Journal of Applied Analysis and Computation Website:http://www.jaac-online.com
Volume 13, Number 5, October 2023, 2827—2842 DOI:10.11948,/20230008

ON ITERATIVE POSITIVE SOLUTIONS FOR A
CLASS OF SINGULAR INFINITE-POINT
P-LAPLACIAN FRACTIONAL DIFFERENTIAL
EQUATION WITH SINGULAR SOURCE
TERMS*

Limin Guo', Ying Wang®', Haimei Liu2, Cheng Li*f
Jingbo Zhao? and Hualei Chu*

Abstract Based on properties of Green’s function, the existence of unique
positive solution for singular infinite-point p-Laplacian fractional differential
system is established, moreover, an iterative sequence and convergence rate
are given which are important for practical application, and an example is
given to demonstrate the validity of our main results.
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1. Introduction

Fractional calculus have been shown to be more accurate and realistic than integer
order models and it also provides an excellent tool to describe the hereditary prop-
erties of material and processes, particularly in viscoelasticity, electrochemistry,
porous media, and so on. Fractional derivatives arise in a variety of different areas
such as physics, chemistry, electrical networks, economics, rheology, biology chem-
ical, image processing, and so on. There has been a significant development in the
study of fractional differential equations in recent years, for an extensive collection
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of such literature, readers can refer to [1-5,7-9,9-11,15,17-21]. In [22], Zhang and
Liu investigated the following infinite-point fractional differential equation:

Diyu(t) = f(t,x(t), Dy ult), Dy tult)), 0 <t <1,

with infinite-point boundary condition

w(0) = 0, D u(0 _Z ), (1) = > aju(g),

Where 2<a< 3 f €10,1] x R* = R is a Caratheodory function, &;,~; € (0,1) and
{6350, {7} are two monotonic sequence with lim,_, §; = a,lim;_, v; = b,a,b €
(0,1), i, B; € R, DS, u is the standard Riemann-Liouville derivative. The authors
established the existence of at least one solution for this equation by Mawhin’s
continuation theorem. Lucas [16]investigated the following p-Laplacian fractional
differential equation

{DS‘i(@n(Dgiu(t))) +Af(tult),v(t) =0, 0 <t <1,
D3 (0ry (D2 u(t))) + pg(t,u(t), v(t)) =0, 0 < t < 1,

with p-point boundary condition
w9 (0) = 0,5 =0,1,2,...,n — 2; Dt u(0) = 0, DX u(1) = ZaiD’“
v(0)=0,j=0,1,2,...,m — 2, D v(0) = 0, D2 v Zb D% v(n,),

where p1,p2,q1,¢2 € R, p1 € [1,n—2],p2 € [1,m —2], q1 € [0,p1], 2 € [0,p2],&i,as €
R,i=1,2,...,N(N €N),0< & < ... <&y < 1. The existence and nonexistence
of positive solutions is obtained by Guo-Krasnosel’skii theorem.Jong [13] studied
the following p—Laplacian fractional differential equations:

D\ (¢ (D§u)) () = f(t,u(t),0 <t <1,

with m point boundary condition

u(0) =0, D, u(l) = Z &DY u(n;),

m—2

DG u(0) = 0,0, (D u(1)) = > Gipp(Diru(m)),

=1

where 1 < ,6<23<a+8<40<y<l,a—7y—-1>0,0<mn;,,& <1(i=
1,2,...,00), Z?;Q i <, 27;712 Cmffl < 1 < 1, p-Laplacian operator ¢, is
defined as ¢, (s) = [s[P~2s, p, ¢ > 1, %—i—% =1,and f € C([0,1]x(0, +0), [0, +0)).
The authors obtained the existence and uniqueness of solutions by using the fixed
point theorem for mixed monotone operators.
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Motivated by the excellent results above, in this paper, we will devote to consid-
ering the following infinite-point singular p-Laplacian fractional differential equa-
tion:

