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A NOVEL 5D SYSTEM GENERATED
INFINITELY MANY HYPERCHAOTIC

ATTRACTORS WITH THREE POSITIVE
LYAPUNOV EXPONENTS∗

Jiaopeng Yang 1,† and Pengxian Zhu2

Abstract Little seems to be known about the five-dimensional (5D) differ-
ential dynamical system with infinitely many hyperchaotic attractors, which
have three positive Lyapunov exponents under no or infinitely many equilib-
ria. This article presents a 5D dynamical system that can generate infinitely
many hyperchaotic attractors. Of particular interest is the system exists not
only infinitely many hyperchaotic attractors but also infinitely many periodic
attractors in the following three cases: (i) no equilibria, (ii) only infinitely
many non-hyperbolic equilibria, (iii) only infinitely many hyperbolic equilib-
ria. By numerical analysis, one finds the 5D system could generate infinitely
many coexisting hyperchaotic or chaotic or periodic attractors in the three
kinds of equilibria cases. And one obtains the global dynamical behavior of
the system, such as the Lyapunov exponential spectrum, bifurcation diagram.
To study the hyperchaotic complexity of the 5D system, we rigorously show
the stability of hyperbolic equilibria and some mathematical characterization
for 5D Hopf bifurcation. In particular, the existence of an infinite number of
isolated bifurcated periodic orbits is strictly proven. These complex dynamics
studies in this paper may further contribute to a deep understanding of the
hyperchaotic systems with infinitely many attractors.

Keywords Hyperchaos, multistability, equilibria and stability, coexisting at-
tractors, Hopf bifurcation.
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1. Introduction
One attraction of nonlinear dynamical systems is that they can generate chaotic
attractors, an essential aspect studied by nonlinear science since the 20th cen-
tury. Lorenz [17] discovered the first chaotic attractor using computer numeri-
cal experiments while looking at atmospheric motion. Leonov [13–15] introduced
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the concept of hidden attractors: the attractive domain does not intersect with
any neighborhood of unstable equilibria. These researches and related literature
[2,4,8,10,23,25,29,30,32] make chaotic systems show more complex dynamic prop-
erties, reflecting more vital randomness and unpredictability.

Since then, chaos theory and its applications have penetrated almost all-natural
and social sciences fields. Ouannas et al. [19] proposed a new secure communi-
cations approach that combines chaotic modulation and recursive encryption into
one scheme. Wu et al. [34] structured a new approach for simplifying such circuit
implementation, which is practical for chaos-based communications. Jahanshahi et
al. [11] proposed a novel fuzzy disturbance-observer-based integral terminal sliding
mode control method for the hyperchaotic financial system. Lin et al. [16] reviewed
many chaotic dynamical behaviors based on memory neurons and neural networks.
Fathizadeh et al. [6], using the chaotic control theory, designed a voltage generator
as a control system that can reduce virus information to the environment.

Rossler [20] revealed the first four-dimensional hyperchaotic system, namely the
Rossler hyperchaotic system. In contrast to chaotic phenomena, 4D hyperchaos
expands in two directions. Thus the minimum dimension of an autonomous ODE
system that generates hyperchaos is four and has at least one nonlinear term. In
order to obtain n-dimensional (n ≥ 5) hyperchaotic autonomous ODE systems
with n − 2 positive Lyapunov exponents, two conditions need to be satisfied: (i)
the minimal dimension of the phase space of hyperchaotic attractors should be
at least n; (ii) in the equations at least a nonlinear term. Therefore, studying
high-dimensional hyperchaotic systems with a corresponding number of positive
Lyapunov exponents is essential. The related research on hyperchaos has recently
appeared in some literature [1,5,24,33,42] and its references. Based on the analytic
system with hyperbolic equilibria, Shen et al. [21, 22] constructed n-dimensional
continuous-time autonomous systems with multiple positive Lyapunov exponents.
The work in these two papers obtain exciting results, but the methodology does not
apply to the case of no equilibria and non-hyperbolic equilibria. Also, they do not
give a further theoretical analysis of the system except for the number of equilibria
and the real part of eigenvalues. This situation motivates us further to investigate
the properties of n dimensional chaos and hyperchaos system with n − 2 positive
Lyapunov exponents.

Universally known, studying equilibrium points plays a significant role in un-
derstanding hyperchaotic or chaotic attractors. It is easy to see that the number of
isolated equilibrium points must be finite in high-dimensional polynomial systems.
But studying the number of attractors (including equilibria) and the number of
limit cycles is still challenging, which is related to the famous Hilbert’s sixteenth
problem in 2D planar polynomial systems. As the number of dimensions increases,
it becomes more difficult to research the relationship between the number of isolated
equilibria and the number of chaos (or hyperchaos) in high-dimensional dynamical
systems. For systems with infinite isolated equilibria, some scholars have numer-
ically studied the existence of infinite isolated chaotic attractors, but they lack
theoretical results because the number of isolated attractors is difficult to be deter-
mined by analytical methods. For example, Zhang et al. [41] presented a possible
way to construct a 3D system with an infinite number of chaotic attractors. Yang
et al. [38] numerically obtained the existence of infinite isolated chaotic attractors
for a 3D system. Zhao et al. [44] studied the coexistence of (infinitely) many attrac-
tors of the other 3D Chua’s system with the smooth periodic nonlinear term. Chen
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et al. [3] explored a 4D hyperchaotic system with an infinite number of consecu-
tive equilibria. A section of the book [29] proposed a 4D autonomous hyperchaotic
system with infinitely many isolated equilibria or without equilibria. Moreover, a
question is whether the number of hyperchaotic attractors in a 5D system with
infinitely many isolated equilibria may be infinite. This paper gives a 5D analytic
system with infinitely many hyperchaotic attractors under no or infinitely many
equilibria, which helps study the relationship between equilibria and hyperchaos in
high-dimensional systems.

In exploring the chaotic system, it is common to determine the dynamical prop-
erties of the given system from the characteristic polynomial of the linearized sys-
tem at the equilibria. However, finding the eigenvalues from at least the quintic
polynomial is generally impossible. Little research has been done on the hyper-
chaotic dynamics of 5D ODE systems since it needs more sophisticated techniques
and rigorous theoretical analysis method, let alone the case of higher-dimensional
ODE systems. The main difficulty and challenge in investigating the hyperchaotic
dynamics of the 5D ODE system are to present rigorous mathematical proof of
the existence of hyperchaos, not to mention infinitely many hyperchaotic attrac-
tors, even for infinitely many isolated periodic orbits. Although numerical methods
can compute some examples, this is still theoretically imperfect in a certain sense.
In particular, it seems poor to analyze further the dynamical characteristics of
the given system, which makes the calculation results lack theoretical support and
makes it more difficult to obtain general conclusions of (hyper-)chaotic dynamics.

Along with exploring hyperchaotic attractors, relevant studies focused on 5D
polynomial systems with a finite number of coexisting attractors, with the most
studied being 5D quadratic polynomial systems [9, 12, 18, 27, 31, 36, 37, 39, 43]. For
example, Ojoniyi et al. [18] presented a 5D hyperchaotic system that shows coexist-
ing hidden hyperchaotic, symmetric chaotic and periodic attractors. Yang et al. [36]
studied a 5D hyperchaotic system with three positive Lyapunov exponents and three
types of coexisting attractors. Zhang et al. [43] obtained a 5D hyperchaotic system
with four center-type equilibrium points and coexisting hyperchaotic orbits. For the
5D cubic polynomial system, Yu et al. [40] introduced a novel multistable 5D mem-
ristive hyperchaotic system and its application. Wan et al. [28] proposed a novel
variable-wing 5D memristive hyperchaotic system with a line equilibrium point. For
the 5D quartic polynomial system, Yang et al. [35] investigated a 5D hyperchaotic
system with six coexisting attractors. For the 5D seven-order polynomial system,
Trikha [26] proposed a new 5D hyperchaotic system and its application in secure
communication. The 5D polynomial hyperchaotic system has a finite number of at-
tractors. However, little research has not provided an in-depth theoretical analysis
of the 5D analytic system with infinite hyperchaotic attractors. Meanwhile, the 5D
hyperchaotic system has rich applications in nonlinear circuits, secure communica-
tion, image encryption and engineering. Khalaf et al. [12] presented the application
of a new 5D chaotic system in chaos synchronization and secure communication.
Wei et al. [31] reported on the finding of hidden hyperchaos in a 5D extension to a
known 3D self-exciting homopolar disc dynamo. Yu et al. [39] demonstrated that
the hardware-based design of the 5D HFWMS can be applied to various chaos-based
embedded system applications including cryptography and secure communication.
Vaidyanathan et al. [27] presented a 5D hyperchaotic Rikitake dynamo system and
confirm the feasibility of this system.

To date, designing a high-dimensional chaotic differential system with expected
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dynamic properties and studying its dynamic characteristics are still attractive but
challenging. The natural question is whether there are infinitely many hyperchaotic
attractors with three positive Lyapunov exponents in 5D autonomous systems. This
paper constructs a new five-dimensional autonomous system based on Sprott’s A
chaotic system. Due to the periodicity of the sinusoidal function, the 5D system can
generate not only infinitely many hyperchaotic attractors with three positive Lya-
punov exponents, but also infinitely many hidden and non-hyperbolic hyperchaotic
attractors with three positive Lyapunov exponents. According to the number of
equilibrium points, the obtained 5D system can be divided into three types: no
equilibria, an infinite number of hyperbolic equilibria, and an infinite number of
non-hyperbolic equilibria. Through the normal form theory and the center man-
ifold theory, we theoretically investigate the local dynamical features of the new
system, such as the stability of equilibrium points, Hopf bifurcation and bifur-
cated periodic solution. In particular, it is strictly proven that the 5D system has
an infinite number of isolated bifurcated periodic orbits. This may be useful for
understanding the complex dynamics of infinitely many chaotic or hyperchaotic at-
tractors. Meanwhile, one numerically obtains the coexisting hyperchaotic, chaotic
and periodic attractors by investigating phase trajectories and Poincaré projections.

