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DYNAMICAL BEHAVIORS OF A
TUMOR-IMMUNE-VITAMIN MODEL WITH

RANDOM PERTURBATION

Weili Liu1, Hongpeng Zhang1, Weipeng Zhang1,† and Xuenan Sun1

Abstract This paper mainly explores the stochastic behaviors of the interac-
tion between tumor cells and immune cells when vitamins are added. First, it
is shown that the stochastic tumor-immune-vitamin model has a unique global
positive solution. Second, we obtain that the solution of our model is stochas-
tically ultimately bounded, stochastically permanent, extinct and persistent
in mean under some threshold conditions. Moreover, when the perturbation
is weak, the stochastic model has a unique stationary distribution. Finally,
numerical simulations are performed to verify the theoretical results.

Keywords Tumor-immune-vitamin model, stochastic process, extinction, per-
sistence, stationary distribution.
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1. Introduction
In recent years, with the improvement of medical level and medical devices, some
major breakthroughs have been made in many areas of disease research. How-
ever, no effective treatment for cancer has yet been found. Traditional treatments
cause great pain to cancer patients because of their severe side effects. For exam-
ple, surgery can cause cancer to return or metastasize. Although radiotherapy or
chemotherapy can kill cancer cells, healthy cells can also be greatly affected. As a
result, scientists have begun to try immunotherapy to treat cancer, mainly by boost-
ing immunity. For decades, mathematicians have proposed classical mathematical
models of immunotherapy to study its dynamical properties [15, 17] in the hope of
improving treatment methods. Suzuki [29] focused on the mathematical modeling
at different stages of cancer development. Gerisch et al. [9] explored the approaches
in the study of multiscale modeling in the life sciences, particularly in mechano and
tumor biology. More and more scholars have discussed the tumor-immune model,
for instance, see [7, 18, 23, 26, 27, 30, 32] and the references therein. A new deter-
ministic tumor-immune model was proposed and analyzed by Li et al. [18]. They
mainly studied the stability at its equilibrium point and carried out the bifurcation
analysis. Recently, studies have shown that there is a close relationship between
the nutrients (such as the A, B and D group vitamins) and the immune system, and

†The corresponding author.
1School of Mathematics and Statistics, Northeast Normal University, No. 5268
Renmin Street, 130024, Changchun, Jilin, China
Email: liuwl1661@nenu.edu.cn(W. Liu), zhanghp767@nenu.edu.cn(H. Zhang),
zhangwp996@nenu.edu.cn(W. Zhang), sunxn107@nenu.edu.cn(X. Sun)

http://www.jaac-online.com
http://dx.doi.org/10.11948/20220558


2740 W. Liu, H. Zhang, W. Zhang & X. Sun

proved that vitamins can enhance immunity, which can ensure the normal growth
of cells (see [12–14]). Therefore, a tumor-immune-vitamin model was proposed by
Alharbi and Rambely [2] as follows.

dx(t) = (σ − δx+
ρxy

m+ y
− µxy + c2xv)dt,

dy(t) = (α1y(1− α2y)− α3xy − c1yv)dt,

dv(t) = (k1 − k2v)dt,

(1.1)

where x(t) and y(t) represent the population of immune cells and tumor cells re-
spectively, v(t) denotes vitamins and the significance of parameters in system (1.1)
is shown in Table 1. Furthermore, the parameters of system (1.1) are positive and
no bigger than one. The process of vitamin supplementation to assist the treatment
of cancer is shown in Figure 1 below.

Table 1. The parameters and their interpretations in model (1.1)

Parameter Description
σ A constant source of immune cells produced daily in the human body
δ Natural mortality rate of immune cells
ρ Immune response rate
m Threshold rate of the immune system
µ The rate of suppression of immune cells
α1 Growth limit of tumor cells
α2 Reduction of tumors due to body deformation in dietary metabolisation
α3 The rate of elimination of tumor cells by immune response
c1 Effect of vitamins on tumor cells
c2 Effect of vitamins on immune cells
k1 Regular rate of vitamins provided by external environment
k2 The rate at which cells absorb vitamins

Figure 1. The process of vitamins assisting immunotherapy.

In fact, there are many factors that affect the growth of cancer cells, such as
stress, mood, temperature, living habits and so on. It is then reasonable to be-
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lieve that noise may lead to different therapeutic effects for different patients. In
addition, stochastic models have been widely used to study biological and medical
models (see [1, 10, 19, 20, 22, 28]). In particular, a growing number of scholars have
been engaged in studying the mechanisms of tumor evolution in recent years. Li
et al. [21] considered the dynamical behavior of a stochastic tumor-immune model.
Their analysis has made a significant contribution to the understanding of the im-
munotherapy process. Krstić [16] analyzed the asymptotic stability of the stochastic
tumor-immune model with time delay by using Lyapunov functions. Therefore, in
order to study cancer in depth, it is inevitable to take into account the interfer-
ence of the external environment, and we are in a position to consider stochastic
perturbations. We assume that fluctuations mainly affect the parameters δ and α1,

−δdt→ −δdt+ σ1dB1(t), α1dt→ α1dt+ σ2dB2(t),

where σ1 and σ2 represent the intensity of white noises. B1(t) and B2(t) are mu-
tually independent 1-dimensional Brown motion. Thus based on system (1.1), we
derive the stochastic tumor-immune-vitamin system described as follows.

dx(t) = (σ − δx+
ρxy

m+ y
− µxy + c2xv)dt+ σ1xdB1(t),

dy(t) = (α1y(1− α2y)− α3xy − c1yv)dt+ σ2ydB2(t),

dv(t) = (k1 − k2v)dt,

(1.2)

with initial value x(0) = x0 > 0 and y(0) = y0 > 0. It is worth noting that the last
equation is independent of the first two equations. Moreover, we deduce from the
third equation that

v(t) =
k1
k2

+ (v0 −
k1
k2

)e−k2t. (1.3)

Throughout the paper we assume that v0 > k1

k2
. Hence system (1.2) can be reduced

to 
dx(t) = (σ − δx+

ρxy

m+ y
− µxy + c2xv)dt+ σ1xdB1(t),

dy(t) = (α1y(1− α2y)− α3xy − c1yv)dt+ σ2ydB2(t).
(1.4)

Compared with the stochastic tumor-immune system [21], vitamins are introduced
into our model as a more effective treatment. Providing vitamins to immunother-
apy patients has fewer side effects and is a more acceptable treatment for cancer
patients. However, to the best of our knowledge, the stochastic tumor-immune-
vitamin system has not been investigated so far. To fill this gap, we study the
dynamical behavior of the stochastic tumor-immune-vitamin system. By choosing
suitable Lyapunov functions, we get the existence of the unique global positive so-
lution. And we derive the sufficient conditions for stochastic ultimate boundedness,
stochastic permanence, persistence in mean, the existence of the unique invariant
measure and extinction.

The rest of this paper is organized as follows. In Section 2, we introduce some
notations that will be used throughout the paper. In Section 3, we obtain the
existence and uniqueness of the global positive solution for the stochastic model.
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In Section 4, we get a sufficient criterion for the stochastic ultimate boundedness of
our model. In Section 5, we prove that the solution of system (1.4) is stochastically
permanent. Sufficient conditions for the extinction of tumor cells are established
in Section 6. In Section 7, we deduce that under certain conditions, our model
is persistence in mean. In Section 8, we focus on the ergodicity of tumor and
immune cells in system (1.4) which implies the permanence of cells. In addition, we
demonstrate the theoretical results by numerical simulations. The last part ends
with a conclusion.