8‘+ ((pp (Dg+u)) (t) + quf(tau(t)ngiu(t%Dgiu(t)v e ang:72u(t)) = 07
0<t<l,

(1.1)

with boundary condition

u(0)=0,j=1,2,....,n—2;Dju(l) = > _n;Dp2u(§)),
j=1

- (1.2)
D3 u(0) = 03 5 (D (1)) = 3 Ciop(DG (),

i=1
where 1 < o < 2, n—1< v < n(n > 3), r,r2 € 2,n—2], 12 < 7y, p-
Laplacian operator ¢, is defined as ¢,(s) = [s[P7?s, p, ¢ > 1, % + é =1,i—
I < i < Z(Z = 1,2,...,71—2) and 0 < Ui7Cia§i < 1(1 = 1,2, 700)7 f €
C((0,1) x (0,+00)™ 1, RL))(RL = [0,400) and f(t,21,22,...,2,—1) has singular-
ityatz; =0 (i =1,2,...,n—1)and t =0, 1, D§,u, D, u, Dyiu(i =1,2,...,n—-2),

Dy u(i = 1,2) are the standard Riemann-Liouville derivative.

In this paper, we investigate the existence of positive solutions for a singu-
lar infinite-point p-Laplacian BVP(1.1,1.2). Compared with [22], the equation in
this paper is p-Laplacian fractional differential equation and the method which
we used in this paper is mixed monotone operator and Sequential techniques.
Compared with [13], fractional derivatives are involved in the nonlinear terms for
BVP(1.1,1.2) and value at infinite points are involved in the boundary conditions
of the BVP(1.1,1.2).

2. Preliminaries and lemmas
Some basic definitions and lemmas about the theory of fractional calculus which

are useful for the following research, reader can refer to the recent literature such
as [11,14,19], we omit some definitions and properities of fractional calculus here.

Lemma 2.1. Let y € L'(0,1) N C(0,1), then the equation of the BVPs
— DY, u(t) =y(t), 0<t <1, (2.1)
with boundary condition (1.2) has integral representation
1
u(t) = /0 G(t, s)y(s)ds, (2.2)

where

1 [T P(s)(1—s) " = At —s)"!, 0<s <t <1,
TN P(s)(1— )71 0<t<s<1,

(2.3)
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in which
P(S): 1 B 1 277‘ <§j_8)7—7"2—1 (1_S)r1_r2
Lly—=r1) T(y—r2) ord T\1-s ’
_ F(’Y) o F(,Y) - ey—r2—1
al vopr Rl Vo DO

Proof. First, we prove (2.3). By means of the definition of fractional differential
integral, we can reduce (2.1) to an equivalent integral equation

u(t) = —1J,y(t) + Crt7™ '+ Cot" 2+ .+ Cpt? T,

for C; € R(i=1,2,..,n). From u)(0) =0(j = 0,1,2,...,n — 2), we have C; = 0(i =
2,3,...,n). Consequently, we get

u(t) = Cit7 1 = I7, y(1).

By some properties of the fractional integrals and fractional derivatives, we have

r _
Dgiu(t) — Clﬂt“/fnfl o I(")/+ r1y(t),

L(y—r
e (24)
Dyiu(t) = Clm”_”_l — Iy y(t).
On the other hand, D¢} u(1) = Zj’;l n; D% u(€;) combining with (2.4), we get
[ aspn RS i
Cl—/o TG a Ve Zm A —y(s)ds
1 1
_ [ (A =8 P(s)
= /0 A y(s)ds,
where
1 1 & —s\"!
P(s) = - | 2 ) L—s)r,
() F(’Y—Tl) F(’Y_TQ)S;.UJ<1_S ( )
L'() [N GO S
A= - £
T —r) T —72) 2” /
Hence,

u(t) = Cit" "t = I y(t)

t — 3 y—1 1 — g y—ri—1lypy—1 s
— 7/0 A(;(’y))Ay(S)dSJr/o {a ) A it )y(s)ds.