The paper is organized as follows. Section 2 introduces a new five-dimensional
system and numerically gives three types of hyperchaotic attractors under differ-
ent equilibria. Meanwhile, we theoretically investigate the stability of hyperbolic
equilibrium points. Section 3 obtains the 5D system has infinitely many coexisting
(hyper-) chaotic attractors in different cases according to equilibria and positive
Lyapunov exponents. Section 4 performs a series of numerical simulations to verify
the complex global dynamics of the 5D system with varying parameters. Section 5
gives the existence of Hopf bifurcation and approximate expressions for the bifur-
cated periodic solution. The final section is a brief conclusion and discussion.

2. A new five-dimensional hyperchaotic system
This section introduces a new five-dimensional hyperchaotic dynamical system with
three different types of equilibria under different parameter conditions. Interest-
ingly, this system has infinitely many hyperchaotic attractors with three positive
Lyapunov exponents in all three different states.

2.1. Form of 5D hyperchaotic system
Consider the following five-dimensional system

ẋ = F (x, y, z, u, v) = ax+ by + v

ẏ = G(x, y, z, u, v) = cx+ dy + e sin z

ż = H(x, y, z, u, v) = f + gy

u̇ = K(x, y, z, u, v) = h1 sin z + h2u

v̇ = L(x, y, z, u, v) = l + kx

(2.1)

where x, y, z, u, v are the state variables, and a, b, c, d, e, f, g, h1, h2, k are non-zero
system parameters and l is real system parameter. For the parameter condition
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a+ d+ h2 < 0, one can yield the function

∇V (t) =
∂F

∂x
+

∂G

∂y
+

∂H

∂z
+

∂K

∂z
+

∂L

∂v
= a+ d+ h2 < 0,

where V (t) denotes the volume of a region with a smooth boundary in R5. By
Liouville’s theorem, one has V (t) = exp(et)V (0), implying that any volume in R5

will contract exponentially to zero.
Let T = 1

e

(
cl
k + df

g

)
, it is easy to see system (2.1) has three types of equilibria.

(I1) If |T | > 1, system (2.1) has no equilibria.
(I2) If |T | = 1, system (2.1) has an infinite number of non-hyperbolic equilibria.

1) Case T = 1,

(x, y, z, u, v) =

(
− l

k
,−f

g
, 2nπ +

π

2
,−h1

h2
,
al

k
+

bf

g

)
= P0n, n = 0,±1,±2, ...,

2) Case T = −1,

(x, y, z, u, v) =

(
− l

k
,−f

g
, 2nπ − π

2
,
h1

h2
,
al

k
+

bf

g

)
= Q0n, n = 0,±1,±2, ....

(I3) If |T | < 1, system (2.1) has an infinite number of hyperbolic equilibria.
1) Case 0 ≤ T < 1,

(x, y, z, u, v) =

(
− l

k
,−f

g
, z1n,−

h1

h2
T,

al

k
+

bf

g

)
= P1n, z1n = 2nπ + arcsin T,

and

(x, y, z, u, v) =

(
− l

k
,−f

g
, z2n,−

h1

h2
T,

al

k
+

bf

g

)
= P2n, z2n = (2n+1)π+arcsin T,

2) Case −1 < T < 0,

(x, y, z, u, v) =

(
− l

k
,−f

g
, z3n,−

h1

h2
T,

al

k
+

bf

g

)
= P3n, z3n = (2n+1)π+arcsin T,

and

(x, y, z, u, v) =

(
− l

k
,−f

g
, z4n,−

h1

h2
T,

al

k
+

bf

g

)
= P4n, z4n = 2nπ + arcsin T,

where n = 0,±1,±2, ....
With the transformation (x, y, z, u, v) → (x, y, z + 2π, u, v), system (2.1) is in-

variant which means the phase portrait of system is periodic along the z direction.

Theorem 2.1. Let |T | < 1, then system (2.1) has infinite many hyperbolic equilibria
Pin(i = 1, 2, 3, 4;n = 0,±1,±2, ...). Furthermore, the following conclusion hold:

(I1) Let a1 = dk+aeg
√
1− T 2 and a2 = ad−bc−eg

√
1− T 2−k, the hyperbolic

equilibria Pin(i = 1, 4;n = 0,±1,±2, ...) is asymptotically stable if and only if
(a, b, c, d, e, f, g, h1, h2, l, k) ∈ Ω1 where

Ω1 =
{
(a, b, c, d, e, f, g, h1, h2, l, k)|h2 < 0, a+ d < 0, aeg > 0, a1 + (a+ d)a2 < 0,
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aeg(a+ d)
√
1− T 2 + a1a2(a+ d) + a21 < 0

}
.

Otherwise, the hyperbolic equilibria Pin(i = 1, 4) is unstable.
(I2) Let ā1 = dk−aeg

√
1− T 2 and ā2 = ad−bc+eg

√
1− T 2−k, the hyperbolic

equilibria Pin(i = 2, 3;n = 0,±1,±2, ...) is asymptotically stable if and only if
(a, b, c, d, e, f, g, h1, h2, l, k) ∈ Ω2 where
Ω2 =

{
(a, b, c, d, e, f, g, h1, h2, l, k)|h2 < 0, a+ d < 0, aeg < 0, ā1 + (a+ d)ā2 < 0,

− aeg(a+ d)
√
1− T 2 + ā1ā2(a+ d) + ā21 < 0

}
.

Otherwise, the hyperbolic equilibria Pin(i = 2, 3) is unstable.

Proof. (I1) Clearly, the Jacobian matrix of system (2.1) at equilibria Pin is

J(Pin) =



a b 0 0 1

c d e cos zin 0 0

0 g 0 0 0

0 0 h1 cos zin h2 0

k 0 0 0 0


.

The characteristic equation of the Jacobian matrix at the equilibria Pin(i = 1, 4) is

P (λ) = |λE − J(Pin)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− a −b 0 0 −1

−c λ− d −e cos zin 0 0

0 −g λ 0 0

0 0 −h1 cos zin λ− h2 0

−k 0 0 0 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (λ− h2)∆(λ) = 0,

(2.2)
where

∆(λ) =λ4 − (a+ d)λ3 + (ad− bc− eg cos zin − k)λ2 + (dk + aeg cos zin)λ

+ aeg cos zin = 0.

When (a, b, c, d, e, f, g, h1, h2, l, k) ∈ Ω1, Pin(i = 1, 4) is the hyperbolic equilibrium
point and the characteristic values satisfy λ1 = h2,∆(λ) = 0. Let
a4=1, a3=−a− d, a2=ad−bc−eg cos zin − k, a1=dk+aeg cos zin, a0=aeg cos zin,

where coszin =
√
1− T 2 for any n ∈ Z. According to the Routh-Hurwitz theorem

and the condition of Theorem 2.1

∆1 = a3 = −a− d > 0, ∆2 =

∣∣∣∣∣∣a3 1

a1 a2

∣∣∣∣∣∣ = a2a3 − a1 > 0,

∆3 =

∣∣∣∣∣∣∣∣∣
a3 1 0

a1 a2 a3

0 a0 a1

∣∣∣∣∣∣∣∣∣ = a1a2a3 − a0a
2
3 − a21 > 0, ∆4 = a0∆3 > 0,
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one obtains that all the roots of the equation ∆0(λ) = 0 have negative real part.
Therefore when (a, b, c, d, e, f, g, h1, h2, l, k) ∈ Ω1, the hyperbolic equilibria Pin (i =
1, 4; n = 0,±1,±2, ...) are locally asymptotically stable. Otherwise, Pin is unstable
equilibria.

The proof of (I2) is similar to that of (I1) and omitted. □

2.2. Three typical hyperchaotic attractors
To illustrate that system (2.1) can produce structurally different hyperchaotic at-
tractors, we find three particular sets of parameter values:

(A1) (a, b, c, d, e, f, g, h1, h2, l, k) = (1,−1.18, 5,−3, 10,−10, 3,−2, 1,−0.2,−4.5);
(A2) (a, b, c, d, e, f, g, h1, h2, l, k) = (1,−1.18, 5,−3, 10,−10, 3,−2, 1, 0,−4.5);
(A3) (a, b, c, d, e, f, g, h1, h2, l, k) = (1,−0.97, 5,−3, 14,−3, 3,−1, 1, 1,−3.5).

In these three parameter sets, the equilibrium points of the system are entirely
different which means the system is also distinct.

For the parameter condition (A1), system (2.1) has no equilibrium points when
T > 1 (i.e. |dfk + cgl| > |egk|) implying that the system has hidden attrac-
tors. Denote this attractor by A0, as shown in Fig.1(a), where the initial value
is (0.1, 1.5, 3.6,−1, 1). By calculation, one can see that the hidden attractor A0 is
hyperchaotic with three positive Lyapunov exponents, which are

LE1 = 1.0000, LE2 = 0.2372, LE3 = 0.0601, LE4 = 0.0000, LE5 = −2.2973,

and Lyapunov dimension DL = 4.5647. Fig.1(b) displays the Poincaré mapping of
A0 on the x− v plane of y = 0.
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Figure 1. System (2.1) with parameter set (A1) : (a) hidden hyperchaotic attractor A0; (b) Poincaré
mapping on the x − v plane of y = 0.

