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Abstract The analysis of fractional Integro-differential equations is valu-
able for researchers in the science community. For the present work, we
examine the analysis of a newly technique called the Fractional Decompo-
sition Method (FDM) via fixed point approach applies to nonlinear fractional
Volterra Integro-Differential equations. Then, we implement the method on
four test problems such as; Fractional Volterra Integro-Differential Equations
(FVIDE). We present exact and approximate solutions to fractional Volterra
Integro-Differential equations. The Caputo fractional derivative will be con-
sidered in the current work.
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1. Introduction
Many researchers studied in recent time the subject of fractional Volterra integro-
differential equations (FVIDEs) because its applicability in various fields of engi-
neering and science [3,6,8–10,12,14,16–19]. Traian Lalescu was the first scientist to
study the Volterra integral equations (VIE) in his 1908 thesis. Many applications of
VIE can be found in many areas of science such as; demography, and in insurance
Mathematics and Physics. When someone converts any IVP or BVP to IE, this
usually result in an Integro-differential equations (IDE) which appear in various
scientific models. Both integral and differential operators show up in many integro-
differential equations. Because of that, we are required to search for a reliable and
efficient technique to find analytical solutions of fractional differential equations.

It is well-known among the research community to convert IVP to VIE, and
to convert VIE to IVP. Lately, many powerful and reliable techniques have been
presented to find analytical approximate solutions for fractional VIDE, and to name
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few for example, the Chebyshev pseudo-spectral method [24], the Homotopy Analy-
sis Method (HAM) [18], Taylor Expansion Method [16], the Fractional Power Series
Method [14], the Fractional Differential Transform Method (FDTM) [3], Fractional
Adomian Decomposition Method (FADM) [25], Fractional Homotopy Perturbation
Method (FHPM) [9], and Fractional Laplace Decomposition Method (FLDM) [16].
In addition, M. Rawashdeh has developed new theorems that help in finding analyt-
ical approximate solutions to fractional nonlinear PDEs using the FNDM [22, 23].
The first author of the current paper was the first researcher to combine both the
natural decomposition method (NDM) along with the (ADM) to solve linear and
nonlinear ODEs and PDEs in a thesis authored by S. Maitama in 2014, see [25].

We implement the newly techniques (FDM) to four linear and nonlinear Volterra
integro-differential equations to show our new method is valid and efficient which
will prove the simplicity and the easiness of current algorithm.

First, we explore the FVIDE given by:
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)
v(t) +

∫ t

0

etτv(τ)dτ, (1.1)

along with I.C.:
v(0) = 0. (1.2)

It is known that v(t) = t3 is the exact solution of the above equation (1.1).
Second, we take a look at the linear FVIDE given by:

Dβ
t (v (t)) =

8t
3
2

3Γ (0.5)
− t2 − t3

3
+ v (t) +

∫ t

0

v (τ) dτ, 0 < t, β ≤ 1, (1.3)

along with I.C.:
v(0) = 0. (1.4)

Third, we examine the nonlinear FVIDE given as:
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252
+

∫ t

0

(t− τ)
2
(v(τ))

3
dτ, 0 ≤ t < 1, (1.5)

along with I.C’s.:
v′(0) = v(0) = 0. (1.6)

Note that the above equation has this exact solution v(t) = t2.
Finally, we explore the nonlinear FVIDE given as:

Dβ
t (v (t)) = 1 +

∫ t

0

v′ (τ) v (τ) dτ, 0 < β ≤ 1, (1.7)

with I.C.:
v(0) = 0. (1.8)

The rest of current research is present in this fashion: In Section 2, we present
definitions and some background of fractional calculus. Section 3is devoted for some
of the theories of the N-transformations along with some important properties of
the natural transform. In Section 4, we examine in details the convergence analysis
of the Fractional Decomposition Method (FDM) applied to the nonlinear FVIDE.
In section 5, we implement the FDM to four linear and nonlinear FIDE’s. Finally,
we devote section 6 for our conclusion of this current work.
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2. Fractional Calculus Background
In this section, we shall look at important definitions and properties which are useful
whenever someone talk about the subject of fractional calculus [7, 11,13,15,21].

Definition 2.1. If h(t) ∈ R, where t > 0. Then h(t) is in the space Cµ, µ ∈ R if
∃ p ∈ R such that h(t) = tpg(t), where g(t) in C [0,∞), and h(t) ∈ Cm

µ if h(m) ∈
Cµ, m = 1, 2, ....

Definition 2.2. The Riemann-Liouville fractional integral for the function g of
order β ≥ 0, is defined as:Jβ (g(s)) =

1

Γ(β)

∫ s

0

(s− t)β−1g(t) dt, β > 0, s > 0

J0 (g(s)) = g(s)

 . (2.1)

Definition 2.3. The Caputo fractional derivative of g is:

cDβ (g(s)) = Jk−βDk (g(s)) =
1

Γ(k − β)

∫ s

0

(s− t)k−β−1g(k)(t)dt, (2.2)

for k − 1 < β ≤ k, k = 1, 2, ..., s > 0, g ∈ Ck
−1.

Definition 2.4 ( [20]). The Gamma function can be defined as:

Γ(w) =

∫ ∞

0

e−s sw−1 ds, w > 0. (2.3)

Definition 2.5 ( [4]). Given a complete (Y, ρ) metric space. Then F : Y → Y is
called a contraction mapping on Y if we can find 0 < C < 1 with ρ (F (x), F (y)) ≤
C ρ(x, y), ∀x, y ∈ Y .

Theorem 2.1 ( [4]). Given complete Y nonempty metric space ρ, and F : Y → Y
is a contraction mapping, then F has a unique fixed-point, such that F (y∗) = y∗.