Therefore, we get (2.3).
Moreover, by (2.3), for i = 1,2,...,n — 2, we have

D{iG(t,s)
1 DNt H 7 P(s)(1 =) " — At —s)7HH 0<s<t <1,
CAD(y = i) DO TIP(s) (1 -8 0< < s < L

(%)
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O
Lemma 2.2. Let f € C((0,1] x (0,4+00)""1,[0, +00), then the BVP (1.1,1.2) has
a unique solution

u(t) = A fol G(t, s)pq, (fol H(s,7)f(r,u(r), Djtu(r), Dizu(r),- - ,DgI’Qu(T))dT) ds,

(2.5)
where
H(t,s) = Hy(t, s) + Ha(t, s), (2.6)
in which
1 [t -9t —(t—-9)* 0<s<t <,
Hy(t,s) = =— 2.7
1(h9) I(a) {ta_l(l—s)a_l 0<t<s<l, 27)
et —1 a—1 a—1
Haft.5) = s | S Gl 0= (g =)
§>s
+ Y Gei - )} s 0,1, (25)
s2&;
in which .
A=1-) G&
i=1
Easily, we have
1 oo
Ha(t,5) = > GHi(&,s) -t (2.9)
i=1
Proof. The proof is the similar to Lemma 2.2 of [13], we omit it here. O

Lemma 2.3. Let A, A > 0, then the Green functions defined by (2.3) satisfies:
(1) G:[0,1] x [0,1] — RL is continuous and G(t,s) > 0, for allt,s € (0,1);
2)

1

) 77 1i(s) < Gt s) < a*t?h t,s € [0,1], (2.10)
%3(5) < H(t,s) < b*t* 1, t,s €10,1], (2.11)
where
jls) = (1 =8 L= (1—s)"], (s)=>_ CGiHi(mi,s),
i=1
A 1+§:g-(1—§a—1) o 1
CAre) \ EC ) T T ATy

in which A is defined as in Lemma 2.1 and A is defined as in Lemma 2.2.
Proof. Let
1 {t”‘l(l — 5)7_7'1_1 —(t— 8)7_1, 0<s<t<1,

G, (t,8) = =
(t:9) Ly) |71 —s) 7 0<t<s<1.
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From [12], for r1 € [2,n — 2|, we have
0<t 11 —5)" 71— (1—5)"] <T(a)Gy(t,s) <7711 —s)77 7 (2.12)

By direct calculation, we get P'(s) > 0, s € [0,1], and so P(s) is nondecreasing
with respect to s. For ro < ry, ri,73 € [2,n — 2], s € [0,1], we get

P(P(s) = ¢ o _T0) > (51]__ S) o (1—s)mmre

(y=r) Tly—r) s<g; s (2.13)
> I'(y)P(0) = F(SW)rl) - F(’I;(’y)rz) dom& T =A

By (2.3) and (2.13), we have

AN 1 =) At -5 0<s <t <1,
AT'(7)G(t,s) > . N (2.14)
A1 =)l 0<t<s<1.
So, by (2.12) and (2.14), we have
AT(7)G(t, s) ZAL(7)Gx(t, 5) (2.15)
SACTH L - s L - (1 s), |
hence,
1
G(t,s) > t1(s).
(t:5) 2 iyt (s)

On the other hand,

1 1 g—s\1! - 1
P(S)F(,y_rl)l—\(,y_r2)s<zéjnj(1]_ > (1*5) <

clearly,
AT (Y)G(t, s) < TV LP(s)(1 — s)7 1L,

hence,
G(t,s) <a*t7h

So the proof of (2.10) is completed, and now we will proof of 2.11.
Since Hi(t,s) > 0 for all (¢,s) € [0, 1] x [0, 1], we have

G(t,s) > Ha(t,s) = @to‘_l.
A
On the other hand, we get

H(t,s) = Hy(t,s) + %ZQHl(gi, 5).to-1
=1

1 a—1 1 = (1 _ ea—1
< ot +ZF(Q);Q(1 &

— 1 - . _ eca—1 pa—1 _ prga—1
Ar(a)<1+;g(1 13 ))t = bl
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Remark 2.1. The main idea of proof of (2.11) comes from [13].
Lemma 2.4. For any (t, s) € [0,1] x [0, 1], the following inequalities hold:

1

G(t,s) < m(l — )7l
H(t,s) < AFl(a) (1—s)>t

Proof. From Lemma 2.1 and Lemma 2.2, we easily complete this proof.