For the parameter condition (A2), we have T = 1 and system (2.1) has infinitely
non-hyperbolic equilibria (x, y, z, u, v) =

(
− l

k ,−
f
g , 2nπ + π

2 ,−
h1

h2
, al
k + bf

g

)
= P0n

(n ∈ Z). In this case, system (2.1) has a hyperchaotic attractor, denoted by B0

shown in Fig.2(a), where the initial value is (0.1, 1.5, 3.6,−1, 1). The corresponding
Lyapunov exponents of attractor B0 are

LE1 = 1.0000, LE2 = 0.2413, LE3 = 0.0652, LE4 = 0.0001, LE5 = −2.3065,
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and the Lyapunov dimension is DL = 4.5525. Moreover, Fig.2(b) shows the
Poincaré mapping of B0 on the x − v plane of y = 0, which is a different struc-
ture from Fig.1(b). For the parameter condition (A3), it is clear that 0 ≤ T < 1
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Figure 2. System (2.1) with parameters set (A2): (a) non-hyperbolic hyperchaotic attractor B0;
(b) Poincaré mapping on the x − v plane of y = 0.

(i.e. |dfk + cgl| < |egk|) and system (2.1) has infinitely many hyperbolic equilibria

P1n

(
2

7
, 1, z1n,

11

98
,
479

700

)
, P2n

(
2

7
, 1, z2n,

11

98
,
479

700

)
,

where z1n = 2nπ + arcsin
(
11
98

)
, z2n = (2n + 1)π + arcsin

(
11
98

)
, n ∈ Z. Under this

circumstance, system (2.1) has a hyperchaotic attractor, denoted by C0 shown in
Fig.3(a) with the same initial value (0.1, 1.5, 3.6,−1, 1). The corresponding Lya-
punov exponents of attractor C0 are

LE1 = 0.9999, LE2 = 0.4120, LE3 = 0.1594, LE4 = 0.0003, LE5 = −2.5715

and the Lyapunov dimension is DL = 4.6111. Meanwhile, Fig.3(b) shows the
Poincaré mapping of C0 on the x − v plane of y = 0, which is a different structure
from Fig.1(b) or Fig.2(b).
Remark 2.1. When system (2.1) has three differential kind of equilibria, it can
respectively generate hyperchaotic attractor with three positive Lyapunov expo-
nents. To the best of our knowledge, this phenomenon has not be discussed in
other literatures.

3. Infinite number of coexisting attractors
Generally, it is difficult to illustrate analytically the parametric regions of (hyper-)
chaotic dynamics. But experiences show that Lyapunov exponent is the most con-
venient numerical measure for identifying (hyper-) chaotic properties. To further
study the dynamics of system (2.1), numerical simulations show that the system has
respectively infinitely many coexisting hyperchaotic attractors (three or two posi-
tive LEs), chaotic attractors (one positive LE) and periodic attractors (zero positive
LE) in the following three cases: (i) no equilibria, (ii) only an infinite number of
non-hyperbolic equilibria, (iii) only an infinite number of hyperbolic equilibria.
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Figure 3. System (2.1) with parameter set (A3): (a) hyperchaotic attractor C0; (b) Poincaré mapping
on the x − v plane of y = 0.

3.1. Case of no equilibria

3.1.1. Hidden hyperchaotic attractors with three positive LEs

For a clear demonstration of attractors in system (2.1), one chooses the system pa-
rameter set (A1) as (1,−1.18, 5,−3, 10,−10, 3,−2, 1,−0.2,−4.5) and the Lyapunov
exponents are shown in subsection 2.2. In Fig.1(a), z ∈ (−4100,−1300) is an ap-
proximate bound along the z direction of the hyperchaotic attractor A0. Due to the
periodicity of the system on the z direction, system (2.1) has coexisting hidden hy-
perchaotic attractors in the interval z ∈ (−4100+ 1000m,−1300+ 1000m) (for any
m ∈ Z), denoted by Am. And the initial values of hidden hyperchaotic attractor
Am is (0.1, 1.5, 3.6 + 1000mπ,−1, 1). When m = 0,±1,±2,±3, Fig.4 demonstrates
the projections of coexisting hidden hyperchaotic attractors Am on x− z− v plane
and the Poincaré mapping on z − x plane of v = 0.
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Figure 4. Coexistence of hidden hyperchaotic attractors Am in ystem (2.1) with m = 0,±1,±2,±3:
(a) projection on x − z − v plane; (b) Poincaré mapping on z − x plane cross section v = 0.
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3.1.2. Hidden (hyper-) chaotic attractors with less than three positive
LEs

Let (a, b, c, d, e, f, g, h1, h2, l, k) = (1,−2.02, 5,−3, 10,−10, 3,−2, 1,−0.2,−4.5) and
choose the initial value as (0.1, 1.5, 3.6 + 1000mπ,−1, 1) with m = 0. In this case,
system (2.1) has hidden hyperchaotic attractor D(1)

0 which is shown in Fig.5(a).
The corresponding Lyapunov exponents (two positive LEs) of D(1)

0 are

LE1 = 0.9999, LE2 = 0.1861, LE3 = 0.0001, LE4 = −0.4933, LE5 = −1.6928,

and the Lyapunov dimension is DL = 4.4903. From Fig.5(a), it is easy to see
that the approximate bound along the z of D(1)

0 is (−3200,−2000). Note that
system (2.1) is periodic in the z direction. Thus, there exists a chaotic attractor
D(1)

m in the interval z ∈ (−3200 + 1000m,−2000 + 1000m) for any m ∈ Z. When
m = 0,±1,±2,±3, Fig.5(b) shows the projections of coexisting hidden chaotic
attractors D(1)

m with initial values (0.1, 1.5, 3.6 + 1000mπ,−1, 1).
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Figure 5. Projection of attractor on z − y − v plane: (a) hidden hyperchaotic attractor D(1)
0 ; (b) co-

existence of hidden hyperchaotic attractors D(1)
m .

Choose parameter values as (1,−2.18, 5,−3, 10,−10, 3,−2, 1,−0.2,−4.5) and
the initial value (0.1, 1.5, 3.6 + 1000mπ,−1, 1) with m = 0. Then system (2.1) has
hidden chaotic attractor D(2)

0 which is shown in Fig.6(a). And the corresponding
Lyapunov exponents (one positive LE) of D(2)

0 are

LE1 = 0.9998, LE2 = 0.0000, LE3 = −0.3019, LE4 = −0.3032, LE5 = −1.3948,

and the Lyapunov dimension is DL = 4.2830. It is easy to know that system (2.1)
is periodic in the z direction. Therefore let m = 0,±1,±2,±3, Fig.6(b) displays
the projections of coexisting hidden hyperchaotic attractors D(2)

m with initial values
(0.1, 1.5, 3.6 + 1000mπ,−1, 1).

3.2. Case of only infinitely many non-hyperbolic equilibria
3.2.1. Hyperchaotic attractors with three positive LEs

Choose parameter set (A2) as (1,−1.18, 5,−3, 10,−10, 3,−2, 1, 0,−4.5) and the
Lyapunov exponents are shown in subsection 2.2. In Fig.2(a), we note that the
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Figure 6. Projection of attractor on z−y−v plane: (a) hidden chaotic attractor D(2)
0 ; (b) coexistence

of hidden chaotic attractors D(2)
m .

hyperchaotic attractor B0 has an approximate bound (−4100,−2400) in the di-
rection of z. Therefore, system (2.1) has a hyperchaotic attractor in the interval
z ∈ (−4100 + 1000m,−2400 + 1000m) (for any m ∈ Z), denoted by Bm. And the
initial values of the hidden attractor Bm is (0.1, 1.5, 3.6 + 1000mπ,−1, 1).

When m = 0,±1,±2,±3, Fig.7(a) shows the projections of coexisting hyper-
chaotic attractors Bm on x − z − v plane. Fig.7(b) displays the Poincaré cross
section of Bm with v = 0.
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Figure 7. System (2.1) with parameter set (A2): (a) coexistence of hyperchaotic attractors Bm;
(b) Poincaré mapping on z − x plane cross section v = 0.

3.2.2. (Hyper-) chaotic attractors with less than three positive LEs

Let (a, b, c, d, e, f, g, h1, h2, l, k) = (1,−1.12, 45
7 ,−3, 5,−10, 3,−2, 1, 3.5,−4.5) and

the initial value (0.1, 1.5, 3.6+1000mπ,−1, 1) with m = 0. In this case, system (2.1)
has non-hyperbolic equilibria and hyperchaotic attractor E(1)

0 , the projection of E(1)
0

is shown in Fig.8(a). And the corresponding Lyapunov exponents (two positive
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LEs) of E(1)
0 are

LE1 = 0.9999, LE2 = 0.1215, LE3 = 0.0001, LE4 = −0.5287, LE5 = −1.5929,

and the Lyapunov dimension is DL = 4.3722. From Fig.8(a), we observe that
E(1)
0 has an approximate bound (−1380,−700) in the z direction. System (2.1)

is periodic along the z direction, thus there exists non-hyperbolic equilibria and
hyperchaotic attractor E(1)

m in the interval z ∈ (−1380 + 1000m,−700 + 1000m)

for any m ∈ Z. And the initial values of chaotic attractor E(1)
m is (0.1, 1.5, 3.6 +

1000mπ,−1, 1). When m = 0,±1,±2,±3, Fig.8(b) demonstrates the projections of
coexisting hyperchaotic attractors E(1)

m on y − z − v plane.
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Figure 8. Projection of attractor on z−y−v plane: (a) hidden chaotic attractor E(1)
0 ; (b) coexistence

of hidden chaotic attractors E(1)
m .

