15), we have D2(b; b) = D2(0; 0) − b = −b < 0

and
D1(y

(5)
0 ; b) = PL(y

(5)
0 )− (P−1

R |b>0)(y
(5)
0 ; b)

= PL(y
(5)
0 )− (P−1

R |b=0)(y
(5)
0 ; b)− b

= −b < 0, ∀y0 ∈ [b, y
(5)
0 ).
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Then, from Lemma 2.4, D2(y
(5)
0 ; b) < 0 for y0 ∈ [b, y

(5)
0 ). In addition, D2(y

m
0 +

b; b) > 0. Note that ym0 + b ∈ [b, +∞). Then, D2(y0; b) has at least two zeros and
system (3.1) has at least two limit cycles. When b ∈ (0, bm) is sufficiently small,
D2(y0; b) has exactly two zeros by using the implicit function theorem as in Theorem
4 of [16]. We denote two zeros of D2(y0; b) by y

(6)
0 and y

(7)
0 , respectively. By Lemma

2.4, we know that PL(y0) < (P−1
R |b>0)(y0; b) for y0 ∈ [b, y

(6)
0 ) ∪ (y

(7)
0 , y

(5)
0 ) and

PL(y0) > (P−1
R |b>0)(y0; b) for y0 ∈ (y

(6)
0 , y

(6)
0 ). Then, the inter limit cycle is stable

and the outer one is unstable.
(a2) If a−

T− > a+

T+ and y−m = y+m2
, then system (2.1) with b = 0 has no limit

cycles. The proof is similar to case (b1) and is omitted here.
(b) If a−

T− > a+

T+ and y−m > y+m2
, then for y0 ≥ b we have D1(b; b) = PL(b) −

P−1
R |b>0(b) = PL(b)− b < 0 and

lim
y0→+∞

D1(y0; b) = lim
y0→+∞

PL(y0)− (P−1
R |b>0)(y0; b)

= y−m − y+m2
− b.

In the following, we divide into two cases to analyze.
(b1) If y−m > b+ y+m2

, then

lim
y0→+∞

D1(y0; b) > 0.

Now, there is at least a value y
(8)
0 such that D1(y

(8)
0 ; b) = 0 on the interval [b, +∞)

and there exists at least a limit cycle which is stable.
(b2) When y−m < 0 < b+ y+m2

, by Lemma 2.1 and Lemma 3.1, we know that the
range of (P−1

R |b>0)(y0; b) is (b+ y+m2
, b) for y0 ≥ b and PL(y0) ≤ 0 for y0 ≥ 0. Then

(P−1
R |b>0)(y0; b) > PL(y0) for y0 ≥ b if b ≥ −y+m2

. Hence, there don’t exist limit
cycles.

When y−m ≤ b + y+m2
< 0, system (3.1) with b = 0 has no limit cycle, that is,

Graph(PL) ∩Graph(P−1
R |b=0) = {(0, 0)} and

lim
y0→+∞

D1(y0; b) ≤ 0.

The rest of the proof is similar to the case (a1).
3. The proof of this statement is similar to statement 2 and is omitted here.

The following theorem is a direct consequence of the above theorem using the
change of variables (x, y, t) → (x,−y,−t).

Theorem 3.2. (b < 0) Suppose that a− > 0 > a+, (T+)2 > 4D+ > 0 and
(T−)2 = 4D− > 0 for system (1.2). Then the following conditions hold.

1. If T+ · T− > 0, then the following subcases arise.
(I) When T+b > 0, there don’t exist limit cycles.
(II) When T+b < 0, there exists a unique unstable limit cycle.
2. If T+ > 0 > T−, then the following subcases arise.
(I) When a−

T− ≥ a+

T+ , there don’t exist limit cycles.
(II) When a−

T− < a+

T+ ,
(a) If y−m ≥ y+m2

, there is a value bm > 0 such that system (1.2) has no limit
cycles for −b > bm, and for bm > −b > 0 system (1.2) has at least two limit cycles.
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Moreover, when b ∈ (−bm, 0) is sufficiently small, system (1.2) has exactly two
limit cycles in which the inter one is unstable and the outer one is stable.

(b) If y−m < y+m2
, then

(b1) When y−m < y+m2
+ b, there exists at least an unstable limit cycle.

(b2) When y−m ≥ y+m2
+ b, there don’t exist limit cycles if y−m − b > 0 > y+m2

, and
if 0 > y−m − b ≥ y+m2

, there is a value bm > 0 such that system (1.2) has at least
two limit cycles for bm > −b > 0 and no limit cycles for −b > bm. Moreover, when
b ∈ (−bm, 0) is sufficiently small, system (1.2) has exactly two limit cycles in which
the inter one is unstable and the outer one is stable.

3. If T− > 0 > T+, then the following subcases arise.
(I) When a−

T− ≥ a+

T+ , there don’t exist limit cycles.
(II) When a−

T− < a+

T+ ,
(a) If y−m ≥ y+m1

, there is a value bm > 0 such that system (1.2) has no limit
cycles for −b > bm, and system (1.2) has at least two limit cycles for bm > −b > 0.
Moreover, when b ∈ (−bm, 0) is sufficiently small, system (1.2) has exactly two
limit cycles in which the inter one is unstable and the outer one is stable.

(b) If y−m < y+m1
, then

(b1) When y−m < y+m1
+ b, there exists at least an unstable limit cycle.

(b2) When y−m ≥ y+m1
+ b, there don’t exist limit cycles if y−m > 0 > y+m1

+ b, and
if y−m ≥ y+m1

+ b > 0, there is a value bm > 0 such that system (1.2) has at least
two limit cycles for bm > −b > 0 and no limit cycles for −b > bm. Moreover, when
b ∈ (−bm, 0) is sufficiently small, system (1.2) has exactly two limit cycles in which
the inter one is unstable and the outer one is stable.

Data Availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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