Let P be a normal cone of a Banach space E, and e € P, e > 0, where 0 is a zero
element of E. Define a component of P by Q. = {u € P| there exists a constant
C > 0 such that ée =u=xCe}. A: Qe X Q. — P is said to be mixed monotone if
A(u,y) is non-decreasing in v and non-increasing in y, i.e., u; =< us (u1,u2 € Q¢)
implies A(u1,y) = A(ug,y) for any y € Q., and y1 =< y2 (y1,y2 € Q.) implies
A(u,y1) = A(u,y2) for any u € Q.. The element u* € Q. is called a fixed point of
Aif A(u*,u*) = u*. O

Lemma 2.5 ( [6]). Let E is a Banach space and P be a normal cone of a Banach
space E. Suppose that A : Q. X Q. — Q. is a mired monotone operator and there
exists a constant o, 0 < o < 1, such that

1
A <la:, ly) =17A(z,y), z, YyEQe, 0 <<, (2.16)

then A has a unique fixed point x* € Q., and for any xg € Q., we have

lim z = z*,
k—o0

where
zp = A(Tp—1,28-1),k=1,2,---,

and the convergence rate is

k
[z — 2| = o1 =r7),

where r is a constant, 0 < r < 1, and dependent on x.

3. Main result

In this section, we will prove the existence of positive solutions for the BVP(1.1,1.2)
by the method of sequential technique.
Let
E = {ulu € C0, 1], Djiu e C0,1],i=1,2,...,n — 2} (2.23)

is a Banach space with the norm

||lu|| = max {tren[aa}i] |u(t)|7tr6n[(z)i>§] |Diiu(t)|,i=1,2,...,n— 2} .

Moreover, we define a cone of E by

P={ueE:u(t)>0,Dhiu(t)>0,te[0,1], i=1,2,...,n—2},
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clearly, P is a normal cone, and F is endowed with an order relation u < v if
and only if u(t) < v(t), Dfiu(t) < Dgiv(t), (i = 1,2,...,n — 2),t € [0,1]. Let
e(t) =71 for t € [0,1], also define a component of P by

Q. = {u € P : there exists M > 1, i

L) <ult) < Met), te o, 1}} .

In order to establish the existence of positive solution for system (1.1,1.2), we
shall consider the following problem:

5 (o (D)) () + AP f(6u(t) + 1, Ditut) +

1 1
Dh?u(t) + T , DT u(t) + E) =0,0<t<1,

uD(0) = 0,5 =1,2,....n - 2 Dpu(l) = S 0Dz u(&y), (3.1)
j=1

D u(0) = 0;0p(DYu(1)) = Y Gipp(Dyu(mi)),
i=1

where t € (0,1),k € {2,3,---}. Assume that f : [0,1] x (R?\ {0})" — RL is
continuous.

Lemma 3.1. u is a solution of system (3.1) if and only if u € C[0,1] is a solution
of the following nonlinear integral equation system (3.2):

u(t) = )\/01 G(t,5)pq (/01 H(s,7)f (T,U(T) + %,Dgiu(T) + %,

1 1
Dh2u(r) + TR , D2 u(r))dr + k) dT) ds.

Throughout this paper, we always assume the following conditions hold.