2. Preliminaries
To explore the problem discussed above, firstly, we need to define some notations.
Let (Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0 satisfying
the usual conditions. Let E represent the probability expectation with respect to
P. Let N+ = {1, 2, · · ·} be the set of positive integers and n, m ∈ N+. Rn denotes
the space of n-dimensional real column vectors and Rn

+ is the set of n-dimensional
real column vectors with positive elements, that is Rn

+ = {x ∈ Rn|xi > 0, 1 ≤
i ≤ n}, and we have R̄n

+ = {x ∈ Rn|xi ≥ 0, 1 ≤ i ≤ n}. If x ∈ Rn, then |x|
denotes its Euclidean norm. For a matrix A ∈ Rn×m, its transpose is denoted by
AT and its trace norm is defined by |A| =

√
trace(AAT ). For any a, b ∈ R, define

a ∨ b = max{a, b}, and a ∧ b = min{a, b}. Let Bi(t)(i = 1, 2, · · · , n) be mutually
independent standard one-dimensional Brownian motions and adapted with respect
to {Ft}t≥0. Define

[x]+ =

{
x, x ≥ 0,

0, x < 0.

Moreover, we let C1,2(R̄+ ×R2;R) be the family of all real-valued functions V (t, x)
defined on R̄+×R2, which are continuously once differentiable in t and continuously
twice differentiable in x. From the reference [24], we define the differential operator
L associated with equation (1.4). If L acts on a function V (t, x) ∈ C1,2(R̄+×R2;R),
then

LV (t, x, y) =Vt(t, x, y) + Vx(t, x, y)
(
σ − δx+

ρxy

m+ y
− µxy + c2xv

)
+ Vy(t, x, y)

×
(
α1y(1− α2y)− α3xy − c1yv

)
+
1

2

(
Vxx(t, x)σ

2
1x

2 + Vyy(t, x)σ
2
2y

2
)
,

where we set

Vt(t, x, y) =
∂V

∂t
, Vx(t, x, y) =

∂V

∂x
, Vy(t, x, y) =

∂V

∂y
,

Vxx(t, x, y) =
∂2V

∂x2
, Vyy(t, x, y) =

∂2V

∂y2
.

For convenience, define

⟨⟨f⟩⟩t =
∫ t

0
f(s)ds

t
, f∗ = lim sup

t→+∞
f(t), f∗ = lim inf

t→+∞
f(t).
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3. Existence and uniqueness of global positive solu-
tion

In order to satisfy the biological significance, firstly, we need to ensure that the
cancer model (1.4) has a unique global positive solution. Therefore, we present the
proof in this section.

Theorem 3.1. For any initial value (x0, y0) ∈ R2
+, system (1.4) has a unique

global positive solution (x(t), y(t)) on t ≥ 0 with probability one. That is to say,
(x(t), y(t)) ∈ R2

+ for all t ≥ 0 almost surely.

Proof. For any given initial value (x0, y0) ∈ R2
+, it is obvious that the coefficients

of system (1.4) are locally Lipschitz continuous. According to [25, Theorem 3.3.15],
there exists a unique local solution (x(t), y(t)) on t ∈ [0, τe), where τe is the explosion
time. To prove this solution is global, we need to show that τe = ∞ a.s. Let k0 ∈ N+

be sufficiently large so that x0 ∈ (
1

k0
, k0), y0 ∈ (

1

k0
, k0). For any k ≥ k0, k ∈ N+,

define the following stopping time

τk = inf
{
t ∈ [0, τe) : min {x(t), y(t)} ≤ 1

k
or max {x(t), y(t)} ≥ k

}
,

where ∅ denotes the empty set and inf ∅ = ∞. It is easy to see that τk is increasing
as k → ∞. We set τ∞ = lim

k→∞
τk, then τ∞ ≤ τe a.s. Exactly, we need to prove

τ∞ = ∞ a.s. If this assertion is false, then there are two constants T > 0 and
ϵ ∈ (0, 1) such that

P{τ∞ ≤ T} ≥ ϵ.

Then, there is an integer k1 ≥ k0 such that

P{τk ≤ T} ≥ ϵ

2
, for all k ≥ k1. (3.1)

Define V : R2
+ → R̄+ by

V (x, y) = (x+ 1− lnx) + (y + 1− ln y).

By Itô’s formula, we obtain

dV (x, y) = LV (x, y)dt+ σ1(x− 1)dB1(t) + σ2(y − 1)dB2(t). (3.2)

For any u > 0, u ≤ 2(u+ 1− lnu), we obtain that

LV (x, y) =(1− 1

x
)
(
σ − δx+

ρxy

m+ y
− µxy + c2xv

)
+ (1− 1

y
)
(
α1y(1− α2y)− α3xy − c1yv

)
+
σ2
1

2
+
σ2
2

2

=
(
σ + δ +

σ2
1

2
+
σ2
2

2
+ c1v

)
+
( ρy

m+y
+c2v+α3

)
x+(µ+α1+α1α2)y

− δx− σ

x
− c2v − α3xy − c1yv − µxy − ρy

m+ y
− α1α2y

2 − α1

≤
(
σ + δ +

σ2
1

2
+
σ2
2

2
+ c1v0

)
+ (ρ+ c2v0 + α3)x+ (µ+ α1 + α1α2)y
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≤
(
σ + δ +

σ2
1

2
+
σ2
2

2
+ c1v0

)
+ 2(ρ+ c2v0 + α3)(x+ 1− lnx)

+ 2(µ+ α1 + α1α2)(y + 1− ln y)

≤ v1 + v2V (x, y),

where

v1 = σ + δ +
σ2
1

2
+
σ2
2

2
+ c1v0, v2 = 2(ρ+ c2v0 + α3 + µ+ α1 + α1α2).

Integrating both sides of (3.2) from 0 to T ∧ τk and taking expectations, by the
Gronwall inequality we derive that

EV (x(T ∧ τk), y(T ∧ τk)) ≤ V (x0, y0) + E
∫ T∧τk

0

(
v1 + v2V (x(t), y(t))

)
dt

≤ V (x0, y0) + v1T + v2E
∫ T∧τk

0

V (x(t), y(t))dt

= V (x0, y0) + v1T + v2E
∫ T

0

I[[0,τk]](t)V (x(t), y(t))dt

≤ V (x0, y0) + v1T + v2E
∫ T

0

V (x(t ∧ τk), y(t ∧ τk))dt

= V (x0, y0) + v1T + v2

∫ T

0

EV (x(t ∧ τk), y(t ∧ τk))dt

≤ (V (x0, y0) + v1T )e
v2T ,

(3.3)

where IA(·) is the indicator function of a set A. Set Ωk = {ω : τk ≤ T} for k ≥ k1.
Noting that for any ω ∈ Ωk, there is at least one of x(T ∧ τk) and y(T ∧ τk) equals
either k or 1

k
. It implies that for any ω ∈ Ωk,

V (x(T ∧ τk), y(T ∧ τk)) ≥ (k + 1− ln k) ∧ (
1

k
+ 1 + ln k). (3.4)

In view of (3.1), (3.3) and (3.4), we have

(V (x0, y0) + v1T )e
v2T ≥ E[V (x(T ∧ τk), y(T ∧ τk))]

≥ E[IΩk
(ω)V (x(T ∧ τk), y(T ∧ τk)]

≥ ϵ

2
[(k + 1− ln k) ∧ (

1

k
+ 1 + ln k)].

(3.5)

On the other hand, letting k → +∞ leads to (k + 1 − ln k) ∧ ( 1k + 1 + ln k) → ∞,
then we get the contradiction

∞ ≤ (V (x0, y0) + v1T )e
v2T <∞.

Therefore, we obtain τ∞ = ∞ a.s. That is, system (1.4) has a unique global positive
solution (x(t), y(t)) ∈ R2

+ with probability one for all t ≥ 0. This proof is complete.
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4. Stochastic ultimate boundedness
In order to prove that the solution of system (1.4) is stochastically ultimately
bounded, firstly, we show the moment boundedness of the solution of system (1.4).
Now we introduce an auxiliary process ψ(t) as follows. dψ(t) = α1ψ(t)(1− α2ψ(t))dt+ σ2ψ(t)dB2(t),

ψ(0) = y0 > 0,
(4.1)

where B2(t) is the Brown motion defined in (1.4). By utilizing the comparison
theorem, one observes that 0 < y(t) ≤ ψ(t), t ≥ 0. The following result is taken
from [3], we cite it as a lemma.