We set (a, b, c, d, e, f, g, h1, h2, l, k) = (1,−1.12, 5,−3, 5,−10, 3,−2, 1, 0.15,−0.15)
and the initial value (0.1, 1.5, 3.6+1000mπ,−1, 1) with m = 0. In this case, system
(2.1) has non-hyperbolic equilibria and chaotic attractor E(2)

0 , which is shown in
Fig.9(a). And the corresponding Lyapunov exponents (one positive LE) are

LE1 = 0.9999, LE2 = 0.0000, LE3 = −0.1285, LE4 = −0.2416, LE5 = −1.6298,

and the Lyapunov dimension is DL = 4.3721. Because of the periodicity of the
system in the z direction, when m = 0,±1,±2,±3, Fig.9(b) shows the projections
of coexisting chaotic attractors E(2)

m .

3.3. Case of only infinitely many hyperbolic equilibria
3.3.1. Hyperchaotic attractors with three positive LEs

Different from the cases in 3.1 and 3.2, choose system parameter set (A3) as
(a, b, c, d, e, f, g, h1, h2, l, k) = (1,−0.97, 5,−3, 14,−3, 3,−1, 1, 1,−3.5) and the Lya-
punov exponents are shown in subsection 2.2. From Fig.3(a), hyperchaotic at-
tractor C0 has an approximate bound z ∈ (−560,−250) on the z direction. Ac-
cording to system (2.1) being periodic along the z direction, there exist hyper-
bolic equilibria and hyperchaotic attractor Cm (for any m ∈ Z) in the interval of
z ∈ (−560+1000m,−250+1000m). And the initial values of hyperchaotic attractor
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Figure 9. Projection of attractor on z − y − v plane: (a) hidden hyperchaotic attractor E(2)
0 ; (b) co-

existence of hidden hyperchaotic attractors E(2)
m .

Cm is (0.1, 1.5, 3.6+1000mπ,−1, 1). When m = 0,±1,±2,±3, Fig.10 demonstrates
the projections of coexisting hyperchaotic attractors Cm on y− z− v plane and the
Poincaré mapping on z − v plane of y = 0.
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Figure 10. System (2.1) with parameters set (A3) : (a) coexistence of hyperchaotic attractors Cm;
(b) Poincaré mapping on z − v plane cross section y = 0.

3.3.2. (Hyper-) chaotic attractors with less than three positive LEs

Let (a, b, c, d, e, f, g, h1, h2, l, k) = (1,−4.2, 5,−3, 10,−10, 3,−2, 1, 8,−4.5) and the
initial value (0.1, 1.5, 3.6 + 1000mπ,−1, 1) with m = 0. One can obtain that sys-
tem (2.1) has hyperbolic equilibria and a hyperchaotic attractor F (1)

0 , as shown in
Fig.11(a). And the corresponding Lyapunov exponents (two positive LEs) of F (1)

0

are

LE1 = 1.0000, LE2 = 0.1567, LE3 = 0.0000, LE4 = −0.4865, LE5 = −1.6698,

and the Lyapunov dimension is DL = 4.4013. From Fig.11(a), F (1)
0 has an ap-

proximate bound z ∈ (−900,−430) on the z direction. Since system (2.1) is pe-
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riodic in the z direction, the phase portrait of system (2.1) is also periodic in
this direction. Thus, there exists a hyperchaotic attractor F (1)

m in the interval of
z ∈ (−900 + 1000m,−430 + 1000m) for any m ∈ Z. When m = 0,±1,±2,±3,
Fig.11(b) demonstrates the projections of coexisting hyperchaotic attractors F (1)

m

on y − z − v plane.
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Figure 11. Projection of attractor on z−y−v plane: (a) hidden chaotic attractor F(1)
0 ; (b) coexistence

of hidden chaotic attractors F(1)
m .

Now set (a, b, c, d, e, f, g, h1, h2, l, k) = (1,−5, 5,−3, 10,−10, 3,−2, 1, 8,−4.5) and
the initial value (0.1, 1.5, 3.6+1000mπ,−1, 1) with m = 0. System (2.1) has hyper-
bolic equilibria and a chaotic attractor F (2)

0 in the interval of z ∈ (−1150,−600),
as shown in Fig.12(a). And the corresponding Lyapunov exponents (one positive
LE) of F (2)

0 are

LE1 = 0.9998, LE2 = 0.0002, LE3 = −0.0946, LE4 = −0.2604, LE5 = −1.6450,

and the Lyapunov dimension is DL = 4.3921. Since the phase portrait of system
(2.1) is periodic in the z direction. Thus, when m = 0,±1,±2,±3, Fig.12(b) shows
the projections of coexisting chaotic attractor F (2)

m in the interval of z ∈ (−1150 +
1000m,−600 + 1000m).

3.3.3. Infinitely many periodic attractors

Let (a, b, c, d, e, f, g, h1, h2, l, k) = (0.7,−0.5, 5,−2, 2,−1, 2, 1,−1, 1,−2) and the ini-
tial value (0.1, 1.5, 3.6,−1, 1). One can find that system (2.1) has periodic attractor
G0, which the Lyapunov exponents (zero positive LE) are

LE1 = 0.0000, LE2 = −0.0699, LE3 = −0.2417, LE4 = −0.9896, LE5 = −0.9989.

One observes that G0 has an approximate bound z ∈ (−0.8, 0.8) on the z direction.
Due to the periodicity of the system (2.1) on the z direction, for any m ∈ Z, there
exists a periodic attractor Gm in the interval of z ∈ (−0.8 + 1000m, 0.8 + 1000m).
When initial points are (0.1, 1.5, 3.6+1000mπ,−1, 1) with m = 0,±1,±2,±3, Fig.13
demonstrates the projections of coexisting periodic attractors Gm on y − z − v and
z − y − x plane.
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Figure 12. Projection of attractor on z − y − v plane: (a) hidden hyperchaotic attractor F(2)
0 ;

(b) coexistence of hidden hyperchaotic attractors F(2)
m .
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Figure 13. Projection of periodic attractor: (a) coexistence of periodic attractor Gm on z − y − v
plane; (b) coexistence of periodic attractors Gm on z − y − x plane.

4. Global numerical dynamic analysis
To understand the dynamics of different attractors in system (2.1), this section
discusses some properties of the system with parameter changes, such as Lyapunov
exponents and bifurcation diagrams. And the simulation results are further derived
by using numerical methods.

Case 1. Hidden attractors: we now consider the dynamics of system (2.1) by
fixing parameters a = 1, c = 5, d = −3, e = 10, f = −10, g = 3, h1 = −2,
h2 = 1, l = −0.2, k = −4.5, and b ∈ [−10,−1]. In this case, system (2.1) has
no equilibria. Moreover, Fig.14 shows system (2.1) has a large-scale hidden chaos
attractor except for the small neighborhood of b = −2, −1.2, which has hidden
hyperchaos attractors. Table 1 demonstrates a few typical chaos and hyperchaos
dynamics, as well as the corresponding Lyapunov exponents of the system with
parameter b varies.

Case 2. Non-hyperbolic attractors: while fixing parameters a = 1, b = −1.12,
d = −3, e = 5, f = −10, g = 3, h1 = −2, h2 = 1, k = −4.5, l ∈ [0.5, 5]
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Table 1. The Lyapunov exponents of system (2.1) with (a, b, c, d, e, f, g, h1, h2, l, k) =
(1, b, 5,−3, 10,−10, 3,−2, 1,−0.2,−4.5).

b
Lyapunov exponents Dynamics

LE1 LE2 LE3 LE4 LE5

-6.6 0.9995 0.0000 -0.2456 -0.8760 -0.8780 Chaotic
-2 0.9999 0.2283 0.0001 -0.4869 -1.7414 Hyperchaotic
-1.17 0.9999 0.2520 0.0650 0.0001 -2.3198 Hyperchaotic

b
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Figure 14. System (2.1) with parameters a = 1,c = 5,d = −3,e = 10,f = −10,g = 3,h1 = −2,h2 =
1,l = −0.2,k = −4.5 and b ∈ [−10,−1]: (a) LEs of hidden attractors; (b) bifurcation diagram.

and c = 1
gl (egk − dfk), system (2.1) has infinitely many isolated non-hyperbolic

equilibria

P0n

(
2

9
l,
10

3
, 2nπ +

π

2
,
1

2
,
56

15
− 2

9
l

)
, l ∈ [0.5, 5], n = 0,±1,±2, ....

As parameter l changes, Fig.15 shows that system (2.1) has an abundance of chaotic
or hyperchaotic behaviors. It further can be observed that system (2.1) has hyper-
chaotic attractors in l ∈ [3.3, 3.8)∪(3.8, 3.9]. The Lyapunov exponent spectrum and
the bifurcation diagram in Fig.15 demonstrate that the system has complex behav-
iors as l varies. Table 2 demonstrates the Lyapunov exponents of system (2.1) with
l = 0.8 and 3.5.
Table 2. The Lyapunov exponents of system (2.1) with (a, b, d, e, f, g, h1, h2, l, k) =
(1,−1.12,−3, 5,−10, 3,−2, 1, l,−4.5) and c = 1

gl (egk − dfk).

l
Lyapunov exponents Dynamics

LE1 LE2 LE3 LE4 LE5

0.8 1.0000 0.0000 -0.6145 -0.6145 -0.7710 Chaotic
3.5 0.9999 0.1164 0.0001 -0.5228 -1.5937 Hyperchaotic

Case 3. Hyperbolic attractors: let us fix the parameters b = −1.12, c = 5,
d = −3, e = 10, f = −10, g = 3, h1 = −2, h2 = 1, l = 8,k = −4.5 and a ∈ [4.7, 13].
In this case, system (2.1) has infinitely many isolate hyperbolic equilibria

P1n

(
16
9 , 10

3 , z1n,
1
18 ,

56
15 − 16

9 a
)
, P2n

(
16
9 , 10

3 , z2n,
1
18 ,

56
15 − 16

9 a
)
, n = 0,±1,±2, ....
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Figure 15. System (2.1) with parameters a = 1,b = −1.12,d = −3,e = 5,f = −10,g = 3,h1 = −2,h2 =
1,k = −4.5,l ∈ [0.5, 5] and c = 1

gl (egk − dfk): (a) LEs of nonhyperbolic attractors; (b) bifurcation
diagram.

where a ∈ [4.7, 13], z1n = 2nπ + arcsin( 19 ) and z2n = (2n+ 1)π − arcsin( 19 ). Fig.16
shows that system (2.1) is hyperchaotic with two or three positive Lyapunov expo-
nents except for

a ∈ (7.1, 7.5) ∪ (7.7, 8.2) ∪ (8.4, 8.6) ∪ (10.1, 10.4) ∪ (10.8, 13).