(S1) f(t,x1, @9, ..., Xpe1) = Ot 21,22, .« oy Tp1) + (¢, 21, T2, . .., Tp—1), Wwhere
¢ :(0,1) x (0,+00)™ — RY is continuous, @(t,z1,22,...,T,—1) may be singular at
t = 0,1, and is nondecreasing on z; >0 (i = 1,2,...,n). ¥ : (0,1) x (0, +00)" " —
R! is continuous, ¥(t,z1,x2,...,Ts—1) may be singular at t = 0,1, z; = 0 (i =
1,2,...,n— 1) and is nonincreasing on ; >0 (i =1,2,...,n—1).

(S2) There exists 0 < o < 1 such that, for all z; >0 (i =1,2,...,n — 1), and
t,l € (0,1),

1

¢(t,ll’1,ll’2, ceey ll’n—l) Z loﬁd)(taxlvx% s axn—l)y
1
w(t, l_lxl, l_lafg, ey l_lxn_1) Z l0q71 w(t,xl,xQ, PN ,a:n_l),
where ¢ is defined by (1.1).
(S3)
1
0</ o(r,1,1,..., 1)dr < 400,
0
1

_1
0< / 7OV (1,1, .., 1) dr < o0
0
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Remark 1.1. According to (S2) and (Ss), for all x; > 0 (i = 1,2,...,n — 1),
o,t € (0,1), and Il > 1, we have

_1_
¢(tal1’17ll’27 . 'almnfl) < l0q71 ¢(t7x1,$2a cee axnfl)a

1

¢(t, lilxl, 1711‘2, sy l71$n_1) S lgtkl 1/)(t,$1,£62, . ,Z‘n_l),

where q;(i = 1,2) is defined by (1.1).
Now we give the following Theorem.

Theorem 3.1. Suppose that (S1)-(S4) hold. Then the PFDE (1.1,1.2) has a unique
positive solution (u*,v*), for allt € [0,1], which satisfies

1
Mﬂ—l <wu(t) < Mt

Moreover, for any ug € Q., constructing a successively sequence:

wpsr (1) A/(:G(t,s)%</olﬂ(s,7) (¢<T,uk(7) + %,Dgﬁuk(ﬂ + % |

, 1 1 1
ng” ug(7) + k) + (¢, up(r) + o Dg+uk(7-) + T (3.3)

1
Dyt 2 ug(1))dr + k)dT) ds,
and we have |up —u*|| — 0 as k — oo, the convergence rate is |jur — u*|| =

o (1 e , where r is a constant, 0 < r < 1, and dependent on uyg.

Proof. We first consider the existence of a positive solution to problem (3.2). From
the discussion in Section 2, we only need to consider the existence of a positive
solution to BVP (3.2). In order to realize this purpose, define the operator T} :
Qe X Qe — P by

Ty (u, ) (#) :)\/01 G(t,s)npq(/ol H(s, ") (qb(r,u(T) + %,Dgiu(r) N % ,
1 1

1
= D) + L (3.4)

D ulr) + 1 ) + (7. 0(r) + L

k

Dir—*u(r))dr + ;) d7‘> ds.

Now we prove that Tj : Q. X Q. — P is well defined. For any u,v € Q., From (51)
and Remark 1.1, we have

¢(r,u(r), Dgiu(T),. .., Dgi~*u(T))
<¢ (r,Me(r), Dit Me(T), ..., Dyt~ * Me(r)
<¢(r,...,Mb+1,Mb+1)

<(Mb+1)7" " ¢(r,1,...,1)

<@2bM)7" T ¢(7,1,...,1), T € (0,1),
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where

M>max{(%)Jd’@ﬁ(f/olj(s)sw1><a1>d5))