Lemma 4.1 (Lemma 2.1, [3]). Let ψ(t) be the solution of (4.1). Then it holds that
for any k > 1,

Eψk(t) ≤
[ 1

y0
e−(α1+

k−1
2 σ2

2)t +
2α1α2

2α1 + (k − 1)σ22
(1− e−(α1+

k−1
2 σ2

2)t)
]−k

. (4.2)

Therefore, we have

lim sup
t→+∞

Eψk(t) ≤ jk :=
(2α1 + (k − 1)σ2

2

2α1α2

)k

,∀ k > 1.

Now we investigate the properties of the moments of y(t).

Theorem 4.1. For any k > 0, there exists a positive constant ĵk such that

lim sup
t→+∞

E[yk(t)] ≤ ĵk,

where ĵk is defined by (4.3).

Proof. Since 0 < y(t) ≤ ψ(t), for k > 1, by Lemma 4.1, we obtain

lim sup
t→+∞

Eyk(t) ≤ lim sup
t→+∞

Eψk(t) ≤ jk.

For any 0 < k ≤ 1, using the Hölder inequality yields that

lim sup
t→+∞

Eyk(t) ≤ lim sup
t→+∞

[Ey2(t)]
k
2 ≤ (j2)

k
2 .

Combining the above inequalities leads to the desired result for process y(t) with

ĵk =

 jk, k > 1,

(j2)
k
2 , 0 < k ≤ 1.

(4.3)

The proof is complete.

Theorem 4.2. If 1 + 2(δ − c2v0)/σ
2
1 > 0, for any θ ∈ (0, 1 + 2(δ − c2v0)/σ

2
1),

c > [ ρm − µ]+/α3, then

lim sup
t→+∞

E(1 + x(t) + cy(t))θ ≤ F (c, θ),

where F (c, θ) is a positive constant depending on c and θ, which is defined by (4.11)
below.
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Proof. Because the proof is complicated, we divide it into three steps.
Step 1. Define the function f1(y) = ρy/(m+ y)− (µ+ cα3)y, for any y ≥ 0,

f ′1(y) =
−(µ+ cα3)y

2 − 2(µ+ cα3)my + (ρ− (µ+ cα3)m)m

(m+ y)2
.

Let f ′1(y) = 0, and we derive two roots: y1 = −m −
√
mρ/(µ+ cα3) < 0, y2 =

−m+
√
mρ/(µ+ cα3). Using the condition c > [ ρm−µ]+/α3, we obtain that y2 < 0.

Consequently, for any y > 0, we have f ′1(y) < 0 and

f1(y) < f1(0) = 0, ∀ y > 0. (4.4)

Choosing θ ∈ (0, 1 + 2(δ − c2v0)/σ
2
1), define

V1(x, y) = (1 + x+ cy)θ, ∀ (x, y) ∈ R2
+.

Then we have that

LV1(x, y) =θ(1 + x+ cy)θ−1(σ − δx+
ρxy

m+ y
− µxy + c2xv) + cθ(1 + x+ cy)θ−1

×[α1y(1−α2y)−α3xy−c1yv]+
θ(θ−1)

2
(1+x+cy)θ−2(σ2

1x
2+c2σ2

2y
2).

(4.5)

The condition 0 < θ < 1+2(δ−c2v0)/σ2
1 implies δ−c2v0+(1−θ)σ2

1/2 > 0. Choose
a positive constant γ := γ(θ) sufficiently small such that

F1(θ) := δ − c2v0 +
(1− θ)σ2

1

2
− γ

θ
> 0.

By the Itô formula, we get

d[eγtV1(x, y)] =L[eγtV1(x, y)]dt+ eγtθ(1 + x+ cy)θ−1σ1xdB1(t)

+ eγtcθ(1 + x+ cy)θ−1σ2ydB2(t).

Integrating both sides of the above formula from 0 to t yields that

eγtV1(x(t), y(t)) =V1(x0, y0) +

∫ t

0

L[eγsV1(x(s), y(s))]ds

+

∫ t

0

[eγsθ(1 + x(s) + cy(s))θ−1σ1x(s)]dB1(s)

+

∫ t

0

[eγscθ(1 + x(s) + cy(s))θ−1σ2y(s)]dB2(s),

and define

Nv1(t) := eγtV1(x(t), y(t))− V1(x0, y0)−
∫ t

0

L[eγsV1(x(s), y(s))]ds,
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which is a local martingale. Combining (4.4) and (4.5) yields that

L[eγtV1(x, y)] = γeγt(1 + x+ cy)θ + eγtL(1 + x+ cy)θ

=θeγt(1 + x+ cy)θ−2

{[ ρy

m+ y
−(µ+ cα3)y−(δ − c2v+

(1− θ)σ2
1

2

−γ
θ
)
]
x2+(

ρy

m+ y
−δ+σ + c2v +

2γ

θ
)x+

[
− c(µ+ α1α2 + α3c)y

2

+(−µ− δc+
ρcy

m+ y
+ c2cv − cα3 + cα1 − c1cv +

2cγ

θ
)y
]
x

−c2α1α2y
3 +

(
c2α1 − cα1α2 − c2c1v +

γc2

θ
+

(θ − 1)

2
σ2
2c

2
)
y2

+c(σ + α1 − c1v +
2γ

θ
)y + σ +

γ

θ

}
≤ θeγt(1 + x+ cy)θ−2

{[
− (δ − c2v0 +

(1− θ)σ2
1

2
− γ

θ
)
]
x2

+(ρ+ σ + c2v0 +
2γ

θ
)x+

[
− c(µ+ α1α2 + α3c)y

2

+(ρc+ c2cv0 + cα1 +
2cγ

θ
)y
]
x− c2α1α2y

3 +
(
c2α1 +

γc2

θ

+
(θ − 1)c2σ2

2

2

)
y2 + c(σ + α1 +

2γ

θ
)y + σ +

γ

θ

}
≤ θeγt(1 + x+ cy)θ−2W (x, y),

(4.6)

where

W (x, y) =− F1(θ)x
2 + F2(c, θ)x− c2α1α2y

3 + (c2α1 +
γc2

θ
+

(θ − 1)c2σ2
2

2
)y2

+ c(σ + α1 +
2γ

θ
)y + σ +

γ

θ
,

F2(c, θ)= sup
y∈R+

{
−c(µ+α1α2+α3c)y

2+(ρc+c2cv0+cα1+
2cγ

θ
)y+ρ+σ+c2v0+

2γ

θ

}
.

Because the coefficients of the highest-order term of x and y in W (x, y) are negative
respectively, we obtain

lim
x2+y2→+∞

(1 + x+ cy)θ−2W (x, y) = −∞.

This together with the continuity of (1 + x+ cy)θ−2W (x, y) on R2
+ implies that

F3(c, θ) := θ · sup
x,y∈R+

{
(1 + x+ cy)θ−2W (x, y)

}
< +∞. (4.7)

Therefore, from (4.6) and (4.7), we obtain

L[eγtV1(x, y)] ≤ F3(c, θ)e
γt. (4.8)

Step 2. We will prove that

E[eγtV1(x(t), y(t))] = EV1(x0, y0) + E
∫ t

0

L[eγsV1(x(s), y(s))]ds.
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In fact, choose a sufficiently large constant n0 such that x0 and y0 belong to
(1/n0, n0). For any constant n ≥ n0, we define the stopping time

ηn = inf
{
t ≥ 0 | max {x(t), y(t)} ≥ n

}
.

Considering ηn is monotonically increasing and therefore it has a limit. Denote
lim

n→+∞
ηn = η∞. By the definition of τn and Theorem 3.1, we have ηn ≥ τn, and

τ∞ = ∞ a.s., hence η∞ = ∞ a.s. Owing to the local martingale property, then
ENv1(t ∧ ηn) = 0. Namely, for any t ≥ 0, one has

E[eγ(t∧ηn)V1(x(t ∧ ηn), y(t ∧ ηn))] = EV1(x0, y0) + E
∫ t∧ηn

0

L[eγsV1(x(s), y(s))]ds.