Theorem 2.2 ( [4]). Given a non-empty complete metric space (Y, ρ) with a map
F : Y → Y which is of a contraction type. Then the mapping has a unique fixed-
point y∗ ∈ Y (i.e. F (y∗) = y∗). Furthermore, y∗ can be obtained by starting with
an element y0 ∈ Y and define a sequence {yn} by F (yn−1) = yn for n ≥ 1. Then
yn → y∗.

3. The Natural-Adomian Method
For the sake of the definition and important properties, we refer the readers to read
more about the background of the general integral transform, Laplace, Sumudu
and natural transform method and its related properties for any given function
ζ(x), x ∈ R, see for example [5].

Definition 3.1. Consider ζ (s) to be a piece-wise continuous function over R and
M,K, p, q > 0 where p < q. Suppose that

A =
{
ζ (s) : |ζ (s)| < Mep sχ(s2,∞)(s) +Keqsχ(−∞,s1)(s)

}
.
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So, |ζ (s)| ≤ Mep s for s −→ ∞ i.e. s > s2 and |ζ (s)| ≤ Keq s for s −→ −∞ i.e.
s < s1.

Note that for any ζ (s) in the class A with r, w > 0 we have:∣∣∣∣∫ ∞

−∞
e−r sζ (sw) ds

∣∣∣∣ ≤ M

∫ ∞

0

e−r sep|sw|ds+K

∫ 0

−∞
e−r seq|sw|ds

= M

∫ ∞

s2

e(pw−r)sds+K

∫ s1

−∞
e(q w−r)sds.

The above is convergent if pw − r < 0 and q w − r > 0, thus pw < r < q w and so
p < r

w < q. Hence, ζ (s) is of exponential order.
Then, the natural transformation (N-transformation) is given as:

ℵ (ζ (s)) = L(r, w) =

∫ ∞

−∞
e−r s ζ(w s)ds, r, w > 0, (3.1)

where ℵ is the N-transform of ζ (s) and r, w are the N-transform parameters. Note
Equation (3.1) can be written as,

ℵ (ζ (s)) = ℵ+ (ζ (s)) + ℵ− (ζ (s)) = L+(r, w) + L−(r, w),

where,

ℵ+ (ζ (s)) = L+(r, w) =

∫ ∞

0

e−r s ζ(w s) ds, r, w ∈ (0,∞). (3.2)

Moreover,

ℵ−1 [L (r, w)] = ζ (s) =
1

2πi

∫ c+i∞

c−i∞
e

r s
w L (r, w) dr. (3.3)

Thus, Eq. (3.2) is the natural transformation and Eq. (3.3) is the inverse natural
transformation.

Here are some useful N-transforms properties and we shall use them throughout
this paper, see [22,23]:

1. ℵ+ [M ] =
M

r
.

2. ℵ+
[
xβ
]
=

Γ(β + 1)wβ

rβ+1
, β > −1.

3. ℵ+
[
ebx
]
=

1

(r − bw)
.

4. Suppose that k > 0, where k − 1 < β ≤ k and L(r, w) is the natural transform
of the function ζ(x), then the natural transformation of the fractional derivative
in the Caputo sense of the function ζ(x) of order β denoted by cDβζ(x) is given
by:

ℵ+
[
cDβζ(x)

]
=

rβ

wβ
L(r, w)−

k−1∑
n=0

rβ−(n+1)

wβ−n
(Dnζ(x))x=0 .
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4. Convergence Analysis of the FDM for nonlinear
FVIDE

In this section, we first present proofs for uniqueness and convergence theorem
along with error estimate using our FDM. Consider the general nonlinear non-
homogeneous FVIDEs with initial conditions given by:

Dβ
t (v (t)) = g (t) v (t) + s (t) + δ

∫ t

0

σ (τ, t)F (v (τ)) dτ, (4.1)

where 0 < β ≤ 1, along with I.C.:

v (0) = a. (4.2)

Note that the fractional derivative of v (t) is in the sense of Caputo, F (v (τ)) is a
nonlinear continuous function and s (t) is the non-homogeneous term and |σ (τ, t)| ≤
M . Employ the N-transformation and property 4 to Eq. (4.1) to find:

ℵ+
[
Dβ

t (v (t))
]
= ℵ+ [s (t)] + ℵ+

[
g (t) v (t) + δ

∫ t

0

σ (τ, t)F (v (τ)) dτ

]
. (4.3)

rβ

wβ
ℵ+ [v (t)]−

n−1∑
k=0

rβ−(k+1)

wβ−k

[
D(k)v (t)

]
t=0

= L (r, w) + ℵ+

[
g (t) v (t) + δ

∫ t

0

σ (τ, t)F (v (τ)) dτ

]
. (4.4)

ℵ+ [v (t)] =
awβ

rβ+1
+

wβ

rβ
L (r, w) +

wβ

rβ
ℵ+

[
g (t) v (t) + δ

∫ t

0

σ (τ, t)F (v (τ)) dτ

]
.

(4.5)

Take the inverse of N-transform to find:

v(t) = S (t) + ℵ−1

[
wβ

rβ
ℵ+

[
g (t) v (t) + δ

∫ t

0

σ (τ, t)F (v (τ)) dτ

]]
. (4.6)

Suppose our solution of v(t) is given by:

v(t) =

∞∑
n=0

vn(t). (4.7)

Moreover, the nonlinear part is written as:

F (v (τ)) =

∞∑
n=0

An (τ) . (4.8)

Note that the Adomian polynomial of v0, v1, . . . , vn are represented by An’s which
can be computed by:

An =
1

n!

dn

dσn

[
F

(
n∑

i=0

σivi

)]
, n = 0, 1, 2, . . . . (4.9)



2772 M. S. Rawashdeh, N. A. Obeidat & H. Abedalqader

Note that we can simplify the formula in Eq. (4.9) to be:

A0 = F (v0)

A1 = v1F
′ (v1)

A2 = v2F
′ (v0) +

1

2!
v21F

′′ (v0).

