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1. A brief review
First let us review some well-known results.

In the paper [4], Dragomir and his coauthors proved the following inequalities
of the Simpson type, in which the remainders were expressed in terms of derivatives
lower than the fourth order.

Theorem 1.1 ( [4]). Let f : [a, b] → R be a continuously four-time differentiable
mapping on (a, b) and

∥∥f (4)
∥∥
∞ = sup

x∈(a,b)

∣∣f (4)(x)
∣∣ < ∞. Then

∣∣∣∣13
[
f(a) + f(b)

2
+ 2f

(
a+ b

2

)]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ (b− a)4

2880

∥∥f (4)
∥∥
∞.

Theorem 1.2 ( [4]). Suppose f : [a, b] → R is a differentiable mapping whose
derivative is continuous on [a, b] and f ′ ∈ L1([a, b]). Then∣∣∣∣13

[
f(a) + f(b)

2
+ 2f

(
a+ b

2

)]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a

3
∥f ′∥1, (1.1)

where ∥f ′∥1 =
∫ b

a
|f(x)|dx.
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The upper bound in (1.1) for L-Lipschitzian mapping was given by 5
36L(b − a)

in the paper [4].

Theorem 1.3 ( [4]). Suppose that f : [a, b] → R is an absolutely continuous map-
ping on [a, b], whose derivative belongs to Lp([a, b]). Then∣∣∣∣13

[
f(a) + f(b)

2
+ 2f

(
a+ b

2

)]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ 1

6

[
2q+1 + 1

3(q + 1)

]1/q
(b− a)1/q∥f ′∥p,

where 1
p + 1

q = 1.

For more generalizations and new inequalities of the Simpson type, please refer
to the papers [1, 3, 11,15,18,20,23,29,32,33].

In [10], H. Hudzik and L. Maligranda considered, among others, the class of
functions which are called s-convex in the second sense.

Definition 1.1 ( [10]). Let s be a real number s ∈ (0, 1]. A function f : R0 → R0

is said to be s-convex (in the second sense), or say, f belongs to the class K2
s , if

f(λx+ (1− λ)y) ≤ λsf(x) + (1− λ)sf(y)

for all x, y ∈ I and λ ∈ [0, 1].

In [28], the concept of extended s-convex functions was introduced as follows.

Definition 1.2 ( [28]). For some s ∈ [−1, 1], a function f : I ⊆ R0 → R is said to
be extended s-convex if

f(λx+ (1− λ)y) ≤ λsf(x) + (1− λ)sf(y)

is valid for all x, y ∈ I and λ ∈ (0, 1).

In the paper [19], Sarikaya and his two coauthors obtained some inequalities for
differentiable convex mappings which are connected with integral inequalities of the
Simpson type. We recite several of them as follows.

Theorem 1.4 ( [19, Theorem 7]). Let f : I ⊆ R → R be a differentiable mapping
on I◦ such that f ′ ∈ L1([a, b]), where a, b ∈ I◦ with a < b. If |f ′| is s-convex on
[a, b] for some fixed s ∈ (0, 1], then∣∣∣∣16

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ (b− a)

(s− 4)6s+1 + 2× 5s+2 − 2× 3s+2 + 2

6s+2(s+ 1)(s+ 2)
[|f ′(a)|+ |f ′(b)|]. (1.2)

Theorem 1.5 ( [19, Theorem 8]). Let f : I ⊆ [0,∞) → R be a differentiable
mapping on I◦ such that f ′ ∈ L1([a, b]), where a, b ∈ I◦ with a < b. If |f ′|q is
s-convex on [a, b] for some fixed s ∈ (0, 1] and q > 1, then∣∣∣∣16

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
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≤ b− a

12

[
1 + 2p+1

3(p+ 1)

]1/q{[ |f ′(b)|q +
∣∣f ′(a+b

2

)∣∣q
s+ 1

]1/q
+

[ |f ′(a)|q +
∣∣f ′(a+b

2

)∣∣q
s+ 1

]1/q}
,

where 1
p + 1

q = 1.

Theorem 1.6 ( [19, Theorem 9]). Let f : I ⊆ [0,∞) → R be a differentiable
mapping on I◦ such that f ′ ∈ L1([a, b]), where a, b ∈ I◦ with a < b. If |f ′|q is
s-convex on [a, b] for some fixed s ∈ (0, 1] and q > 1, then∣∣∣∣16

[
f(a) + 4f

(
a+ b

2
+ f(b)

)]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ b− a

12

[
1 + 2p+1

3(p+ 1)

]1/q{[
(2s+1 − 1)|f ′(b)|q + |f ′(a)|q

2s(s+ 1)

]1/q
+

[
(2s+1 − 1)|f ′(a)|q + |f ′(b)|q

2s(s+ 1)

]1/q}
,

where 1
p + 1

q = 1.