(4.9)

From (4.8) and the dominated convergence theorem, it then follows

lim
n→+∞

E
∫ t∧ηn

0

L[eγsV1(x(s), y(s))]ds = E
∫ t

0

L[eγsV1(x(s), y(s))]ds.

By the definition of ηn, it yields that eγ(t∧ηn)(1 + x(t ∧ ηn) + cy(t ∧ ηn))θ is mono-
tonically increasing in n. Letting n→ +∞ leads to

lim
n→+∞

eγ(t∧ηn)(1 + x(t ∧ ηn) + cy(t ∧ ηn))θ = eγt(1 + x(t) + cy(t))θ a.s.

By the monotone convergence theorem, we derive that

lim
n→+∞

E[eγ(t∧ηn)(1 + x(t ∧ ηn) + cy(t ∧ ηn))θ] = E[eγt(1 + x(t) + cy(t))θ].

Letting n→ +∞ in (4.9) yields that

E[eγtV1(x(t), y(t))] = EV1(x0, y0) + E
∫ t

0

L[eγsV1(x(s), y(s))]ds. (4.10)

Step 3. Applying (4.8) and (4.10) implies that

eγtE(1 + x(t) + cy(t))θ ≤ E(1 + x0 + cy0)
θ + E

∫ t

0

F3(c, θ)e
γsds

≤ E(1 + x0 + cy0)
θ +

F3(c, θ)

γ
eγt.

Then
E(1 + x(t) + cy(t))θ ≤ E[(1 + x0 + cy0)

θe−γt] +
F3(c, θ)

γ
.

Letting t→ +∞ implies that

lim sup
t→+∞

E(1 + x(t) + cy(t))θ ≤ F3(c, θ)

γ
:= F (c, θ). (4.11)

The proof is complete.

By virtue of the positivity of y(t), we get the following corollary.
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Corollary 4.1. If 1 + 2(δ − c2v0)/σ
2
1 > 0, for any θ ∈ (0, 1 + 2(δ − c2v0)/σ

2
1),

c > [ ρm − µ]+/α3, then

lim sup
t→+∞

E(1 + x(t))θ ≤ F (c, θ),

where F (c, θ) is defined by (4.11).

Definition 4.1 (Definition 3.1, [31]). The solution X(t) = (x(t), y(t)) of system
(1.4) is said to be stochastically ultimately bounded if for any ϵ ∈ (0, 1), there is a
positive constant ξ1 = ξ1(ϵ) such that for any initial value X(0) = (x0, y0) ∈ R2

+,
the solution X(t) of (1.4) has the property that

lim sup
t→+∞

P {|X(t)| > ξ1} < ϵ.

Making use of the asymptotic moment boundedness of x(t) and y(t), we can
yield the stochastic ultimate boundedness of the solutions.

Theorem 4.3. If 1 + 2(δ − c2v0)/σ
2
1 > 0, then for any p ∈ (0, 1 + 2(δ − c2v0)/σ

2
1)

and (x0, y0) ∈ R2
+, the solution X(t) of system (1.4) is stochastically ultimately

bounded.

Proof. For any fixed c = 1 + [ ρm − µ]+/α3 and p ∈ (0, 1 + 2(δ − c2v0)/σ
2
1).

From Theorem 4.1 and Corollary 4.1, one can see that lim sup
t→+∞

Eyp(t) ≤ ĵp and

lim sup
t→+∞

Exp(t) ≤ F (c, p). Using the inequality |X(t)|p ≤ 2
p
2 (xp(t) + yp(t)) yields

that

lim sup
t→+∞

E|X(t)|p ≤ 2
p
2 (lim sup

t→+∞
Exp(t) + lim sup

t→+∞
Eyp(t))

≤ 2
p
2 [F (c, p) + ĵp] < +∞.

Denote r(p)/2 := 2
p
2 [F (c, p) + ĵp], then for any ϵ > 0, there exists ξ1 = (r(p)/ϵ)

1
p ,

applying the Chebyshev inequality implies that

lim sup
t→+∞

P {|X(t)| > ξ1} ≤
lim sup
t→+∞

E|X(t)|p

ξp1
=
ϵ

2
< ϵ.

The proof is therefore complete.

5. Stochastically permanent
In this section, we shall establish the sufficient condition ensuring that system (1.4)
is stochastically permanent.

Definition 5.1 (Definition 4.1, [31]). System (1.4) is said to be stochastically per-
manent if for every ϵ ∈ (0, 1), there is a pair of positive constants ξ1 = ξ1(ϵ)
and ξ2 = ξ2(ϵ) such that for any initial value X(0) = (x0, y0) ∈ R2

+, the solu-
tion X(t) = (x(t), y(t)) has the properties that

lim inf
t→+∞

P {|X(t)| ≤ ξ1} ≥ 1− ϵ, lim inf
t→+∞

P {|X(t)| ≥ ξ2} ≥ 1− ϵ.
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Theorem 5.1. If 1 + 2(δ − c2v0)/σ
2
1 > 0, for any initial value (x0, y0) ∈ R2

+, the
solution of system (1.4) is stochastically permanent.

Proof. First, we prove that for any ϵ > 0, there exists ξ2 > 0 such that

lim inf
t→+∞

P {|X(t)| ≥ ξ2} ≥ 1− ϵ.

Define Ṽ1(x, y) = x+ y, (x, y) ∈ R+
2 . By the Itô formula, it follows that

dṼ1(x, y) =
[
σ − δx+

ρxy

m+ y
− µxy + c2xv + α1y(1− α2y)− α3xy − c1yv

]
dt

+ σ1xdB1(t) + σ2ydB2(t).

Next, define U(x, y) = 1

Ṽ1(x,y)
. Applying the Itô formula, we get

dU(x, y) =− U2(x, y)(dx+ dy) + U3(x, y)[(dx)2 + (dy)2]

=LU(x, y)dt− U2(x, y)(σ1xdB1(t) + σ2ydB2(t)),

where

LU(x, y) =− U2(x, y)
[
σ − δx+

ρxy

m+ y
− µxy + c2xv + α1y(1− α2y)

− α3xy − c1yv
]
+ U3(x, y)[(σ1x)

2 + (σ2y)
2].

(5.1)

For any fixed p > 0, define Ṽ2(x, y) = (1 + U(x, y))p. Applying Itô’s formula leads
to

dṼ2(x, y) = p(1 + U(x, y))p−1dU(x, y) +
p(p− 1)

2
(1 + U(x, y))p−2[dU(x, y)]2

= L(1+U(x, y))pdt−p(1+U(x, y))p−1U2(x, y)(σ1xdB1(t)+σ2ydB2(t)),

where

L(1 + U(x, y))p = p(1 + U(x, y))p−1LU(x, y) +
p(p− 1)

2
U4(x, y)(1 + U(x, y))p−2

× [(σ1x)
2 + (σ2y)

2].

For any γ > 0, define Ṽ3(x, y) = eγtṼ2(x, y) = eγt(1+U(x, y))p. By the Itô formula,
we derive that

dṼ3(x, y) =L[eγt(1 + U(x, y))p]dt− eγtp(1 + U(x, y))p−1U2(x, y)

× (σ1xdB1(t) + σ2ydB2(t)),
(5.2)

where

L[eγt(1 + U(x, y))p] =γeγt(1 + U(x, y))p + eγtL(1 + U(x, y))p

=eγt(1 + U(x, y))p−2[γ(1 + U(x, y))2 +Q],
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and combining with (5.1) yields

Q =p(1 + U(x, y))LU(x, y) +
p(p− 1)

2
U4(x, y)[(σ1x)

2 + (σ2y)
2]

=− pU2(x, y)
[
σ − δx+

ρxy

m+ y
− µxy + c2xv + α1y(1− α2y)− α3xy − c1yv

]
− pU3(x, y)

[
σ − δx+

ρxy

m+ y
− µxy + c2xv + α1y(1− α2y)− α3xy − c1yv

]
+ pU3(x, y)[(σ1x)

2 + (σ2y)
2] +

p(p+ 1)

2
U4(x, y)[(σ1x)

2 + (σ2y)
2]

≤− pσU2(x, y) + δpxU2(x, y) + (µ+ α3)pxyU
2(x, y) + α1α2py

2U2(x, y)

+ pc1yvU
2(x, y) + U(x, y)

[
−pσU2(x, y)+δpxU2(x, y) + (µ+ α3)pxyU

2(x, y)

+ α1α2py
2U2(x, y) + pc1yvU

2(x, y)
]
+ pU3(x, y)[(σ1x)

2 + (σ2y)
2]

+
p(p+ 1)

2
U4(x, y)[(σ1x)

2 + (σ2y)
2].