(4.10)

One can continue in this manner to get the other polynomials.
Substitute Eq. (4.7) into Eq. (4.6) to arrive at:

∞∑
n=0

vn (t) = S (t) + ℵ−1

[
wβ

rβ
ℵ+

[
g (t)

∞∑
n=0

vn(t) + δ

∫ t

0

σ (τ, t)

∞∑
n=0

An(τ)dτ

]]
.

(4.11)
Eq. (4.11) gives:

v0(t) = S(t). (4.12)

In general, one can find:

vn+1 (t) = ℵ−1

[
wβ

rβ
ℵ+

[
g (t) vn (t) + δ

∫ t

0

σ (τ, t)An (τ) dτ

]]
, n ≥ 0. (4.13)

In this case, our solution will be:

v (t) =

∞∑
n=0

vn (t) . (4.14)

Again F (v(t)) =

∞∑
i=0

Ai, where Ai’s are the Adomian polynomials.

Note S (t) represents the I.C’s and the non homogeneous part. We shall use the
new form of Adomian polynomials, see [6] to find:

An = F (sn)−
n−1∑
j=0

Aj , where sn =

n∑
i=0

vi(t).

Theorem 4.1 (Uniqueness Theorem). Let 0 < γ < 1 with γ = (C1+λMTC2)
Γ(β+1) tβ.

Then Eq. (4.1) defines a unique solution.

Proof. Consider the Banach space of all functions on J = [0, T ] which are also
continuous, say A = (C[J ], ∥.∥) having a norm ∥.∥. Let G : A → A be define by:

vn+1 (t) = ℵ−1

[
wβ

rβ
ℵ+

[
g (t) vn (t) + δ

∫ t

0

σ (τ, t)An (τ) dτ

]]
.

Assume L [g(t)v(t)]=v(t) and F [v(t)]=

∞∑
n=0

An. Moreover, suppose |L(v)−L(v∗)|<

C1 |v − v∗| and |F (v)− F (v∗)| < C2 |v − v∗|, where C1, C2 are the Lipschitz con-
stants and v, v∗ are two different solutions of Eq. (4.1).

∥G(v)−G(v∗)∥
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= max
t∈J

∣∣∣∣∣∣ℵ
−1
[(

w
r

)β ℵ+
[
L(v) + δ

∫ t

0
σ (τ, t)F (v)dτ

]]
−ℵ−1

[(
w
r

)β ℵ+
[
L(v∗) + δ

∫ t

0
σ (τ, t)F (v∗)dτ)

]]
∣∣∣∣∣∣

= max
t∈J

∣∣∣∣∣∣ℵ
−1
[(

w
r

)β ℵ+ [L(v)− L(v∗)]
]

+ℵ−1
[(

w
r

)β ℵ+
[
δ
∫ t

0
σ (τ, t) (F (v)− F (v∗)) dτ

]]
∣∣∣∣∣∣

≤ max
t∈J

[
C1ℵ−1

[(w
r

)β
ℵ+ [|v − v∗|]

]
+ (δMC2T )ℵ−1

[(w
r

)β
ℵ+ [|v − v∗|]

]]
≤ max

t∈J
(C1 + δMTC2)

[
ℵ−1

[(w
r

)β
ℵ+ [|v − v∗|]

]]
≤ (C1 + δMTC2)

[
ℵ−1

[(w
r

)β
ℵ+ [∥v(t)− v∗(t)∥]

]]
= ∥v(t)− v∗(t)∥ (C1 + δMTC2)

Γ (β + 1)
tβ .

Since 0 < γ < 1, then G is contraction mapping and it follows by Theorem (2.2),
there exists a unique solution to Eq. (4.1).

Theorem 4.2 (Convergence Theorem). The series solution of Eq. (4.14) for Eq.
(4.1) involving the FDM will converge provided that 0 < γ < 1 where |v1| < ∞.

Proof. Given sk to be the mth partial sum, i.e. sk =

k∑
i=0

vi(t). We shall prove {sk}

is a Cauchy sequence in the Banach space A. Consider the Adomian polynomials

in [26]: F (sk) = A∗
k +

k−1∑
i=0

A∗
i . Let sn and sk be any two partial sums with k ≥ n.

Then,

∥sk − sn∥ = max
t∈J

|sk − sn|

= max
t∈J

∣∣∣∣∣
k∑

i=n+1

v∗i (t)

∣∣∣∣∣ , k = 1, 2, . . .

≤ max
t∈J

∣∣∣∣∣ℵ−1

[(w
r

)β
ℵ+

[
k∑

i=n+1

L (vi−1(t))

]]

+ ℵ−1

[(w
r

)β
ℵ+

[
k∑

i=n+1

δ

∫ t

0

σ (τ, t)F (v)dτ

]] ∣∣∣∣∣
= max

t∈J

∣∣∣∣∣ℵ−1

[(w
r

)β
ℵ+

[
k−1∑
i=n

L (vi(t))

]]

+ ℵ−1

[(w
r

)β
ℵ+

[
δ

∫ t

0

σ (τ, t)

k−1∑
i=n

Ai(t)dτ

]] ∣∣∣∣∣
≤ max

t∈J

∣∣∣∣∣ℵ−1

[(w
r

)β
ℵ+ [L(sk−1)− L(sn−1)]

]
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+ ℵ−1

[(w
r

)β
ℵ+

[
δ

∫ t

0

σ (τ, t) dτ (F (pk−1)− F (pn−1))

]] ∣∣∣∣∣
≤ C1max

t∈J
ℵ−1

[(w
r

)β
ℵ+ [|sk−1 − sn−1|]

]
+ (δMTC2)max

t∈J
ℵ−1

[(w
r

)β
ℵ+ [|sk−1 − sn−1|]

]
=

(C1 + δMTC2) t
β

Γ (β + 1)
∥sm−1 − sn−1∥ .