The Lyapunov exponent spectrum and the bifurcation diagram Fig.16 can corrobo-
rate each other and exhibit the complexity of the system. Table 3 illustrates chaotic
or hyperchaotic dynamic phenomenon and the corresponding Lyapunov exponents
of system (2.1) with different values of parameter a.

Table 3. The Lyapunov exponents of system (2.1) with (a, b, c, d, e, f, g, h1, h2, l, k) =
(a,−1.12, 5,−3, 10,−10, 3,−2, 1, 8,−4.5).

a
Lyapunov exponents Dynamics

LE1 LE2 LE3 LE4 LE5

13.0 1.0000 0.0000 -0.5760 -0.5764 -0.8476 Chaotic
6.7 0.9997 0.3923 0.0000 -0.1155 -2.2766 Hyperchaotic
5.2 0.9998 0.3650 0.0541 0.0000 -2.4190 Hyperchaotic

5. Hopf bifurcation of the 5D hyperchaotic system
This section employs the higher-dimensional Hopf bifurcation theory [7] and sym-
bolic computations to analyze dynamical Hopf bifurcations of system (2.1).

Theorem 5.1 (Existence of Hopf Bifurcation). Suppose that |T | < 1, h2 < 0,
a + d < 0, aeg > 0, dk + aeg

√
1− T 2 > 0 and dk + aeg

√
1− T 2 + (a + d)(ad −

bc− eg
√
1− T 2 − k) < 0 hold. Then, as parameter b varies and passes through the

critical value

b = b0 =
1

c

(
ad− eg

√
1− T 2 − k +

dk + aeg
√
1− T 2

a+ d
+

aeg(a+ d)
√
1− T 2

dk + aeg
√
1− T 2

)
,
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Figure 16. System (2.1) with parameters b = −1.12,c = 5,d = −3,e = 10,f = −10,g = 3,h1 = −2,h2 =
1,l = 8,k = −4.5, and a ∈ [4.7, 13]: (a) LEs of hyperbolic attractors; (b) bifurcation diagram.

system (2.1) undergoes a Hopf bifurcation at the equilibria Pin(i = 1, 4;n = 0,±1, ...),
and branches out to a periodic orbit. Furthermore, the system has a countably infi-
nite number of periodic orbits.

Proof. It is easy to see that linearized system of (2.1) at Pin (i = 1, 4) yields the
characteristic equation

P (λ) =(λ−h2)
[
λ4−(a+d)λ3+(ad−bc−eg cos zin − k)λ2+(dk+aeg cos zin)λ

]
+ (λ− h2)aeg cos zin

=(λ− h2)
[
λ4 + a3λ

3 + a2λ
2 + a1λ+ a0

]
= (λ− h2)∆(λ) = 0, (5.1)

where cos zin =
√
1− T 2.

Suppose that equation (5.1) has a pure imaginary root λ = iω (ω ∈ R+).
Substituting λ = iω into (5.1) yields that

∆(ωi)=(ωi)4+a3(ωi)
3+a2(ωi)

2+a1(ωi)+a0=(ω4−a2ω
2+a0)+i(−a3ω

3+ a1ω) = 0.

It follows that

ω4 − a2ω
2 + a0 = 0, −a3ω

3 + a1ω = 0. (5.2)

Under the condition (a+ d)(dk + aeg
√
1− T 2) < 0, solving equation (5.2) gives

ω = ω0 =

√
a1
a3

=

√
−dk + aeg

√
1− T 2

a+ d
,

b =
1

c

(
ad− eg

√
1− T 2 − k − ω2 − a0

ω2

)
=

1

c
(ad− eg

√
1− T 2 − k) +

dk + aeg
√
1− T 2

c(a+ d)
+

aeg(a+ d)
√
1− T 2

c(dk + aeg
√
1− T 2)

= b0.

Substituting b = b0 into (5.1), one obtains

λ1 = iω0, λ2 = −iω0, λ3 =
1

2

(
−a3 +

√
−4a2 + a23 + 4ω2

0

)
,
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λ4 = h2, λ5 =
1

2

(
−a3 −

√
−4a2 + a23 + 4ω2

0

)
.

When h2 < 0, a3 > 0, a1 − a2a3 < 0 and b = b0, the eigenvalues λ3, λ4, λ5 have
negative real parts. Thus, the first condition for Hopf bifurcation [7] is satisfied.

From equation (5.1) and eigenvalues λ3, λ5, differentiating (5.1) concerning b,
one obtains

P ′
b(λ(b)) = λ′(b)∆(λ(b)) + (λ(b)− h2)∆

′(λ(b)) = 0, (5.3)

where

∆′(λ(b)) = 4λ(b)3λ′(b) + 3a3λ(b)
3λ′(b) + 2a2λ(b)

2λ′(b) + a′2(b)λ(b)
2 + a1λ

′(b).

Substituting λ = iω0 into ∆(iω0) = 0, it follows ∆′(iω0) = 0. Therefore, solving
the equation ∆′(iω0) = 0 yields

λ′(b0)
∣∣∣
λ=iω0

=
cω2

0(3a3ω
2
0 − a1)− 2cω4

0(2ω0 − a2)i

(3a3ω2
0 − a1)2 + 4ω2

0(2ω0 − a2)2
, (5.4)

implies that

Re(λ′(b0))
∣∣∣
λ=iω0

=
cω2

0(3a3ω
2
0 − a1)

(3a3ω2
0 − a1)2 + 4ω2

0(2ω0 − a2)2
=

a1cω
2
0

2a21 + 2ω2
0(2ω0 − a2)2

̸= 0.

Thus, the second condition for a Hopf bifurcation [7] is also met. Consequently,
the system exists Hopf bifurcation and bifurcates a periodic orbit near equilibria
Pin (i = 1, 4).

Furthermore, assume that d0 is the maximum distance from the point on the
periodic orbit Γ0 to the equilibrium Pik0 (k0 ∈ Z), U0 = U0(Pik0 , d0 + 1) is the
region centered on Pik0

and can cover periodic orbit Γ0. Due to system (2.1) being
periodic in the z direction, there must exist a periodic orbit Γ1 which satisfies that
region U0 and U1 = U1(Pik1

, d1 + 1) (k0 < k1 ∈ Z) do not intersect. More general,
system (2.1) must exist period orbits Γn in the regions Un = Un(Pikn

, dn+1) (k0 <
k1 < ... < kn ∈ Z) along the z direction as the initial values vary. And regions
Un = Un(Pikn , dn + 1) are independent of each other,

Similar to the proof Theorem 5.1, one obtains the following conclusion.

Theorem 5.2 (Existence of Hopf Bifurcation). Suppose that |T | < 1, h2 < 0,
a+ d < 0, aeg > 0, dk− aeg

√
1− T 2 > 0 and dk− aeg

√
1− T 2 + (a+ d)(ad− bc+

eg
√
1− T 2 − k) < 0 holds. Then, as b varies and passes through the critical value

b = b0 =
1

c

(
ad+ eg

√
1− T 2 − k +

dk − aeg
√
1− T 2

a+ d
+

aeg(a+ d)
√
1− T 2

aeg
√
1− T 2 − dk

)
,

system (2.1) undergoes a Hopf bifurcation at the equilibria Pin(i = 2, 3;n = 0,±1, ...),
and bifurcates out to a periodic orbit. Furthermore, the system has a countably in-
finite number of periodic orbits.

Remark 5.1. When (a + d)(dk + aeg
√
1− T 2) ≥ 0, system (2.1) has no Hopf

bifurcation at the equilibria Pin(i = 1, 4;n = 0,±1,±2, ...). When (a + d)(dk −
aeg

√
1− T 2) > 0, system (2.1) has no Hopf bifurcation at the equilibria Pin(i =

2, 3;n = 0,±1,±2, ...).
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Next, one uses the canonical theory to obtain the following approximate ex-
pression of Hopf bifurcated periodic solution of system (2.1) at equilibria Pin(i =
1, 4;n = 0,±1,±2, ...).