By the definition of U(x, y), we obtain

δpxU2(x, y) ≤ δ(x+ y)pU2(x, y) = pδU(x, y),

(µ+ α3)pxyU
2(x, y) ≤ (µ+ α3)p

(x+ y)2

4
U2(x, y) =

(µ+ α3)p

4
,

α1α2py
2U2(x, y) ≤ α1α2p(x+ y)2U2(x, y) = α1α2p,

pc1yvU
2(x, y) ≤ pc1v0(x+ y)U2(x, y) = pc1v0U(x, y),

pU3(x, y)[(σ1x)
2 + (σ2y)

2] ≤ max
{
σ2
1 , σ

2
2

}
p(x+ y)2U3(x, y)

= max
{
σ2
1 , σ

2
2

}
pU(x, y),

p(p+ 1)

2
U4(x, y)[(σ1x)

2 + (σ2y)
2] ≤ p(p+ 1)

2
max

{
σ2
1 , σ

2
2

}
(x+ y)2U4(x, y)

=
p(p+ 1)

2
max

{
σ2
1 , σ

2
2

}
U2(x, y).

Consequently,

Q ≤ − pσU2(x, y) + δpU(x, y) +
(µ+ α3)p

4
+ α1α2p+ pc1v0U(x, y)

+ U(x, y)
[
− pσU2(x, y) + δpU(x, y) +

(µ+ α3)p

4
+ α1α2p+ pc1v0U(x, y)

]
+max

{
σ2
1 , σ

2
2

}
pU(x, y) +

p(p+ 1)

2
max

{
σ2
1 , σ

2
2

}
U2(x, y)

= − pσU3(x, y) + v3U
2(x, y) + v4U(x, y) + v5,

where v3 = −pσ + δp + pc1v0 +
p(p+1)

2 max
{
σ2
1 , σ

2
2

}
, v4 = δp + pc1v0 +

(µ+α3)p
4 +

pα1α2 +max
{
σ2
1 , σ

2
2

}
p and v5 = α1α2p+

(µ+α3)p
4 . Therefore,

L[eγt(1 + U(x, y))p] ≤ eγt(1 + U(x, y))p−2[γ(1 + U(x, y))2 − pσU3(x, y)

+ v3U
2(x, y) + v4U(x, y) + v5]

≤ Geγt,
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whereG= sup
U∈R+

(1+U(x, y))p−2[γ(1+U(x, y))2−pσU3(x, y)+v3U
2(x, y)+v4U(x, y)+

v5]. Integrating both sides of (5.2) from 0 to t and taking expectations yields that

E[eγt(1 + U(x, y))p] = (1 + U(x0, y0))
p + E

∫ t

0

L[eγs(1 + U(x(s), y(s)))p]ds

≤ (1 + U(x0, y0))
p +

G

γ
eγt.

This implies
lim sup
t→+∞

EUp(x, y) ≤ lim sup
t→+∞

E(1 + U(x, y))p ≤ G

γ
.

Let X = (x, y), and we derive that

(x+ y)p ≤ 2p(x2 + y2)
p
2 = 2p|X|p.

Hence
lim sup
t→+∞

E
1

|X(t)|p
≤ 2p lim sup

t→+∞
E

1

(x+ y)p
≤ 2p

G

γ
.

Denote H := 2p G
γ . By utilizing the Chebyshev inequality, then for any ϵ > 0, there

exists ξ2 = (ϵ/2H)
1
p , such that

P {|X(t)| < ξ2} = P
{
|X(t)|−p > ξ−p

2

}
≤ E|X(t)|−p

ξ−p
2

.

Thus, we obtain
lim sup
t→+∞

P {|X(t)| < ξ2} ≤ Hξp2 =
ϵ

2
< ϵ.

That is
lim inf
t→+∞

P {|X(t)| ≥ ξ2} ≥ 1− ϵ. (5.3)

Due to the proof of Theorem 4.3, then for any p ∈ (0, 1 + 2(δ − c2v0)/σ
2
1), and the

above ϵ > 0, there exists ξ1 > 0 such that

lim sup
t→+∞

P {|X(t)| > ξ1} < ϵ.

That is
lim inf
t→+∞

P {|X(t)| ≤ ξ1} ≥ 1− ϵ. (5.4)

The proof is complete.

Applying the Milstein method in Higham [11] yields the discrete equation as
follows
xk+1=xk+

(
σ−δxk+

ρxkyk
m+yk

−µxkyk+c2xkvk
)
∆t+σ1xk

√
∆tb1,k+

σ2
1

2
xk∆t(b

2
1,k−1),

yk+1=yk+
(
α1yk(1−α2yk)−α3xkyk−c1ykvk

)
∆t+σ2yk

√
∆tb2,k+

σ2
2

2
yk∆t(b

2
2,k−1),

vk+1=vk+(k1−k2vk)∆t.

Next, the numerical simulation is carried out to illustrate Theorem 5.1.
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Example 5.1. The parameter values in the random model (1.4) are as follows:
σ = 0.2, α1 = 0.9, α2 = 0.4, α3 = 0.514, c1 = 0.04, c2 = 0.01, µ = 0.1859,
ρ = 0.4, m = 0.862, k1 = 0.5463, k2 = 0.9757, δ = 0.7, σ1 = 0.2, σ2 = 0.09 and
(x0, y0, v0) = (1.22, 1, 0.7). Then

1 +
2(δ − c2v0)

σ2
1

> 0.

The condition of Theorem 5.1 is satisfied. Figure 2 depicts that the path of x(t)
and y(t) in the deterministic model (1.1) and the stochastic model (1.4), respectively.
Figure 3 depicts the path of |X(t)| = (x(t)+y(t))

1
2 in system (1.4). Figure 4 depicts

the path of x(t), y(t) and v(t) in system (1.2). Therefore, this example verifies the
theoretical result of Theorem 5.1.
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Figure 2. The path of x(t) and y(t) for the stochastic model (1.4) and the deterministic model (1.1).
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Figure 3. The path of |X(t)| for the stochastic model (1.4), where X(t) = (x(t), y(t)).

6. Extinction
Lemma 6.1. Considering the function f2(y) =

ρy
m+y − µy, ∀ y ≥ 0. We have the

following results.

(i) If ρ ≤ mµ, then f2(y) < 0, ∀ y > 0.
(ii) If ρ > mµ, then f2(y) ≤ (

√
ρ−√

mµ)2, ∀ y > 0.
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Figure 4. The path of (x(t), y(t), v(t)) for the stochastic model (1.2).

Next, we introduce a new auxiliary process h(t) described by
dh(t) = [σ − (δ − c2k1

k2
)h(t)]dt+ σ1h(t)dB1(t),

h(0) = x0 > 0.
(6.1)

If δ − c2k1/k2 > 0, by solving the Fokker-Planck equation (see details in [6]), the
process h(t) has a unique stationary distribution ϑ(·) which is the inverse Gamma
distribution with parameters

p1 =
2(δ − c2k1/k2)

σ2
1

+ 1, q1 =
2σ

σ2
1

.

The probability density of ϑ(·) is

f∗1 (x) =
qp1

1

Γ(p1)
x−(p1+1)e−

q1
x , x > 0.