Thus, ∥rm − rn∥ ≤ γ ∥sk−1 − sn−1∥. Choose k = n+ 1, then

∥sn+1 − sn∥ ≤ γ ∥sn − sn−1∥ ≤ γ2 ∥sn−1 − sn−2∥ ≤ ... ≤ γn ∥s1 − s0∥ ,

where γ = (C1+δMTC2)t
β

Γ(β+1) .
Similarly, using the triangle inequality

∥sk − sn∥ ≤ ∥sn+1 − sn∥+ ∥sn+2 − sn+1∥+ ...+ ∥sk − sk−1∥
≤
[
γn + γn+1 + ...+ γk−1

]
∥s1 − s0∥

≤ γn

[
1− γk−n

1− γ

]
∥v1∥ .

But, 0 < γ < 1, then 1− γk−n < 1. Thus,

∥sk − sn∥ ≤ γn

1− γ
max
t∈J

|v1| . (4.15)

Since v(t) is bounded, then ∥v1∥ < ∞. So, as n → ∞, then ∥sk − sn∥ → 0. So,

{sk} is a Cauchy in A. Concluding, v(t) =
∞∑

n=0

vn(t) converges.

Theorem 4.3 (Error Estimates). The maximum absolute truncation error of the
series solution in Equation (4.14) to Equation (4.1) is estimated to be

max
t∈J

∣∣∣∣∣v(t)−
n∑

k=0

vk(t)

∣∣∣∣∣ ≤ γn

1− γ
max
t∈J

|v1| .

Proof. From Equation (4.15) in Theorem 4.2 we conclude that ∥sk − sn∥ ≤
γn

1−γmax
t∈J

|v1|. So as k → ∞, we have sk → v(t). Then ∥v(t)− sn∥ ≤ γn

1−γmax
t∈J

|v1(t)|.
Concluding, the maximum truncation absolute error in J is

max
t∈J

∣∣∣∣∣v(t)−
n∑

k=0

vk(t)

∣∣∣∣∣ ≤ max
t∈J

γn

1− γ
|v1(t)| =

γn

1− γ
∥v1(t)∥ .

5. Numerical Results and Applications
Now we employ the FDM to four examples and then we go by comparing the
solutions with existing exact solutions. First, we present the methodology of the
FDM:
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Consider the general nonlinear FVIDEs with initial conditions given by:

Dβ
t (v (t)) = g (t) v (t) + h (t) + δ

∫ t

a

σ (τ, t)F (v (τ)) dτ,

where k − 1 < β ≤ k, n = 1, 2, 3, . . . , (5.1)

with I.C’s:
v(i) (0) = ai, i = 0, 1, 2, 3, . . . . (5.2)

Note that the fractional derivative is in the Caputo sense of v (t), F (v (τ)) is a
nonlinear continuous function and f (t) is the non-homogeneous term.

Employ the natural transformation and property (4) to Eq. (5.1) we arrive at:

ℵ+
[
Dβ

t (v (t))
]
= ℵ+ [h (t)] + ℵ+

[
g (t) v (t) + δ

∫ t

a

σ (τ, t)F (v (τ)) dτ

]
. (5.3)

rβ

wβ
ℵ+ [v (t)]−

n−1∑
k=0

rβ−(k+1)

wβ−k

[
D(k)v (t)

]
t=0

= L (r, w) + ℵ+

[
g (t) v (t) + δ

∫ t

a

σ (τ, t)F (v (τ)) dτ

]
. (5.4)

ℵ+ [v (t)] =
wβ

rβ

n−1∑
k=0

rβ−(k+1)

wβ−k

[
D(k)v (t)

]
t=0

+
wβ

rβ
L (r, w)

+
wβ

rβ
ℵ+

[
g (t) v (t) + δ

∫ t

a

σ (τ, t)F (v (τ)) dτ

]
. (5.5)

Plug in Eq. (5.2) into Eq. (5.5) and applying the inverse to Eq. (5.5), then we
arrive at:

v (t) =ℵ−1

[
n−1∑
k=0

ak r
−(k+1)

w−k

]
+ ℵ−1

[
wβ

rβ
L (r, w)

]
+ ℵ−1

[
wβ

rβ
ℵ+

[
g (t) v (t) + δ

∫ t

a

σ (τ, t)F (v (τ)) dτ

]]
=S (t) + ℵ−1

[
wβ

rβ
ℵ+

[
g (t) v (t) + δ

∫ t

a

σ (τ, t)F (v (τ)) dτ

]]
. (5.6)

Here the nonhomogeneous part and the I.Cs are represented by S (t). Suppose our
intended solution is given by:

v (t) =

∞∑
n=0

vn (t) . (5.7)

Also, the nonlinear term is:

F (v (τ)) =

∞∑
n=0

An (τ) . (5.8)

Here, An’s are the polynomials of v0, v1, . . . , vn where one can be evaluate using:

An =
1

n!

dn

dδn

[
F

(
n∑

i=0

δivi

)]
, n = 0, 1, 2, . . . . (5.9)
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Eq. (5.9) can be presented as:

A0 = F (v0) ,

A1 = v1F
′ (v1) ,

A2 = v2F
′ (v0) +

1

2!
v21F

′′ (v0) .