Theorem 5.3 (Periodic solution of Hopf bifurcation). Let

ω0 =

√
−dk + aeg

√
1− T 2

a+ d
, a2 = ad− bc− eg

√
1− T 2 − k,

b0 =
1

c

(
ad− eg

√
1− T 2 − k +

dk + aeg
√
1− T 2

a+ d
+

aeg(a+ d)
√
1− T 2

dk + aeg
√
1− T 2

)
,

λ3 =
−(a+ d) +

√
−4a2 + (a+ d)2 + 4ω2

0

2
,

λ5 =
−(a+ d)−

√
−4a2 + (a+ d)2 + 4ω2

0

2
,

p1 =
ga2ω2

0(a+d)+(a+d)(ω2
0−a2)(g+ω2

0)
2+aω2

0(g(a+d)2+a2(ω
2
0 − a2))−a2g

2

bgω0(ω2
0+λ2

3)(ω
2
0+λ2

5)

− fh2
1

√
1−T 2(a2gh2+(g+ω2

0)(gh2+g(a+d)+h2(ω
2
0−a2))+a(g2−ω2

0(ω
2
0−a2)+gh2(a+d)))

bg(h2+ω2
0)(h2−λ3)(h2−λ5)

,

p2 = − fh2
1(g + ah2 − h2

2)
√
1− T 2

(h2
2 + ω2

0)(h2 − λ3)(h2 − λ5)
− ga2 + ω2

0(a2 − a(a+ d))

ω0(ω2
0 + λ2

3)(ω
2
0 + λ2

5)
,

p3 =
h2
1

√
1− T 2(ω2

0(h2 − a)(ω2
0 − a2) + g(h3

2 + (h2
2 + ω2

0)(a+ d) + 2h2ω
2
0 − a2h2))

(h2
2 + ω2

0)(h2 − λ3)(h2 − λ5)g

− ω0(ω
2
0 − a2)((g + ω2

0)(a+ d)− aa2)

fg(ω2
0 + λ2

3)(ω
2
0 + λ2

5)
,

p5 = − fh2
1

√
1−T 2(g3+ω2

0(ω
2
0−a2)(a

2−ah2)+g2(2ah2+2ω2
0+h2d−a2)+gω2

0(ω
2
0−a2+(h2−a)(a+d)))

bg2(h2
2+ω2

0)(h2−λ3)(h2−λ5)

+
−a2g

3+g2(a22 − 2a2ω
2
0+ω2

0(2a+d)(a+d))−aω2
0(ω

2
0−a2)(aa2+ω2

0(a+d))

bg2ω0(ω2
0 + λ2

3)(ω
2
0 + λ2

5)

+
gω2

0(a
2
2 − a2ω

2
0 + aa2(a+ d) + ω2

0(a+ d)2)

bg2ω0(ω2
0 + λ2

3)(ω
2
0 + λ2

5)
,

and

N1 = −T 2f4

(
p1p3λ5 + p1p5λ3

4λ3λ5
+

p1p3λ3 − 2p2p3ω0

8 (λ2
3 + 4ω2

0)
+

p1p5λ5 − 2p2p5ω0

8 (λ2
5 + 4ω2

0)

)
,

N2 = −T 2f4

(
p2p3λ5 + p2p5λ3

4λ3λ5
+

p2p3λ3 + 2p1p3ω0

8 (λ2
3 + 4ω2

0)
+

p2p5λ5 + 2p1p5ω0

8 (λ2
5 + 4ω2

0)

)
.

Suppose that |T | < 1, h2 < 0, a + d < 0, aeg > 0, dk + aeg
√
1− T 2 > 0

and dk + aeg
√
1− T 2 + (a+ d)a2 < 0, then for the sufficiently small neighborhood

|b− b0| > 0 where

b = b0 =
1

c

(
ad− eg

√
1− T 2 − k +

dk + aeg
√
1− T 2

a+ d
+

aeg(a+ d)
√
1− T 2

dk + aeg
√
1− T 2

)
,

Hopf bifurcation occurs at the equilibria Pin(i = 1, 4;n ∈ Z) in system (2.1), and
the periodic solution derived from corresponding Hopf bifurcation has the following
properties:
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(i) If µ2 > 0 (resp. < 0) and β2 < 0 (resp. > 0) where

β2 = N1 −
T 2f4p1p2

8ω0
,

µ2 =
(T 2f4p1p2 − 8ω0N1)((dk + aeg

√
1− T 2)2 + (a2 − 2ω2

0)ω
2
0)

8(dk + aeg
√
1− T 2)cω3

0

,

then system (2.1) as a supercritical (resp. subcritical) Hopf bifurcation at equilibria
Pin(i = 1, 4;n ∈ Z), and the periodic orbit is stable (resp. unstable) when b >
b0 (resp. < b0).

(ii) The periodic and characteristic exponents of bifurcation periodic solutions
are respectively

T ∗ =
2π

ω0

(
1 + τ2ε

2 + o
(
ε4
))

,

β = β2ε
2 + o

(
ε4
)
,

where

ε2 =
b− b0
µ2

+ o
(
(b− b0)

2
)
,

τ2 =
f4(2p21 + 5p22)T

2 − 24ω0N2

48ω2
0

+
3ω2

0(a2 − 2ω0)
2(f4p1p2T

2 − 8ω0N1)

48(dk + aeg
√
1− T 2)ω2

0

.

(iii) The approximate expression of the bifurcated periodic solution is

x

y

z

u

v


=



− l
k

− f
g

2nπ + arcsinT

−h1

h2
T

al
k + bf

g


+ ε



b0ω
2
0(ω

2
0+g)

(ω2
0+g)2+a2ω2

0
cos
(
2πt
T∗

)
+

ab0ω
3
0

(ω2
0+g)2+a2ω2

0
sin
(
2πt
T∗

)
−ω0 sin

(
2πt
T∗

)
f cos

(
2πt
T∗

)
− fh1h2V

h2
2+ω2

0
cos
(
2πt
T∗

)
+ fh1V ω0

h2
2+ω2

0
sin
(
2πt
T∗

)
− ab0gω

2
0

(ω2
0+g)2+a2ω2

0
cos
(
2πt
T∗

)
+

(ω2
0+g)b0gw0

(ω2
0+g)2+a2ω2

0
sin
(
2πt
T∗

)



+ ε2



Tf2b0ω0(ω
2
0+g)

12(ω2
0+g)2+12a2ω2

0
ỹ1 +

Tf2ab0ω
3
0

12(ω2
0+g)2+12a2ω2

0
ỹ2 +

b0λ
2
3

λ2
3−aλ3−g

ỹ3 +
b0λ

2
5

λ2
5−aλ5−g

ỹ5

−Tf2

12 ỹ2 + λ3ỹ3 + λ5ỹ5

Tf3

12ω0
ỹ1 + fỹ3 + fỹ5

− Tf3h1h2V
12ω0(h2

2+ω2
0)
ỹ1 +

Tf3h1V
12h2

2+12ω2
0
ỹ2 +

fh1V
λ3−h2

ỹ3 + ỹ4 +
fh1V
λ5−h2

ỹ5

− Tf2ab0gω0

12(ω2
0+g)2+12a2ω2

0
ỹ1 +

Tf2b0g(ω
2
0+g)

12(ω2
0+g)2+12a2ω2

0
ỹ2 +

b0gλ3

λ2
3−aλ3−g

ỹ3 +
b0gλ5

λ2
5−aλ5−g

ỹ5


+ o

(
ε3
)
, (5.5)

where

ỹ1 =3p2 − p2 cos

(
4πt

T ∗

)
− 2p1 sin

(
4πt

T ∗

)
,

ỹ2 =− 3p1 + p1 cos

(
4πt

T ∗

)
− 2p2 sin

(
4πt

T ∗

)
,
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ỹ3 =
Tf2p3
4λ3

+
Tf2p3λ3

4 (λ2
3 + 4ω2

0)
cos

(
4πt

T ∗

)
− Tf2p3ω0

2(λ2
3 + 4ω2

0)
sin

(
4πt

T ∗

)
,

ỹ4 =
Tf2h1

4h2
+

Tf2h1h2

4 (h2
2 + 4ω2

0)
cos

(
4πt

T ∗

)
− Tf2h1ω0

2(h2
2 + 4ω2

0)
sin

(
4πt

T ∗

)
,

ỹ5 =
Tf2p5
4λ5

+
Tf2p5λ5

4 (λ2
5 + 4ω2

0)
cos

(
4πt

T ∗

)
− Tf2p5ω0

2(λ2
5 + 4ω2

0)
sin

(
4πt

T ∗

)
.

Proof. Make a transformation

x → x+
l

k
, y → y+

f

g
, z → z−(2nπ + arcsinT ) , u → u+

h1

h2
T, v → v−

(
al

k
+

bf

g

)
,

then system (2.1) becomes

ẋ = ax+ by + w

ẏ = cx+ dy −
(

cl
k + df

g

)
(1− cos z) + e

√
1− T 2 sin z

ż = gy

u̇ = h1

√
1− T 2 sin z − h1T (1− cos z) + h2u

v̇ = kx,

(5.6)

which is equivalent to the following system at equilibrium O(0, 0, 0, 0, 0)

ẋ = ax+ by + w

ẏ = cx+ dy + e
√
1− T 2z −

(
cl
2k + df

2g

)
z2 + o

(
z3
)

ż = gy

u̇ = h1

√
1− T 2 z − h1T

2 z2 + h2u+ o
(
z3
)

v̇ = kx.

(5.7)

Linearized system (5.7) at equilibrium O now yields the Jacobian matrix

J =



a b 0 0 1

c d e
√
1− T 2 0 0

0 g 0 0 0

0 0 h1

√
1− T 2 h2 0

k 0 0 0 0


.