(3.6)
1, 2e, b—l},
in which
0‘1 —0‘1 —(y—=1)oa—
e= AF / (T 1)dr +¢ /0 T P(r,1,...,1)dr,
= _ j( ) 0‘1 ('y 1)0‘1 1 J‘Ill
€= — (e o(r,1,...,1)+ (2b)~ (7, 1,...,1) ) dr,
0o A
b:max{w,l},c:min{w,l,}.
L'y = pin—s3) I'(7)
where M > 1,b, ¢ are positive constants. By (S7) and (S3), we also have
(1, u(T), Ditu(r), ..., Dy~ u(r))
1 T'(v) L I'(7) S1- )
<v <7’, — 77 1,777 Mo 1" Hn—2
M MT(y — pa) MT(y — pn—2) -
3.
<t (T, — 71 ,%val) (3.7)

c —oa-1
<(—=7r1
<(777) 7 vl DTe),

where c is a positive constant and is the same as above. Noting ZV%TVA < 1, and
by (S1) and (Ss2), we have

o(1,u(r), Ditu(r),. .. ,Dgf’zu(r))

L TG rG)
>o (1, —1771, YT 7Yl bn—2
20 (737 3ty MT(y — i)
-1 C -1
>¢5(T,MT7 ,...,MT’Y ) (38)
_1
>(Lr )T (1)

=1 _1_
=c M= 1T(’Y_l)"q_lqﬁ(ﬂ1,...,1), 7€ (0,1).
By (S1) and Remark 1.1, we also get
U(ru(r), Dgiu(T),. .., Dgi~*u(T))
> (T, Me(T), Dyt Me(T), ..., Dgf’2Me(T))
> (7, Mbr" ™  + 1, Mbr? =t 1, MbrY T2 )
>(r, Mb+1,Mb+1,--- , Mb+1) (3.9)

1

>(Mb+1)77""" (7, 1,...,1)
1 1 Pt
>0 T T M T (r, 1,0, 1), T € (0,1),
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For any u,v € Q., it follows from (3.5), (3.7) that

T (u,v)(t)
—A/ G(t,s) q</1H(S,T) <¢>( u(r )+k Dytu(r )+%,---,D§$”U(T)

+k>+w((m()+kp o(T) + -, Dbty ())d7+]1€>d7>ds

1
k'
1
; _ 'y 11— 1 Uﬁ
S/\/O (Ar(v—rl)(l s) ( ( (20M) " p(7,1,...,1)
- (]f) 7 T‘”‘”‘”ilw<nl,...71)) m) s
' 1
= ; _ —ri1—1 1 aq—%
_,\/0 (AF("}’Tl)(l s)7 ©q (AF(Q) (20M) /0 o(r,1,...,1)dr

=T
M\’ ! 21
+ (> / AL 11/1(7',1,...,1)d7’) ds
c 0

<+ o0, t €10,1].
(3.10)

By (S4), (3.10), we have that Tj : Q. x Q. — P is well defined. Next, we will prove
Ti : Qe X Qe — Q.. The formula (3.10) implies that

Ty (x, 2)(t) < Mt7™ = Me(t), t € [0,1]. (3.11)
At the same time, by (3.8) and (3.9), we have

T (u,v)(t)

:)\/ (t,s) (/ H(s, 7 < (T,u(T) + %,Dg},u(T) + %’ , DYt u(r)

1 1
) V) + L DR+ o DR o+ ) dr ) ds

1 = ﬁ 1
y— 1 .](T) a—1 C\? (y—=1)oa—1
/\/ t 8)¢q (/0 2l (() T o(r,1,...,1)

+(26M)77 1¢(T,1,...,1)) dr) ds

1 1= oga—1 _1_
:tfyfl . /\)/ j(s)s(qfl)(afl)d&pq </ %Safl ((J\Z) T(’Y*l)d‘l*l
0 0

(3.12)

e(t), te[0,1]. (3.13)
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Hence, Ty : Q. X Q. — @, moreover, by (S1), T} is non-decreasing in u and
non-increasing in v, hence, Ty : Q. X Q. — Q. is a mixed monotone operator.