For any p > 0, by the strong ergodicity we derive that

lim
t→+∞

⟨⟨hp⟩⟩t =
∫ ∞

0

xpf∗1 (x)dx :=Mp a.s. (6.2)

Particularly, if p = 1, then M1 = σk2/(k2δ−c2k1). Now we investigate the long-time
behaviors of x(t) and y(t) when σ2 is large sufficiently.

Theorem 6.1. If ζ1 := σ2
2/2− α1 > 0 and δ − c2k1/k2 > 0, then

lim sup
t→+∞

ln y(t)

t
≤ −ζ1 a.s.

and the distribution of x(t) converges weakly to the measure ϑ(·) as t→ +∞.

Proof. Recall the auxiliary process ψ(t) defined by (4.1). By the Itô formula, we
have

d lnψ(t) = [α1 − α1α2ψ(t)−
σ2
2

2
]dt+ σ2dB2(t).

Integrating both sides of the above formula from 0 to t and dividing both sides by
t, we obtain

lnψ(t)

t
− lnψ(0)

t
≤ α1 −

σ2
2

2
+
σ2
2B2(t)

t
. (6.3)
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By the strong law of large numbers, we have lim
t→+∞

B2(t)
t = 0. Hence

lim sup
t→+∞

lnψ(t)

t
≤ α1 −

σ2
2

2
:= −ζ1.

Using the comparison theorem implies that

lim sup
t→+∞

ln y(t)

t
≤ lim sup

t→+∞

lnψ(t)

t
≤ −ζ1 a.s. (6.4)

Consequently, tumor cells will become extinct exponentially with probability one.
Next, we will reveal the permanence of effector cells when tumor cells tend to be
extinct.

Case 1. If ρ ≤ mµ, by Lemma 6.1, we have f2(y) < 0. Furthermore,

lim
t→+∞

f2(y(t)) = 0 a.s.

Then for any ϵ > 0, there exists T1 > 0, such that for any t ≥ T1,

−ϵ ≤ ρy(t)

m+ y(t)
− µy(t) < 0. (6.5)

Because v(t) = k1

k2
+ (v0 − k1

k2
)e−k2t, thus v(t) is monotonically decreasing and

lim
t→+∞

v(t) = k1

k2
. This implies that for the above ϵ, there exists T2 > 0 such that for

any t ≥ T2, we have

k1
k2

≤ v(t) ≤ k1
k2

+ ϵ. (6.6)

Due to (6.5) and (6.6), denote T3 = max {T1, T2}. If t ≥ T3, then

(σ− δx+ c2
k1
k2
x− ϵx)dt+σ1xdB1(t) ≤ dx ≤ (σ− δx+ c2

k1
k2
x+ c2ϵx)dt+σ1xdB1(t).

(6.7)
Letting ϵ→ 0 in (6.7), this yields that the distribution of x(t) converges weakly to
ϑ(·).

Case 2. If ρ > mµ, by Lemma 6.1, we obtain that there exists y′ > 0 such that
for any 0 ≤ y ≤ y′, f2(y) > 0. Hence for the above ϵ, there exists T4 > 0, such that
if t ≥ T4, then

0 <
ρy(t)

m+ y(t)
− µy(t) ≤ ϵ. (6.8)

We denote T5 = max {T2, T4}. If t ≥ T5, from (6.6) and (6.8) we can derive that

(σ − δx+ c2
k1
k2
x)dt+ σ1xdB1(t)

≤(σ−δx+ ρxy

m+y
−µxy+c2xv)dt+σ1xdB1(t)

≤(σ − δx+ ϵx+ c2
k1
k2
x+ c2ϵx)dt+ σ1xdB1(t).
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This is equivalent to

(σ− δx+ c2
k1
k2
x)dt+σ1xdB1(t) ≤ dx ≤ (σ− δx+ ϵx+ c2

k1
k2
x+ c2ϵx)dt+σ1xdB1(t).

(6.9)
Letting ϵ→ 0 in (6.9), we can obtain that the distribution of x(t) converges weakly
to ϑ(·). Above all when t → +∞, we arrive at the distribution of x(t) converges
weakly to the measure ϑ(·).

Example 6.1. We choose the parameter values in stochastic model (1.4) as follows:
σ = 0.7, α1 = 0.4426, α2 = 0.4, α3 = 0.514, c1 = 0.5, c2 = 0.3826, µ = 0.1859,
ρ = 0.7829, m = 0.862, k1 = 0.5463, k2 = 0.9757, δ = 0.57, σ1 = 0.1, σ2 = 2 and
(x0, y0, v0) = (1.22, 1, 1). Then

σ2
2

− α1 = 1.5574 > 0, δ − c2k1
k2

≈ 0.3558 > 0.

The condition of Theorem 6.1 is satisfied, which shows that the tumor cells
will become extinct. We draw the path of the solution of system (1.4) and its
corresponding deterministic system respectively in Figure 5. It is easy to see from
Figure 5 that the immune cells can survive while the cancer cells tend to zero.
Moreover, it is worth noting that cancer cells in the random state decay significantly
faster than those in the deterministic state. This suggests that vitamins do play an
important role in the treatment of cancer. This, however, is not the only way. We
also need other external methods to enable patients to recover more quickly.
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Figure 5. The path of x(t) and y(t) for the stochastic model (1.4) and the corresponding deterministic
model (1.1).

7. Persistence in mean
In this section we discuss an important topic, namely persistence in mean [5]. Recall
the auxiliary process ψ(t), applying (6.4) yields that if α1 <

σ2
2

2 , then lim sup
t→+∞

ψ(t) =

0. Conversely, if α1 >
σ2
2

2 , by solving the Fokker-Planck equation (see details in [8]),
the process ψ(t) has a unique stationary distribution π(·), with probability density
f∗2 (x) =

b
a1
1

Γ(a1)
xa1−1e−b1x, x > 0, where a1 = 2α1

σ2
2
−1 and b1 = 2α1α2

σ2
2

. We denote that
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ψ(t) obeys Gamma distribution G(a1, b1). For any p > 0, by the strong ergodicity
we get

lim
t→+∞

⟨⟨ψp⟩⟩t =
∫ ∞

0

xpf∗2 (x)dx := Np a.s. (7.1)

Especially, if p = 1, we have N1 = (α1 − σ2
2

2 )/(α1α2). Using the Itô formula implies

d lnψ(t) = α1(1− α2ψ(t))dt+ σ2dB2(t)−
σ2
2

2
dt.

Integrating both sides of the above formula from 0 to t, we have

lnψ(t) = lnψ(0) +

∫ t

0

(
α1 −

σ2
2

2
− α1α2ψ(s)

)
ds+ σ2B2(t).

Dividing both sides by t, from (7.1) and the strong law of large numbers we derive
that

lim
t→+∞

lnψ(t)

t
= 0.

Using the comparison theorem implies that

lim sup
t→+∞

ln y(t)

t
≤ 0 a.s. (7.2)

Letting r := δ−c2v0 and h := (
√
ρ−√

mµ)∨0, by utilizing Lemma 6.1, one observes
that f2(y) ≤ h2, ∀ y > 0. We now introduce an auxiliary process φ(t) described bydφ(t) = [σ − (r − h2)φ(t)]dt+ σ1φ(t)dB1(t),

φ(0) = x0 > 0.
(7.3)

Similar to the process h(t), we obtain φ(t) has a unique stationary distribution,
which is the inverse Gamma distribution with parameters p2 = 2(r − h2)/σ2

1 + 1
and q2 = 2σ/σ2

1 . The probability density of φ(t) is

f∗3 (x) =
qp2

2

Γ(p2)
x−(p2+1)e−

q2
x , x > 0.

For any p > 0, by the strong ergodicity, we derive that

lim
t→+∞

⟨⟨φp⟩⟩t =
∫ ∞

0

xpf∗3 (x)dx := Cp a.s. (7.4)

In particular, when p = 1, we have C1 = σ/
(
r − h2

)
. The stationary distribution

of φ−1(t) is the Gamma distribution with parameters p2 and q2 (see details in [8]),
and

lim
t→+∞

⟨⟨φ−1⟩⟩t =
2(r − h2) + σ2

1

2σ
a.s. (7.5)

Applying the Itô formula yields that

d lnφ(t) =
( σ

φ(t)
− (r − h2)

)
dt+ σ1dB1(t)−

σ2
1

2
dt.