The characteristic values of the characteristic equation give

λ1 = iω0, λ2 = −iω0, λ3, λ4 = h2, λ5,

where λ3 and λ5 are defined as the condition in Theorem 5.3. If |T | < 1, h2 < 0,
a + d < 0, aeg > 0, dk + aeg

√
1− T 2 > 0 and dk + aeg

√
1− T 2 + (a + d)a2 < 0,

then there has 0 = Re(λ1) ≥ Re(λ2) ≥ Re(λ3) ≥ Re(λ4) ≥ Re(λ5). Let

Jζ1 = λ1ζ1, Jζ3 = λ3ζ3, Jζ4 = λ4ζ4 = h2ζ4, Jζ5 = λ5ζ5.
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Solving the eigenvectors ζ1, ζ3, ζ4, ζ5, one obtains

ζ1 =



b0ω
2
0(ω

2
0+g)−ab0ω

3
0i

(ω2
0+g)2+a2ω2

0

ω0i

f

− fh1h2

√
1−T 2+fh1

√
1−T 2ω0i

h2
2+ω2

0

−ab0gω
2
0+(ω2

0+g)b0gw0i

(ω2
0+g)2+a2ω2

0


, ζ3 =



b0λ
2
3

λ2
3−aλ3−g

λ3

f

fh1

√
1−T 2

λ3−h2

b0gλ3

λ2
3−aλ3−g


,

ζ4 =



0

0

0

1

0


, ζ5 =



b0λ
2
5

λ2
5−aλ5−g

λ5

f

fh1

√
1−T 2

λ5−h2

b0gλ5

λ2
5−aλ5−g


.

Define the matrix Q = (Re(ζ1),−Im(ζ1), ζ3, ζ4, ζ5) , i.e.,

Q =



b0ω
2
0(ω

2
0+g)

(ω2
0+g)2+a2ω2

0

ab0ω
3
0

(ω2
0+g)2+a2ω2

0

b0λ
2
3

λ2
3−aλ3−g

0
b0λ

2
5

λ2
5−aλ5−g

0 −ω0 λ3 0 λ5

f 0 f 0 f

− fh1h2

√
1−T 2

h2
2+ω2

0

fh1ω0

h2
2+ω2

0

fh1

√
1−T 2

λ3−h2
1 fh1

√
1−T 2

λ5−h2

− ab0gω
2
0

(ω2
0+g)2+a2ω2

0

(ω2
0+g)b0gw0

(ω2
0+g)2+a2ω2

0

b0gλ3

λ2
3−aλ3−g

0 b0gλ5

λ2
5−aλ5−g


.

Make a transformation

(x, y, z, u, v)′ = Q (x1, y1, z1, u1, v1)
′
,

so system (5.7) can be converted to

ẋ1 = −ω0y1 + P1 (x1, y1, z1, u1, v1)

ẏ1 = ω0x1 + P2 (x1, y1, z1, u1, v1)

ż1 = λ4z1 + P3 (x1, y1, z1, u1, v1)

u̇1 = h2u1 + P4 (x1, y1, z1, u1, v1)

v̇1 = λ5v1 + P5 (x1, y1, z1, u1, v1)

(5.8)

where

P1 (x1, y1, z1, u1, v1) = −Tf2

2
(x1 + z1 + v1)

2p1,

P2 (x1, y1, z1, u1, v1) = −Tf2

2
(x1 + z1 + v1)

2p2,
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P3 (x1, y1, z1, u1, v1) = −Tf2

2
(x1 + z1 + v1)

2p3,

P4 (x1, y1, z1, u1, v1) = −Tf2

2
(x1 + z1 + v1)

2h1,

P5 (x1, y1, z1, u1, v1) = −Tf2

2
(x1 + z1 + v1)

2p5,

here p1 , p2, p3, p5 as the condition in Theorem 5.3.
Through system (5.8), it can be calculated

g02 =
1

4

[
∂2P1

∂x1
2
− ∂2P1

∂y12
− 2

∂2P2

∂y1∂x1
+ i

(
∂2P2

∂x1
2
− ∂2P2

∂y12
+ 2

∂2P1

∂y1∂x1

)]
= −Tf2

4
(p1 + ip2) ,

g20 =
1

4

[
∂2P1

∂x2
1

− ∂2P1

∂y21
+ 2

∂2P2

∂y1∂x1
+ i

(
∂2P2

∂x2
1

− ∂2P2

∂y21
− 2

∂2P1

∂y1∂x1

)]
= −Tf2

4
(p1 + ip2) ,

G21 =
1

8

(
∂3P1

∂x3
1

+
∂3P1

∂y21∂x1
+

∂3P2

∂y1∂x2
1

+
∂3P2

∂y31

)
+

i

8

(
∂3P2

∂x3
1

+
∂3P2

∂y21∂x1
− ∂3P1

∂y1∂x2
1

− ∂3P1

∂y31

)
= 0,

h1
11 =

1

4

[
∂2P3

∂x2
1

+
∂2P3

∂y21

]
= −Tf2

4
p3,

h2
11 =

1

4

[
∂2P4

∂x2
1

+
∂2P4

∂y21

]
= −Tf2

4
h1,

h3
11 =

1

4

[
∂2P5

∂x1
2
+

∂2P5

∂y12

]
= −Tf2

4
p5,

h1
20 =

1

4

[
∂2P3

∂x1
2
− ∂2P3

∂y12
− 2i

∂2P3

∂y1∂x1

]
= −Tf2

4
p3,

h2
20 =

1

4

[
∂2P4

∂x1
2
− ∂2P4

∂y12
− 2i

∂2P4

∂y1∂x1

]
= −Tf2

4
h1,

h3
20 =

1

4

[
∂2P5

∂x2
1

− ∂2P5

∂y12
− 2i

∂2P5

∂y1∂x1

]
= −Tf2

4
p5.

Further, solve the following equations

Dω11 = −h11,

(D − 2iω0I)ω20 = −h20,

where

D =


λ3 0 0

0 h2 0

0 0 λ5

 , h11 =


h1
11

h2
11

h3
11

 , h20 =


h1
20

h2
20

h3
20

 .
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By calculation, one obtains

ω11 =


ω1
11

ω2
11

ω3
11

 =


Tf2

4λ3
p3

Tf2

4h2
h1

Tf2

4λ5
p5

 , ω20 =


ω1
20

ω2
20

ω3
20

 =


Tf2p3λ3

4(λ2
3+4ω2

0)
+ Tf2p3ω0

2(λ2
3+4ω2

0)
i

Tf2h1h2

4(h2
2+4ω2

0)
+ Tf2h1ω0

2(h2
2+4ω2

0)
i

Tf2p5λ5

4(λ2
5+4ω2

0)
+ Tf2p5ω0

2(λ2
5+4ω2

0)
i

 .

On the other hand,

G1
110 =

1

2

[
∂2P1

∂z1∂x1
+

∂2P2

∂z1∂y1
+ i

(
∂2P2

∂z1∂x1
− ∂2P1

∂z1∂y1

)]
= −Tf2

4
(p1 + ip2) ,

G2
110 =

1

2

[
∂2P1

∂u1∂x1
+

∂2P2

∂u1∂y1
+ i

(
∂2P2

∂u1∂x1
− ∂2P1

∂u1∂y1

)]
= 0,

G3
110 =

1

2

[
∂2P1

∂w1∂x1
+

∂2P2

∂w1∂y1
+ i

(
∂2P2

∂w1∂x1
− ∂2P1

∂w1∂y1

)]
= −Tf2

4
(p1 + ip2) ,

G1
101 =

1

2

[
∂2P1

∂z1∂x1
− ∂2P2

∂z1∂y1
+ i

(
∂2P2

∂z1∂x1
+

∂2P1

∂z1∂y1

)]
= −Tf2

4
(p1 + ip2) ,

G2
101 =

1

2

[
∂2P1

∂u1∂x1
− ∂2P2

∂u1∂y1
+ i

(
∂2P2

∂u1∂x1
+

∂2P1

∂u1∂y1

)]
= 0,

G3
101 =

1

2

[
∂2P1

∂w1∂x1
− ∂2P2

∂w1∂y1
+ i

(
∂2P2

∂w1∂x1
+

∂2P1

∂w1∂y1

)]
= −Tf2

4
(p1 + ip2) .

It can be calculated that

g21 =G21 +

3∑
k=1

(
2Gk

110ω
k
11 +Gk

101ω
k
20

)
=
(
2G1

110ω
1
11 +G1

101ω
1
20

)
+
(
2G3

110ω
3
11 +G3

101ω
3
20

)
=− T 2f4 (p1 + ip2)

(
p3λ5 + p5λ3

4λ3λ5
+

p3λ3

8 (λ2
3 + 4ω2

0)
+

p5λ5

8 (λ2
5 + 4ω2

0)

)
− T 2f4 (p1 + ip2)

(
p3ω0

4 (λ2
3 + 4ω2

0)
+

p5ω0

4 (λ2
5 + 4ω2

0)

)
i

=− T 2f4

(
p1p3λ5 + p1p5λ3

4λ3λ5
+

p1p3λ3 − 2p2p3ω0

8 (λ2
3 + 4ω2

0)
+

p1p5λ5 − 2p2p5ω0

8 (λ2
5 + 4ω2

0)

)
− T 2f4

(
p2p3λ5 + p2p5λ3

4λ3λ5
+

p2p3λ3 + 2p1p3ω0

8 (λ2
3 + 4ω2

0)
+

p2p5λ5 + 2p1p5ω0

8 (λ2
5 + 4ω2

0)

)
i

=N1 +N2i.