(5.10)

We can continue in this manner to get the other polynomials. Now, we substitute
Eq. (5.7) and Eq. (5.8) into Eq. (5.6) to get:

∞∑
n=0

vn (t) = S (t) + ℵ−1

[
wβ

rβ
ℵ+

[
g (t)

∞∑
n=0

vn (t) + δ

∫ t

a

σ (τ, t)

∞∑
n=0

An (τ) dτ

]]
.

(5.11)
Going through Eq. (5.11) we find:

v0 (t) = S (t) ,

v1 (t) = ℵ−1

[
wβ

rβ
ℵ+

[
g (t) v0 (t) + δ

∫ t

a

σ (τ, t)A0 (τ) dτ

]]
,

v2 (t) = ℵ−1

[
wβ

rβ
ℵ+

[
g (t) v1 (t) + δ

∫ t

a

σ (τ, t)A1 (τ) dτ

]]
.

One can form the general recursive relation as follows:

vn+1 (t) = ℵ−1

[
wβ

rβ
ℵ+

[
g (t) vn (t) + δ

∫ t

a

σ (τ, t)An (τ) dτ

]]
, n ≥ 0. (5.12)

Hence, the exact solution of the form:

v (t) =

∞∑
n=0

vn (t) . (5.13)

Example 5.1. Given the linear FVIDE:

D
3
4 v(t) =

6 t
9
4

Γ
(
13
4

) − t2 et

5
v(t) +

∫ t

0

etτv(τ)dτ, (5.14)

with I.C:
v(0) = 0. (5.15)

Solution. Using the natural transformation of Eq. (5.14) to find:

ℵ+
[
D

3
4 v(t)

]
= ℵ+

[
6 t

9
4

Γ
(
13
4

) − t2 et

5
v(t) +

∫ t

0

etτv(τ)dτ

]
. (5.16)

Now using property 4 we get:

r
3
4

w
3
4

ℵ+ [v(t)]−
n−1∑
k=0

r
3
4−(k+1)

w
3
4−k

[
D(k) v(t)

]
t=0
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=
6w

9
4

r
13
4

+ ℵ+

[
− t2 et

5
v(t) +

∫ t

0

etτv(τ)dτ

]
. (5.17)

Plug in Eq. (5.15) into Eq. (5.17) to find:

ℵ+ [v(t)] =
6w3

r4
+

w
3
4

r
3
4

ℵ+

[
− t2 et

5
v(t) +

∫ t

0

etτv(τ)dτ

]
. (5.18)

Employ ℵ−1 to Eq. (5.18) to find:

v(t) =
6 t3

Γ(4)
+ ℵ−1

[
w

3
4

r
3
4

ℵ+

[
− t2 et

5
v(t) +

∫ t

0

etτv(τ)dτ

]]
. (5.19)

Suppose our intended solution given as:

v(t) =

∞∑
n=0

vn(t). (5.20)

From Eq. (5.20), then Eq. (5.19) become:

∞∑
n=0

vn(t) = t3 + ℵ−1

[
w

3
4

r
3
4

ℵ+

[
− t2 et

5

∞∑
n=0

vn(t) +

∫ t

0

etτ

∞∑
n=0

vn(τ)dτ

]]
. (5.21)

Looking at Eq. (5.21) above, we calculate these iterations:

v0(t) = t3,

v1(t) = ℵ−1

[
w

3
4

r
3
4

ℵ+

[
− t2 et

5
v0(t) +

∫ t

0

etτv0(τ)dτ

]]

= ℵ−1

[
w

3
4

r
3
4

ℵ+

[
− t5 et

5
+

∫ t

0

etτ4dτ

]]

= ℵ−1

[
w

3
4

r
3
4

ℵ+

[
− t5 et

5
+

t5 et

5

]]
= 0,

v2(t) = ℵ−1

[
w

3
4

r
3
4

ℵ+

[
− t2 et

5
v1(t) +

∫ t

0

etτv1(τ)dτ

]]
= 0.

Thus one can concludes that v1(t) = v2(t) = . . . = vn(t) = 0.
Hence,

v(t) =

∞∑
n=0

vn(t) = v0(t) + v1(t) + v2(t) + . . . = t3.

Which is in fact our intended exact solution for Eq. (5.14).
Example 5.2. Given the linear FVIDE :

Dβ
t (v (t)) =

8t
3
2

3Γ (0.5)
− t2 − t3

3
+ v (t) +

∫ t

0

v (τ) dτ, 0 ≤ t ≤ 1, 0 < β ≤ 1, (5.22)
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together with I.C:
v(0) = 0. (5.23)

Solution. Taking N-transformation of Eq. (5.22) we find:

ℵ+
[
Dβ

t (v (t))
]
= ℵ+

[
8t

3
2

3Γ (0.5)
− t2 − t3

3
+ v (t) +

∫ t

0

v (τ) dτ

]
. (5.24)

Now using property 4 we get:

rβ

wβ
ℵ+ [v(t)]−

n−1∑
k=0

rβ−(k+1)

wβ−k

[
D(k) v(t)

]
t=0

=
2w

3
2

r
5
2

− 2w2

r3
− 2w3

r4
+ ℵ+

[
v(t) +

∫ t

0

v(τ)dτ

]
. (5.25)

Plug in Eq. (5.23) into Eq. (5.25) to find:

ℵ+ [v(t)] =
2wβ+ 3

2

rβ+
5
2

− 2wβ+2

rβ+3
− 2wβ+3

rβ+4
+

wβ

rβ
ℵ+

[
v(t) +

∫ t

0

v(τ)dτ

]
. (5.26)

Employ ℵ−1 of Eq. (5.26) we find:

v(t) =
2tβ+

3
2

Γ
(
β + 5

2

) − 2tβ+2

Γ (β + 3)
− 2tβ+3

Γ (β + 4)
+ ℵ−1

[
wβ

rβ
ℵ+

[
v(t) +

∫ t

0

v(τ)dτ

]]
.