2758 W. Liu, H. Zhang, W. Zhang & X. Sun

Integrating both sides of the above formula from 0 to t, we have

lnφ(t) = lnφ(0) +

∫ t

0

( σ

φ(s)
− r + h2 − σ2

1

2

)
ds+ σ1B1(t).

Dividing both sides by t, by (7.5) and the strong law of large numbers, we derive
that

lim
t→+∞

lnφ(t)

t
= 0.

Applying the comparison theorem implies that

lim sup
t→+∞

lnx(t)

t
≤ 0 a.s. (7.6)

Next we will prove that under certain conditions y(t) is persistence in mean.

Theorem 7.1. If r − h2 > 0 and α1 − σ2
2/2− c2v0 − σα3/(r − h2) > 0, then

λ1 ≤ ⟨⟨y⟩⟩∗ ≤ ⟨⟨y⟩⟩∗ ≤ λ2 a.s.

where λ1 = 1
α1α2

(α1 − σ2
2

2 − c2v0 − σα3

r−h2 ) and λ2 = 1
α1α2

(α1 − σ2
2

2 ).

Proof. For any initial value (x0, y0) ∈ R2
+, by the Itô formula we have

d ln y(t) =(α1(1− α2y(t))− α3x(t)− c1v(t))dt+ σ2dB2(t)−
σ2
2

2
dt.

Integrating both sides of the above formula from 0 to t, and dividing both sides by
t, and since 0 < x(t) ≤ φ(t), we derive that

ln y(t)

t
≥ ln y0

t
+ α1 −

σ2
2

2
− c1v0 −

α1α2

t

∫ t

0

y(s)ds− α3

t

∫ t

0

φ(s)ds+
σ2B2(t)

t
.

Letting t→ +∞, from (7.2) and (7.4) it follows that

⟨⟨y⟩⟩∗ ≥ 1

α1α2
(α1 −

σ2
2

2
− c1v0 −

σα3

r − h2
) a.s.

Moreover, 0 < y(t) ≤ ψ(t), ∀ t ≥ 0. From (7.1), we obtain

⟨⟨yp⟩⟩∗ ≤ ⟨⟨ψp⟩⟩∗ := Np a.s.

When p = 1, we have

⟨⟨y⟩⟩∗ ≤ ⟨⟨ψ⟩⟩∗ =
1

α1α2
(α1 −

σ2
2

2
) a.s.

Then we arrive at

1

α1α2
(α1 −

σ2
2

2
− c1v0 −

σα3

r − h2
) ≤ ⟨⟨y⟩⟩∗ ≤ ⟨⟨y⟩⟩∗ ≤ 1

α1α2
(α1 −

σ2
2

2
).

Now it is time for us to reveal a sufficient condition for 1/x(t) to be persistent
in mean.
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Theorem 7.2. If α1 > σ2
2/2, then

λ3 ≤ ⟨⟨x−1⟩⟩∗ ≤ ⟨⟨x−1⟩⟩∗ ≤ λ4 a.s.

where λ3 = 1
σ

(
δ +

σ2
1

2 − ρ− c2v0

)
∨ 0 and λ4 = 1

σ

[
µ(α1−σ2

2/2)
α1α2

+ δ +
σ2
1

2

]
.

Proof. Using the Itô formula, we derive that

d lnx(t) =(
σ

x
− δ +

ρy

m+ y
− µy + c2v −

σ2
1

2
)dt+ σ1dB1(t). (7.7)

Integrating both sides of the above formula from 0 to t, we get

lnx(t) ≤ lnx0 +

∫ t

0

σ

x(s)
ds+ (ρ+ c2v0 − δ − σ2

1

2
)t+ σ1B1(t)

=

∫ t

0

σ

x(s)
ds+Q1(t),

(7.8)

where Q1(t) = lnx0 + (ρ + c2v0 − δ − σ2
1

2 )t + σ1B1(t). By the strong law of large
numbers we deduce that

lim
t→+∞

Q1(t)

t
= ρ+ c2v0 − δ − σ2

1

2
a.s.

Hence, let Ω1 ∈ F , and we have P(Ω1) = 1. For any ϵ > 0, any ω ∈ Ω1, there exists
T6 = T6(ϵ, ω) > 0, such that

Q1(t)

t
≤ ρ+ c2v0 − δ − σ2

1

2
+ ϵ, ∀ t ≥ T6.

Substituting the above formula into (7.8) yields that

lnx(t) ≤ (ρ+ c2v0 − δ − σ2
1

2
+ ϵ)t+

∫ t

0

σ

x(s)
ds. (7.9)

Denote
z(t) :=

∫ t

0

1

x(s)
ds, m1 := ρ+ c2v0 − δ − σ2

1

2
.

Together with (7.9) we deduce that

eσz(t)
dz(t)

dt
≥ e−(m1+ϵ)t, ∀ t ≥ T6.

Integrating both sides of the above formula from T6 to t, we derive that

1

σ
(eσz(t) − eσz(T6)) ≥ − 1

m1 + ϵ
(e−(m1+ϵ)t − e−(m1+ϵ)T6), ∀ t ≥ T6.

This is equivalent to

eσz(t) ≥ eσz(T6) − σ

m1 + ϵ
(e−(m1+ϵ)t − e−(m1+ϵ)T6), ∀ t ≥ T6.



2760 W. Liu, H. Zhang, W. Zhang & X. Sun

Taking logarithms on both sides of the above formula, we have

z(t) ≥ 1

σ
ln
[
eσz(T6) − σ

m1 + ϵ
(e−(m1+ϵ)t − e−(m1+ϵ)T6)

]
, ∀ t ≥ T6.

Dividing both sides by t and letting t→ +∞, and using L′Hopital′s rule we arrive
at

⟨⟨x−1⟩⟩∗ ≥ −(m1 + ϵ)

σ
a.s.

Since ϵ is arbitrary, we obtain that

⟨⟨x−1⟩⟩∗ ≥ −m1

σ
=
δ +

σ2
1

2 − ρ− c2v0

σ
a.s.

Due to the positivity of x(t), one observes

⟨⟨x−1⟩⟩∗ ≥
δ +

σ2
1

2 − ρ− c2v0

σ
∨ 0 a.s. (7.10)

On the other hand, for any initial value (x0, y0) ∈ R2
+, by utilizing ψ(t), we have

0 < y(t) ≤ ψ(t) a.s. Integrating both sides of (7.7) from 0 to t, and dividing both
sides by t yields that

lnx(t)

t
≥ lnx0

t
+

1

t

∫ t

0

σ

x(s)
ds− 1

t

∫ t

0

µψ(s)ds− (δ +
σ2
1

2
) +

σ1B1(t)

t
.

From (7.1) and (7.6) it follows that

⟨⟨x−1⟩⟩∗ ≤ 1

σ

[ µ

α1α2
(α1 −

σ2
2

2
) + δ +

σ2
1

2

]
a.s. (7.11)

The proof is therefore complete.

Example 7.1. We choose the parameter values in the stochastic model (1.4) as
follows: σ = 0.2, α1 = 0.9, α2 = 0.4, α3 = 0.514, c1 = 0.04, c2 = 0.01, µ = 0.1859,
ρ = 0.4, m = 0.862, k1 = 0.5463, k2 = 0.9757, δ = 0.7, σ1 = 0.2, σ2 = 0.25 and
(x0, y0, v0) = (1.22, 1, 0.7), then

δ +
σ2
1

2
− ρ− c2v0 = 0.313 > 0, α1 −

σ2
2

2
= 0.86875 > 0,

r − h2 ≈ 0.6391 > 0, α1 −
σ2
2

2
− c2v0 −

σα3

r − h2
≈ 0.7009 > 0.