Finally, we show that the operator T}, satisfies (2.16). For any u,v € Q. and
1€(0,1), by (S2) and Remark 1.1, for all ¢ € [0, 1], we have

)\/01 G(t,5)p (/OlH(s,T) <¢ <T,zu( )41 L Dptu(r )+%,-.  DF=2lu(r)

1 1 11 1 jna 1 1
) + w((’rv YU(T) + E’DOJF ZU(T) + k7 ’DO+ ZU(T))dT + k) dT) dS7

! &1 1 1
>)\/ G(t,3)pq (/ H(s,7)l°" (qb (T,’LL(T) + %,Dgiu(T) + AR , D2 u(r)
d

Jr
L om 1 fin—2
Gts HST T, ()+%,D0+u(7)+g,'-~,Do+ u(T)
_|_

1
#1 . Hn—2
+k)+1/)((7 u(T) + k , Dito(r) x , Do ?u(r ))dT—Fk)dT) ds
(3.14)
The formula (3.14) implies that
Ty, <lu, ;v) > 17Tk (u,v), u,v € Q.. (3.15)

Hence, the Lemma 2.5 assume that there exists a unique positive solution uj € Q.
such that Ty (uf,uj) = u}. Consequently, u} is a unique positive solution of (2.5)
for every k € {2,3,...}.

Since uj, € Q., so uj, has uniform lower and upper bounds. Thus, in order to
pass the solution u} of (3.2) to that of (2.5), we need that the fact that {u}}x>2 is
an equicontinuous family on [0, 1]. In fact, by (3.5), (3.7), u} € Qe, we have

* 1,,% 2 ‘k 1 n—2 * 1
£ (500206 + . DELuE(s) + 1 DA + e D i) + 1 )

g1
1 M\° 1
< (QbM)Uq 1¢)(S,1,1,"' ,1) + () T(Py_l)gq 1'(/)(871717"' 71)7 s € (Oa 1)7

c

and let

1
—1

w(s) = (2BM)7 ™ o(s, 1,1, - n+(M> PO Y6 1, 1), s€(0,1),

c
(3.16)
v (S4), we easily get that ¢(s) € L]0, 1]. Hence, for 0 < t; < t5 < 1, we have

(t2) = (ui) (t0)| = |Th (uk, up) (t2) — Th(ug, ug)(t1)]

<)\/ Gk, 5) — Ga(t, )]0y (/0 H(s,7) (¢<7 (1) + . Dltu(r) + 2,

k
Hn—2 1 1 M1 1 Hn—2 1
Do ulr)+ o |+ ((ro(r) + £, Dgto(r) - Dot o(m)r + - ) dr ) ds
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1 1
S)\/ |G(t2,8) — G(t1,5)| ¢q (/ b*s"‘_lw(T)dT> ds
0 0
1 1
z)\b*(q_l)/ |G(ta, s) — G(ty,s)| s D@Dy, (/ b*w(T)dT) ds
0 0
1
=)\b*(q_1)|\quL_1/ Glta, 5) — Gty 5)) s D@D g
0
1
@Il E ! [ (Gltns) - Gt )] ds
0

1 _ )y—ri—1y-1 1 _ e\y—ri—1yy—1
AR ! ( / (L8 Ps) / (L8 Ps)
0 A 0 A

* / - &?)H o / . ;5))%1 ds)

1 _ y—r1—1
S)\b*(q—l)HwH%—l (/ (1 S) P(S)d8>
O A

-1 -1
G -0

()

Since (t — s)?~! is uniformly continuous on [0,1] x [0,1] and ¢?~! is uniformly
continuous on [0, 1], so any € > 0, there exists ¢ > 0 such that for 0 < t; < t5 <
1, t27t1<5, 0<s<ty,

1 2 1 t2
—&——/ to — sV — (t; —s)V7 L ds—l——/ to — s)Y 7 ds. 3.17

37 =177 <,
(tQ — 8)7_1 — (tl — 5)7_1 < E.