(5.27)
Suppose our intended solution given by:

v(t) =

∞∑
n=0

vn(t). (5.28)

From Eq. (5.28), one can rewrite Eq. (5.27) as:
∞∑

n=0

vn(t) =
2tβ+

3
2

Γ
(
β + 5

2

) − 2tβ+2

Γ (β + 3)
− 2tβ+3

Γ (β + 4)

+ ℵ−1

[
wβ

rβ
ℵ+

[ ∞∑
n=0

vn(t) +

∫ t

0

∞∑
n=0

vn(τ)dτ

]]
. (5.29)

Then looking at Eq. (5.29) above, we calculate the iterations:

v0 (t) =
2 tβ+

3
2

Γ
(
β + 5

2

) ,
v1 (t) = − 2tβ+2

Γ (β + 3)
− 2tβ+3

Γ (β + 4)
+ ℵ−1

[
wβ

rβ
ℵ+

[
v0 (t) +

∫ t

0

v0 (τ) dτ

]]
= − 2tβ+2

Γ (β + 3)
− 2tβ+3

Γ (β + 4)
+ ℵ−1

[
wβ

rβ
ℵ+

[
2tβ+

3
2

Γ
(
β + 5

2

) + ∫ t

0

2 τβ+
3
2

Γ
(
β + 5

2

)dτ]]

= − 2tβ+2

Γ (β + 3)
− 2tβ+3

Γ (β + 4)
+ ℵ−1

[
wβ

rβ
ℵ+

[
2tβ+

3
2

Γ
(
β + 5

2

) + 2tβ+
5
2

Γ
(
β + 7

2

)]]
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= − 2tβ+2

Γ (β + 3)
− 2tβ+3

Γ (β + 4)
+

2t2β+
3
2

Γ
(
2β + 5

2

) + 2t2β+
5
2

Γ
(
2β + 7

2

) ,
v2(t) = ℵ−1

[
wβ

rβ
ℵ+

[
v1 (t) +

∫ t

0

v1 (τ) dτ

]]
= − 2 t2β+2

Γ (2β + 3)
− 4 t2β+3

Γ (2β + 4)
+

2 t3β+
3
2

Γ
(
3β + 5

2

) + 4 t3β+
5
2

Γ
(
3β + 7

2

)
− 2 t2β+4

Γ (2β + 5)
+

2 t3β+
7
2

Γ
(
3β + 9

2

) ,
v3(t) = ℵ−1

[
wβ

rβ
ℵ+

[
v2 (t) +

∫ t

0

v2 (τ) dτ

]]
= − 2 t3β+2

Γ (3β + 3)
− 6 t3β+3

Γ (3β + 4)
+

2 t4β+
3
2

Γ
(
4β + 5

2

) + 6 t4β+
5
2

Γ
(
4β + 7

2

) − 6 t3β+4

Γ (3β + 5)

+
6 t4β+

7
2

Γ
(
4β + 9

2

) − 2 t3β+5

Γ (3β + 6)
+

2 t4β+
9
2

Γ
(
4β + 11

2

) .
Following this direction to find out:

v4(t) = ℵ−1

[
wβ

rβ
ℵ+

[
v3 (t) +

∫ t

0

v3 (τ) dτ

]]
= − 2 t4β+2

Γ (4β + 3)
− 8 t4β+3

Γ (4β + 4)
+

2 t5β+
3
2

Γ
(
5β + 5

2

) + 8 t5β+
5
2

Γ
(
5β + 7

2

) − 12 t4β+4

Γ (4β + 5)

+
12 t5β+

7
2

Γ
(
5β + 9

2

) − 8 t4β+5

Γ (4β + 6)
+

8 t5α+
9
2

Γ
(
5β + 11

2

) − 2 t4β+6

Γ (4β + 7)
+

2 t5β+
11
2

Γ
(
5β + 13

2

) .
Hence,

v(t) =

∞∑
n=0

vn(t)

= v0(t) + v1(t) + v2(t) + . . .

=
2 tβ+

3
2

Γ
(
β + 5

2

) − 2tβ+2

Γ (β + 3)
− 2tβ+3

Γ (β + 4)
+

2t2β+
3
2

Γ
(
2β + 5

2

) + 2t2β+
5
2

Γ
(
2β + 7

2

) + . . ..

When β = 1
2 , we get:

v (t) =
2 t2

Γ (3)
− 2 t

5
2

Γ
(
7
2

) − 2 t
7
2

Γ
(
9
2

) + 2 t
5
2

Γ
(
7
2

) + 2 t
7
2

Γ
(
9
2

) − 2 t3

Γ (4)

− 4 t4

Γ (5)
+

2 t3

Γ (4)
+

4 t4

Γ (5)
− 2 t5

Γ (6)
+

2 t5

Γ (6)
+ . . . = t2.

Which is in fact our intended solution to Eq. (5.22) for β = 1
2 .

Choosing β = {0.25, 0.5, 0.75, 1} in the above equation, we find:
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0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

t

v
β =0.25

β =0.5

β =0.75

β =1

Figure 1. Numerical values for v (t) of Ex. (5.2) for multiple values of β when 0 ≤ t ≤ 1.