According to the calculation and analysis, one can obtain the following critical
characteristic quantities

C1(0) =
i

2ω0

(
g20g11 − 2 |g11|2 −

1

3
|g02|2

)
+

1

2
g21

=

(
1

2
N1 −

T 2f4p1p2
16ω0

)
+

(
1

2
N2 −

T 2f4

96ω0

(
4p21 + 10p22

))
i,

µ2 = −ReC1(0)

α′(0)
=

(T 2f4p1p2 − 8ω0N1)(a
2
1 + (a2 − 2ω2

0)ω
2
0)

8a1cω3
0

,
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τ2 = − ImC1(0) + µ2ω
′
0(0)

ω0

=
a1(f

4(2p21 + 5p22)T
2 − 24ω0N2) + 3ω2

0(a2 − 2ω0)
2(f4p1p2T

2 − 8ω0N1)

48a1ω2
0

,

and
β2 = 2ReC1(0) = N1 −

T 2f4p1p2
8ω0

,

where

α′(0) = Re (λ′ (b0)) =
a1cω

2
0

2a21 + 2ω2
0(2ω0 − a2)2

,

ω′(0) = Im (λ′ (b0)) =
−cω4

0(2ω0 − a2)
2

2a21 + 2ω2
0(2ω0 − a2)2

.

Then the characteristic exponent of the Hopf bifurcation periodic solution can be
calculated as

T ∗ =
2π

ω0

(
1 + τ2ε

2 + o
(
ε4
))

,

β = β2ε
2 + o

(
ε4
)
=

(
N1 −

T 2f4p1p2
8ω0

)
ε2 + o

(
ε4
)
,

where
ε2 =

b− b0
µ2

+ o
(
(b− b0)

2
)
.

If β2 < 0 and µ2 > 0, then the Hopf bifurcation of system (5.7) at equilibrium O is
supercritical, and the bifurcating periodic orbit is stable for b > b0. If β2 > 0 and
µ2 < 0, then the Hopf bifurcation of system (5.7) at equilibrium O is subcritical,
and the bifurcating periodic orbit is unstable for b < b0.

By calculation, one has

q =ε exp

(
2πti

T ∗

)
+

iε2

6ω0

(
g02 exp

(
−4πti

T ∗

)
− 3g20 exp

(
4πti

T ∗

)
+ 6g11

)
+ o

(
ε3
)

=ε cos

(
2πt

T ∗

)
+ iε sin

(
2πt

T ∗

)
+

Tf2ε2

12ω0
(p1i− p2)

(
cos

(
4πt

T ∗

)
+ 2i sin

(
4πt

T ∗

))
+

Tf2ε2

12ω0
(−3p1i+ 3p2) + o

(
ε3
)

=ε cos

(
2πt

T ∗

)
+

Tf2ε2

12ω0

(
3p2 − p2 cos

(
4πt

T ∗

)
− 2p1 sin

(
4πt

T ∗

))
+

(
ε sin

(
2πt

T ∗

)
+

Tf2ε2

12ω0

(
p1 cos

(
4πt

T ∗

)
− 2p2 sin

(
4πt

T ∗

)
− 3p1

))
i+ o

(
ε3
)
,

y1=Re q=ε cos

(
2πt

T ∗

)
+
Tf2ε2

12ω0

(
3p2 − p2 cos

(
4πt

T ∗

)
−2p1 sin

(
4πt

T ∗

))
+o
(
ε3
)
,

y2= Im q=ε sin

(
2πt

T ∗

)
+
Tf2ε2

12ω0

(
p1 cos

(
4πt

T ∗

)
−2p2 sin

(
4πt

T ∗

)
−3p1

)
+o
(
ε3
)
,

y3 = ω1
11|q|2+Re

(
ω1
20q

2
)
+ o

(
|q|3
)

=
Tf2p3
4λ3

(
y21 + y22

)
+

Tf2p3λ3

4 (λ2
3 + 4ω2

0)

(
y21 − y22

)
− Tf2p3ω0

λ2
3 + 4ω2

0

(y1y2) + o
(
|q|3
)
,
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y4 = ω2
11|q|2 +Re

(
ω2
20q

2
)
+ o

(
|q|3
)

=
Tf2h1

4h2

(
y21 + y22

)
+

Tf2h1h2

4 (h2
2 + 4ω2

0)

(
y21 − y22

)
− Tf2h1ω0

h2
2 + 4ω2

0

(y1y2) + o
(
|q|3
)
,

y5 = ω3
11|q|2 +Re

(
ω3
20q

2
)
+ o

(
|q|3
)

=
Tf2p5
4λ5

(
y21 + y22

)
+

Tf2p5λ5

4 (λ2
5 + 4ω2

0)

(
y21 − y22

)
− Tf2p5ω0

λ2
5 + 4ω2

0

(y1y2) + o
(
|q|3
)
.

Therefore, for i = 1, 4 and n ∈ Z, the approximate expression of the bifurcated peri-
odic solution of system (2.1) at equilibria Pin

(
− l

k ,−
f
g , 2nπ+arcsinT,−h1

h2
T, al

k + bf
g

)
is

x

y

z

u

w


=



− l
k

− f
g

2nπ + arcsinT

−h1

h2
T

al
k + bf

g


+



b0ω
2
0(ω

2
0+g)

(ω2
0+g)2+a2ω2

0

ab0ω
3
0

(ω2
0+g)2+a2ω2

0

b0λ
2
3

λ2
3−aλ3−g

0
b0λ

2
5

λ2
5−aλ5−g

0 −ω0 λ3 0 λ5

f 0 f 0 f

− fh1h2V
h2
2+ω2

0

fh1V ω0

h2
2+ω2

0

fh1V
λ3−h2

1 fh1V
λ5−h2

− ab0gω
2
0

(ω2
0+g)2+a2ω2

0

(ω2
0+g)b0gw0

(ω2
0+g)2+a2ω2

0

b0gλ3

λ2
3−aλ3−g

0 b0gλ5

λ2
5−aλ5−g





y1

y2

y3

y4

y5



=



− l
k

− f
g

2nπ + arcsinT

−h1

h2
T

al
k + bf

g


+



b0ω
2
0(ω

2
0+g)

(ω2
0+g)2+a2ω2

0
y1 +

ab0ω
3
0

(ω2
0+g)2+a2ω2

0
y2 +

b0λ
2
3

λ2
3−aλ3−g

y3 +
b0λ

2
5

λ2
5−aλ5−g

y5

−ω0y2 + λ3y3 + λ5y5

fy1 + fy3 + fy5

− fh1h2V
h2
2+ω2

0
y1 +

fh1V ω0

h2
2+ω2

0
y2 +

fh1V
λ3−h2

y3 + y4 +
fh1V
λ5−h2

y5

− ab0gω
2
0

(ω2
0+g)2+a2ω2

0
y1 +

(ω2
0+g)b0gw0

(ω2
0+g)2+a2ω2

0
y2 +

b0gλ3

λ2
3−aλ3−g

y3 +
b0gλ5

λ2
5−aλ5−g

y5


,

which implies that (5.5) is established. Thus the proof of Theorem 5.3 is completed.

Similar to Theorem 5, the approximate expression of the bifurcated periodic
solution of equilibria Pin(i = 2, 3;n = 0,±1,±2, ...) can be obtained, which is
omitted here.

Select the parameter (a, c, d, e, f, g, h1, h2, l, k) = (1, 5,−2, 2,−1, 2, 1,−1, 1,−2)
and vary parameter b. According to Theorem 5.1, it is easy to know the bifur-
cation value b0 ≈ −1.938, implying that system (2.1) has a stable equilibrium
P40(0.5, 0.5,−0.848,−0.75, 0.46) when b > b0. Fig.17(a) indicates that the sys-
tem has stable attractor P40 when the parameter b = −1.92 When parameter
b = −2 < b0, Fig.17(b) shows that the system has periodic attractor with the initial
value is (0.1, 1.5, 3.6,−1, 1). And the Lyapunov exponents of periodic attractor are
LE1 = 0.0001, LE2 = −0.3205, LE3 = −0.3205, LE4 = −0.3609, LE5 = −0.9882.

6. Conclusion and discussion
This paper has constructed and analyzed a new five-dimensional hyperchaotic sys-
tem that can generate infinitely many hyperchaotic attractors with three positive
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Figure 17. System (2.1) with parameters (a, c, d, e, f, g, h1, h2, l, k) = (1, 5,−2, 2,−1, 2, 1,−1, 1,−2):
(a) stable attractor for b = −1.92; (b) periodic attractor for b = −2.

Lyapunov exponents. The 5D hyperchaotic system can be classified into three cate-
gories based on the type of equilibria: no equilibria, infinitely many non-hyperbolic
equilibria, and infinitely many hyperbolic equilibria. Under the three different types
of equilibria, one investigates numerically and theoretically the dynamical behav-
iors of the hyperchaotic system with different parameters, including Lyapunov expo-
nents, bifurcation, chaotic paths and compound structure. We obtained the stability
of equilibrium points in the hyperbolic states through the center manifold theorem.
Furthermore, the Hopf bifurcation and corresponding bifurcated periodic solution
are derived using the normal form theory. It is strictly proved that the system has
an infinite number of isolated bifurcated periodic orbits. It may be useful for under-
standing the complex dynamics of infinitely many (hyper-)chaotic attractors in 5D
systems. Numerical results verified that this system could generate infinitely many
coexisting hyperchaotic or chaotic or periodic attractors, which indicates that the
system has a complex structure. These studies will contribute to the theoretical
analysis and practical applications of high-dimensional hyperchaotic systems and
are significant for interpreting hyperchaotic dynamics.

Although we have theoretically and numerically studied the dynamical proper-
ties of the 5D system, many complex dynamic behaviors and the problem of chaos
mechanism deserve to be studied in depth. For example, finding out the relation-
ship between the hyperchaotic behaviors and the number of equilibria of this new
5D system is still a fascinating problem. It is hoped that the theoretical and nu-
merical results in this paper can provide insights into studying high-dimensional
hyperchaotic and chaotic systems.
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