Consequently, for all z € D, 0 < t; <ty <1 and ty — #; < min{d, "/}, the
inequality

W)(e2) ~ R O] < WOVl (g ) e G18)

holds. Hence, by the Arzela-Ascoli Theorem we get {u}}r>2 is an equiconuous
family on [0, 1]. Hence, {u}}r>2 is relatively compact in P, then the sequence {u}}
has a subsequence converge to u* C P. Without loss of generality, we still assume
that {u}} itself uniformly converges to u*, that is limy_, o u} — u*, then (u*) is the
solution of (2.5) which can be easily get by the Lebesgue dominated convergence
theorem.

Moreover, for any ug(t) € Q., by Lemma 2.5, constructing a successively se-
quence

et () = /01 G(t, )y (/01 H(s,7) (¢ (T, ue(r) + 7 Dftu(r)

1 1
Dg:f*2uk(7') =+ k) + ¢((t,Uk(T) + E, DngrUk-(T)

!
k/”

and we have ||u,, —u

o, DET g (1) ) dr + ;ﬂ) d7'> ds,

*|| == 0 as m — oo, convergence rate

m

[t —w™[| = o(1 = 77"),
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r is a constant, 0 < r < 1, and dependent on ug. Therefore, the proof of Theorem
3.1 is completed.

4. An example

Example 4.1. Consider the following boundary value problem:
3 5
D, (05 (Déyu)) (1) + X1t u(t), D, u(t) =0, 0 <t < 1,

u9(0) =0, j=0, 1,2; Dt u(l) = Z??jDSiu(fj), (4.1)

D§+U(O) =0;¢p ( 0+u ) ZQ‘PP ( o+u 771)) )

_ 5§ _3  _ 5 _ 3 _ _ _ 1 _ 1 _ 1
Where’y 576_5’(1_6_Zvrl_r2_2;"7j—2]7-57§j—-*'—7.

1 1 L
o(t,x1,x9,23) = (t71 cost)xf +2t:c28 + 2z3°,
t~

Y(t, w1, w0, 3) = 170, +a? s +(2—t)x3
Hence,
F(’Y) - y—ro—1 F(%) > 1
D _ i = n;(€;)72 = 0.4058 < 0.75
F('Y_T2)jz:; I5j F(%); NASY)
_ T r'(3)
L(y—r) T(3)
> PN T i |
DGET =D GE =5 a0 <L
=1 =1 =1

Moreover, for any (¢, 1,72, 73) € (0,1) x (0,00)% and 0 < [ < 1, we have

o(t,lx, lxo, lz3) = (t_% + Cost)(lanl)é + 2t(l1:2)% + 2(lx3)%

ool

1 1 1
>1 ((t*% + cost)x) + 2tzs + 2x§°>

_1
l ¢(t,$1,$2,l’3) = l04171 ¢(t,$1,l’2,$3),

Wt 1 g 1 g, 1 g) = 716 (17 )78 4 (17 ) 716 4+ (2 — ) (I Lag) T
>0 (e 4y T (2 ) )

1
= léw(taxthax?)) = lo.lﬂil w(taxl7x27x3)-

ool

Noting o = ﬁ <l,¢= %, W(r,1,1,1) =716 +3—1, ¢(7,1,1,1) = 777 + cosT +
27 +2, g(1,1) = 37 + 72 + 7sin7 + 7, we have

1 1
4
0< ¢(T,1,1,1)d7':/ (T_%+cos7—|—27'—|—2)d7-§5+§<_|_OO’
0 0



Iterative positive solutions for infinite-point. .. 2841

Thus, the assumptions (S1-S4) of Theorem 3.1 hold. Then Theorem 3.1 implies
that problem (4.1) has a unique solution.In addition, for any initial ug € Q., we
construct a successively sequence:

s =7 [ Gty ([ #) (6 (1), Do), 40 0)

1

o (t,uk(t),poauk(t),Au;(t))) dr) ds,t € 0,1, k=1,2,---,

and we have |luy — u}|| — 0 as k — oo, the convergence rate is

g, — u} ]| = o(1 = r7"),

where r is a constant, 0 < r < 1, and dependent on uy.
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