Table 1. The exact solutions and approximate of v(t) for Ex. (5.2) for multiple values of β

t β = 0.25 β = 0.75 β = 1 β = 0.5
Numerical Exact

β = 0.5
Absolute Error

0 0 0 0 0 0 0

0.2 0.11616208 0.01768973 0.00848809 0.04 0.04 1× 10−17

0.4 0.42719278 0.07855562 0.04307141 0.16 0.16 0

0.6 0.93157128 0.1837281 0.10750724 0.36 0.36 0

0.8 1.63929647 0.32885885 0.19919438 0.64 0.64 1× 10−16

1 2.56280703 0.50554629 0.31043634 1 1 0

Example 5.3. Given the nonlinear FVIDE:

D
6
5

t (v (t)) =
5t

4
5

2Γ
(
4
5

) − t9

252
+

∫ t

0

(t− τ)
2
(v(τ))

3
dτ, (5.30)

together with I.C:
v′(0) = v(0) = 0. (5.31)

Solution. Using natural transform of Eq. (5.30) to find:

ℵ+

[
D

6
5

t (v (t))

]
= ℵ+

[
5t

4
5

2Γ
(
4
5

) − t9

252
+

∫ t

0

(t− τ)
2
(v(τ))

3
dτ

]
. (5.32)

Now using property 4 we get:

r
6
5

w
6
5

ℵ+ [v(t)]−
n−1∑
k=0

r
6
5−(k+1)

w
6
5−k

[
D(k)v(t)

]
t=0

=
2w

4
5

r
9
5

− 1440w9

r10
+ ℵ+

[∫ t

0

(t− τ)
2
(v(τ))

3
dτ

]
. (5.33)
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Plugin Eq. (5.31) into Eq. (5.33) to find:

ℵ+ [v(t)] =
2w2

r3
− 1440w

51
5

r
56
5

+
w

6
5

r
6
5

ℵ+

[∫ t

0

(t− τ)
2
(v(τ))

3
dτ

]
. (5.34)

Applying ℵ−1 of Eq. (5.34) to find:

v(t) = t2 − 1440t
51
5

Γ
(
56
5

) + ℵ−1

[
w

6
5

r
6
5

ℵ+

[∫ t

0

(t− τ)
2
(v(τ))

3
dτ

]]

= t2 − 1440t
51
5

Γ
(
56
5

) + ℵ−1

[
w

6
5

r
6
5

ℵ+
[
t2 ∗ v3(t)

]]

= t2 − 1440t
51
5

Γ
(
56
5

) + ℵ−1

[
2w

21
5

r
21
5

ℵ+
[
v3(t)

]]
.

(5.35)

Suppose our intended solution is given by:

v(t) =

∞∑
n=0

vn(t). (5.36)

From Eq. (5.36), one can write Eq. (5.33) as:
∞∑

n=0

vn(t) = t2 − 1440t
51
5

Γ
(
56
5

) + ℵ−1

[
2w

21
5

r
21
5

ℵ+

[ ∞∑
n=0

An (t)

]]
. (5.37)

Note that
∑∞

n=0 An (t) = v3(t) is the Adomian polynomial which represents the
nonlinear part. Note that:

A0 (t) = v30 (t),

A1 (t) = 3v20 (t) v1 (t),

A2 (t) = 3v20 (t) v2 (t) + 3v0 (t) v
2
1 (t),

A3 (t) = 3v20 (t) v3 (t) + 6v0 (t) v1 (t) v2 (t) + v31 (t),

...

Looking at Eq. (5.37) above, one can calculate the iterations as:

v0(t) = t2,

v1(t) = −1440t
51
5

Γ
(
56
5

) + ℵ−1

[
2w

21
5

r
21
5

ℵ+ [A0 (t)]

]

= −1440t
51
5

Γ
(
56
5

) + ℵ−1

[
2w

21
5

r
21
5

ℵ+
[
v30 (t)

]]

= −1440t
51
5

Γ
(
56
5

) + ℵ−1

[
2w

21
5

r
21
5

ℵ+
[
t6
]]

= −1440t
51
5

Γ
(
56
5

) +
1440t

51
5

Γ
(
56
5

) = 0,
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v2(t) = ℵ−1

[
2w

21
5

r
21
5

ℵ+ [A1 (t)]

]

= ℵ−1

[
2w

21
5

r
21
5

ℵ+
[
3v20 (t) v1 (t)

]]
= 0.

Thus one can concludes that v1(t) = v2(t) = ... = 0. Hence,

v(t) =

∞∑
n=0

vn(t) = v0(t) + v1(t) + v2(t) + . . . = t2.

Which is in fact our intended exact solution for Eq. (5.30).
Example 5.4. Given the nonlinear FVIDE as:

Dβ
t (v(t)) = 1 +

∫ t

0

v′(τ)v(τ)dτ, for 0 < β ≤ 1, (5.38)

a company I.C:
v(0) = 0. (5.39)

Solution. Using N-transformation of Eq. (5.38) to find:

ℵ+
[
Dβ

t (v(t))
]
= ℵ+

[
1 +

∫ t

0

v′(τ)v(τ)dτ

]
. (5.40)

Now using property 4 we get:

rβ

wβ
ℵ+ [v(t)]−

n−1∑
k=0

rβ−(k+1)

wβ−k

[
D(k)v(t)

]
t=0

=
1

r
+ ℵ+

[∫ t

0

v′(τ)v(τ)dτ

]
. (5.41)

Plugin Eq. (5.39) into Eq. (5.41) to find:

ℵ+ [v(t)] =
wβ

rβ+1
+

wβ

rβ
ℵ+

[∫ t

0

v′(τ)v(τ)dτ

]
. (5.42)

Apply ℵ−1 of Eq. (5.42) to obtain:

v(t) =
tβ

Γ (β + 1)
+ ℵ−1

[
wβ

rβ
ℵ+

[∫ t

0

v′(τ)v(τ)dτ

]]
. (5.43)

Suppose our intended solution is give by:

v(t) =

∞∑
n=0

vn(t). (5.44)

From Eq. (5.44), one can write Eq. (5.43) as:

∞∑
n=0

vn(t) =
tβ

Γ (β + 1)
+ ℵ−1

[
wβ

rβ
ℵ+

[∫ t

0

∞∑
n=0

An (τ) dτ

]]
. (5.45)
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Here
∑∞

n=0 An (τ) = v′(τ)v(τ) is the Adomian polynomial which represents the
nonlinear part.