Hence the conditions of Theorem 7.1 and Theorem 7.2 are satisfied. Figure 6
depicts the path of the time mean of 1/x(t) and y(t) for the stochastic model (1.4),
respectively.

8. Existence and uniqueness of invariant measure
Now we prove the existence and uniqueness of invariant measure of system (1.4)
under weak noises.
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Figure 6. The path of the time mean of 1/x(t) and y(t) for the stochastic model (1.4), respectively.

Theorem 8.1. If r > h2 and α1 − σ2
2/2− c1v0 − σ/(r− h2) > 0, then the solution

(x(t), y(t)) of system (1.4) has a unique invariant measure ϑ1(·) with support set
R2

+.

Proof. Denote 2η := (r − h2)(α1 − σ2
2/2− c1v0)− σ. If r > h2 and α1 − σ2

2/2−
c1v0 − σ/(r − h2) > 0, we know that η > 0. Obviously, choose a constant c small
sufficiently, such that

c(δ + σ2
1)

2 ≤ ση. (8.1)

Define U1(x, y) : R2
+ → R+ by

U1(x, y) = x+
c

x
+ y2 + (r − h2) ln(1 +

1

y
).

Computing LU1(x, y) yields that

LU1(x, y) = σ +
ρxy

m+ y
− µxy − δx+ c2xv − c(

σ

x2
+

ρy

x(m+ y)
− µy

x
− σ2

1 + δ

x

+
c2v

x
) + (σ2

2 + 2α1)y
2 − 2α1α2y

3 − 2α3xy
2 − 2c1vy

2

+ (r − h2)
( −σ2

2

2(y + 1)2
− α1 − α3x− σ2

2

y + 1
+
α1α2y

y + 1
+

c1v

y + 1

)
.

Furthermore,
µy

x
≤ σ

2x2
+
µ2y2

2σ
.

Noting that Lemma 6.1, we have f2(y) ≤ h2, ∀ y > 0. By utilizing r > h2, we
deduce that

LU1(x, y) ≤ [σ − (r − h2)x]− cσ

2x2
+
c(σ2

1 + δ)

x
+ (2α1 + σ2

2 +
cµ2

2σ
)y2 − 2α1α2y

3

+ (r − h2)
( −σ2

2

2(y + 1)2
− α1 − α3x− σ2

2

y + 1
+

(α1α2 + c1v0)y

y + 1

)
.

One can see that
lim

x→+∞, y→+∞
LU1(x, y) = −∞. (8.2)
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Then there exist positive constants G1
x and G1

y such that

LU1(x, y) ≤ −η, ∀ x ≥ G1
x, y ≥ G1

y. (8.3)

Besides, we see that
lim

x→0+, y→+∞
LU1(x, y) = −∞,

which implies that there exist positive constants g1x < G1
x and G2

y ≥ G1
y such that

LU1(x, y) ≤ −η, 0 < x ≤ g1x, y ≥ G2
y. (8.4)

Moreover,
lim

y→+∞
LU1(x, y) = −∞, g1x < x < G1

x,

which means that there exists a positive constant Gy ≥ G2
y such that

LU1(x, y) ≤ −η, g1x < x < G1
x, y ≥ Gy. (8.5)

By (8.3), (8.4) and (8.5) we see that

LU1(x, y) ≤ −η, ∀ x > 0, y ≥ Gy. (8.6)

Notice that
lim

x→0+
LU1(x, y) = −∞, 0 < y < Gy,

which implies that there exists a positive constant gx such that

LU1(x, y) ≤ −η, 0 < x ≤ gx, 0 < y < Gy. (8.7)

Obviously,
lim

x→+∞, y→0+
LU1(x, y) ≤ −2η,

we therefore derive that there exist positive constants G1
x > gx and g1y < Gy such

that

LU1(x, y) ≤ −η, G1
x ≤ x, 0 < y < g1y. (8.8)

Besides,
lim

x→+∞
LU1(x, y) = −∞, g1y < y < Gy,

hence, there exists a positive constant Gx ≥ G1
x such that

LU1(x, y) ≤ −η, Gx ≤ x, g1y < y < Gy. (8.9)

Applying (8.8) and (8.9) leads to

LU1(x, y) ≤ −η, Gx ≤ x, 0 < y < Gy. (8.10)

It follows from (8.1) that for x > 0,

− cσ

2x2
+
c(σ2

1 + δ)

x
= −cσ

2

( 1

x
− δ + σ2

1

σ

)2

+
c(δ + σ2

1)
2

2σ
≤ c(δ + σ2

1)
2

2σ
≤ η

2
.
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From the above inequality and the condition 0 < α3 < 1, we have

lim sup
y→0+

LU1(x, y) ≤ [σ − (r − h2)x]− cσ

2x2
+
c(σ2

1 + δ)

x

+ (r − h2)
(σ2

2

2
− α1 + α3x+ c1v0

)
≤ σ − cσ

2x2
+
c(σ2

1 + δ)

x
+ (r − h2)

(σ2
2

2
− α1 + c1v0

)
≤ − 3η

2
.

Hence, there exists a positive constant gy < Gy such that

LU1(x, y) ≤ −η, 0 < x, 0 < y < gy. (8.11)

By (8.6), (8.7), (8.10) and (8.11), we obtain

LU1(x, y) ≤ −η, (8.12)

where (x, y) /∈ D = {(x, y) ∈ R2
+ : gx < x < Gx, gy < y < Gy}. And (x(t), y(t))

is positive recurrent with respect to D, that is E[τD] < ∞, where τD = inf{t > 0 :
(x(t), y(t)) ∈ D}. Due to the nondegeneracy of the diffusion coefficient, we obtain
that the solution (x(t), y(t)) of system (1.4) has a unique invariant measure ϑ1(·).
From [4], we deduce that the support of the invariant measure ϑ1(·) is in R2

+. The
proof is complete.

Example 8.1. Choose the parameters in model (1.4) as follows: σ = 0.2, α1 = 0.9,
α2 = 0.4, α3 = 0.514, c1 = 0.04, c2 = 0.01, µ = 0.1859, ρ = 0.4, m = 0.862,
k1 = 0.5463, k2 = 0.9757, δ = 0.7, σ1 = 0.4, σ2 = 0.1 and (x0, y0, v0) = (1.22, 1, 0.7),
then

r − h2 ≈ 0.6391 > 0, α1 −
σ2
2

2
− c1v0 −

σ

r − h2
≈ 0.5541 > 0.

It follows from the conditions of Theorem 8.1. For the stochastic system (1.4),
the frequency histograms of x(t) and y(t) are obtained in Figure 7, respectively.
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Figure 7. Frequency histograms of x(t) and y(t) for the stochastic system (1.4), respectively.
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9. Conclusion
Because the formation and development of cancer is very complex, it can be affected
by many factors. In this paper, we develop a stochastic tumor-immune-vitamin
model. We focus on investigating its dynamical behavior. In order to satisfy the
biological meaning, we show that the system has a unique globally positive solution.
We obtain that the solution is stochastically ultimately bounded by proving the mo-
ment boundedness (see Theorem 4.3). Next, by constructing appropriate Lyapunov
functions, we prove stochastic permanence of system (1.4), which implies long-term
survival. Finally, we deduce that when the noise intensity is large enough, the
cancer cells will become extinct, and the immune cells converge weakly to a unique
stationary distribution. In contrast to adding vitamins to the treatment of cancer,
we find by numerical simulation that the introduction of white noise causes can-
cer cells to die out more quickly, which is a novelty of this paper. By Theorem
8.1, the model has a unique two-dimensional stationary distribution when the noise
intensity is small. This suggests that noise has an impact on the extinction and
development of cancer cells. In this paper, we only give the sufficient conditions for
the extinction of tumor cells.

In the future, we can further investigate the necessary and sufficient conditions
for the extinction of tumor cells. In addition, we only consider the stochastic tumor-
immune-vitamin model under white noise perturbation, and in fact we could also
try to investigate the dynamical behaviors perturbed by colored noise.
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