Note that

A0 (τ) = v0 (τ) v0
′
(τ),

A1 (τ) = v0
′
(τ) v1 (τ) + v0 (τ) v1

′
(τ),

A2 (τ) = v0
′
(τ) v2 (τ) + v1

′
(τ) v1 (τ) + v2

′
(τ) v0 (τ),

A3 (τ) = v0
′
(τ) v3 (τ) + v1

′
(τ) v2 (τ) + v2

′
(τ) v1 (τ) + v3

′
(τ) v0 (τ),

...

Looking at Eq. (5.45) above, one can calculate the remaining iterations as:

v0(t) =
tβ

Γ (β + 1)
,

v1 (t) = ℵ−1

[
wβ

rβ
ℵ+
[∫ t

0

A0 (τ) dτ

]]
= ℵ−1

[
wβ

rβ
ℵ+

[∫ t

0

v0 (τ) v0
′
(τ) dτ

]]
= ℵ−1

[
wβ

rβ
ℵ+

[∫ t

0

τβ

Γ (β + 1)
× βτβ−1

Γ (β + 1)
dτ

]]
= ℵ−1

[
wβ

rβ
ℵ+

[
t2β

2 (Γ (β + 1))
2

]]

=
Γ (2β + 1) t3β

2Γ (3β + 1) (Γ (β + 1))
2 ,

v2 (t) = ℵ−1

[
wβ

rβ
ℵ+

[∫ t

0

A1 (τ) dτ

]]
=

Γ (4β + 1)Γ (2β + 1) t5β

2Γ (5β + 1)Γ (3β + 1) (Γ (β + 1))
3 ,

v3 (t) = ℵ−1

[
wβ

rβ
ℵ+

[∫ t

0

A2 (τ) dτ

]]
=

4Γ(6β+1)Γ(4β+1)Γ(3β+1)Γ(2β+1)+Γ(6β+1)Γ(5β+1)(Γ(2β+1))2

8Γ(7β+1)Γ(5β+1)(Γ(3β+1))2(Γ(β+1))4
t7β .

Following this path we find:

v4 (t)= ℵ−1

[
wβ

rβ
ℵ+

[∫ t

0

A3 (τ) dτ

]]

=

 4 Γ(8β+1)Γ(6β+1)Γ(4β+1)Γ(3β+1)Γ(2β+1)+Γ(8β+1)Γ(6β+1)Γ(5β+1)(Γ(2β+1))2

8 Γ(9β+1)Γ(7β+1)Γ(5β+1)(Γ(3β+1))2(Γ(β+1))5

+ 2 Γ(8β+1)Γ(7β+1)Γ(4β+1)(Γ(2β+1))2

8 Γ(9β+1)Γ(7β+1)Γ(5β+1)(Γ(3β+1))2(Γ(β+1))5

t9β .
Then using Eq. (5.44), one can calculate the other iterations.

v(t) =

∞∑
n=0

vn(t) = v0(t) + v1(t) + v2(t) + . . .
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=
tβ

Γ (β + 1)
+

Γ (2β + 1) t3β

2Γ (3β + 1) (Γ (β + 1))
2

+
Γ (4β + 1)Γ (2β + 1) t5β

2Γ (5β + 1)Γ (3β + 1) (Γ (β + 1))
3 + . . . .

Choosing β = 1 the above solution becomes:

v (t) = t+
t3

6
+

t5

30
+

17t7

2520
+

31t9

22680
+ . . .

=
√
2

(
t√
2
+

t3

6
√
2
+

t5

30
√
2
+

17t7

2520
√
2
+

31t9

22680
√
2
+ . . .

)
=

√
2 tan

(
t√
2

)
.

Which is in fact our intended solution for Eq. (5.38). Choosing β={0.25, 0.5, 0.75, 1}
in Eq. (5.46), we find:

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

t

v

β =0.25

β =0.5

β =0.75

β =1

Figure 2. Numerical Solutions of v (t) for Ex. (5.4) for multiple values of β when 0 ≤ t ≤ 1.

Table 2. Numerical results of approximate and exact solutions of v(t) for Ex. (5.4) for values of β

t β = 0.25 β = 0.5 β = 0.75 β = 1
Numerical Exact

β = 1
Absolute Error

0 0 0 0 0 0 0

0.2 1.05181432 0.55430982 0.33396637 0.20134409 0.20134409 5.71886982× 10−12

0.4 1.59435817 0.88100391 0.5909155 0.41101941 0.41101942 1.20065037× 10−8

0.6 2.20948632 1.2489334 0.86164077 0.63879462 0.6387957 1.0839355× 10−6

0.8 2.92791531 1.72510298 1.18047557 0.8978542 0.89788154 2.73374912× 10−5

1 3.76228394 2.38085999 1.59103283 1.20811287 1.20846024 3.47367358× 10−4

6. Concluding Remarks
In the present work, we implement successfully the convergence analysis for the
fractional decomposition method (FDM) to nonlinear FVIDE. Moreover, we found
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approximate and analytical solutions for both the linear and nonlinear fractional
Volterra integro-differential equations. The current technique minimize the calcu-
lation difficulties of some of the well-known famous methods and the computations
can be done with easy manipulations. Some famous application in FVIDEs were
examined by employing the FDM and the outcomes have shown noticeable dif-
ferences. Thus, the used mechanism can be implemented to various linear and
nonlinear FVIDEs without doing any perturbation, discretization or linearization.
In a future work, our intended aims is to employ the FDM to different linear and
nonlinear FVIDEs which show up in many areas of applied science, such as Physics
and Engineering.
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