Theorem 1.7 ( [19, Theorem 10]). Let f : I ⊆ R → R be a differentiable mapping
on I◦ such that f ′ ∈ L1([a, b]), where a, b ∈ I◦ with a < b. If |f ′|q is s-convex on
[a, b] for some fixed s ∈ (0, 1] and q > 1, then∣∣∣∣16

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ b− a

2

(
5

36

)1/q{[
A(s)|f ′(a)|q +B(s)|f ′(b)|q

]1/q
+
[
B(s)|f ′(a)|q +A(s)|f ′(b)|q

]1/q}
, (1.3)

where

A(s) =
(2s+ 1)3s+1 + 2

3× 6(s+1)(s+ 1)(s+ 2)

and

B(s) =
2× 5s+2 + (s− 4)6s+1 − (2s+ 7)3s+1

3× 6(s+1)(s+ 1)(s+ 2)
.

For more conclusions on this topic, please refer to [2,5–9,12,13,17,21,22,24,25,
27,30] and closely related references therein.

The aim of this paper is to present several new integral inequalities of the Simp-
son type for functions whose derivatives are (α, s,m)-convex.

2. More definitions and a lemma
In [26], Xi, Gao, and Qi defined (α, s)-convex functions and (α, s,m)-convex func-
tions, while they established integral inequalities of the Hermite–Hadamard type.
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Definition 2.1 ( [26]). For some s ∈ [−1, 1] and α ∈ (0, 1], a function f : I ⊆ R →
R is said to be (α, s)-convex if

f(tx+ (1− t)y) ≤ tαsf(x) + (1− tα)sf(y)

for all x, y ∈ I and t ∈ (0, 1).

Definition 2.2 ( [26]). For some s ∈ [−1, 1] and (α,m) ∈ (0, 1]2, a function f :
[0, b] → R is said to be (α, s,m)-convex if

f(tx+m(1− t)y) ≤ tαsf(x) +m(1− tα)sf(y)

for all x, y ∈ [0, b] and t ∈ (0, 1).

Remark 2.1. By Definition 2.2 it follows that

1. if s = 1, then f(x) is an (α,m)-convex function on (0, b], see [16];
2. if α = 1, then f(x) is an extended (s,m)-convex function on (0, b], see [31];
3. if α = m = 1, then f(x) is an extended s-convex function on (0, b], see [28].

In the papers [1, 19], six mathematicians obtained several integral inequalities
for differentiable convex mappings which are connected with integral inequalities of
the Simpson type. They used the following lemma to prove these inequalities.

Lemma 2.1 ( [1, Lemma 1] and [19, Lemma 1]). Let f : I ⊆ R → R be an absolutely
continuous mapping on I◦ such that f ′ ∈ L1([a, b]), where a, b ∈ I◦ with a < b. Then

1

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1

b− a

∫ b

a

f(x) dx

=
b− a

2

∫ 1

0

(
t

2
− 1

3

)[
f ′
(
tb+ (1− t)

a+ b

2

)
− f ′

(
ta+ (1− t)

a+ b

2

)]
d t.

The main purpose of this paper is to establish some integral inequalities of the
Simpson type for (α, s,m)-convex functions with the aid of Lemma 2.1.

3. Integral inequalities of the Simpson type
We now start out to present several integral inequalities of the Simpson type related
to (α, s,m)-convex functions.

Theorem 3.1. For some fixed (α,m) ∈ (0, 1]2 and s ∈ (−1, 1], let f :
[
0, b

m

]
→ R

be a differentiable mapping on
(
a, b

m

)
such that f ′ ∈ L1

([
a, b

m

])
for b > a ≥ 0. If

|f ′|q is (α, s,m)-convex on
[
0, b

m

]
for q ≥ 1, then∣∣∣∣16

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ b− a

2

(
5

36

)1−1/q{[
S1(α, s)|f ′(a)|q +mS2(α, s)

∣∣∣∣f ′
(
a+ b

2m

)∣∣∣∣q]1/q
+
[
S1(α, s)|f ′(b)|q +mS2(α, s)

∣∣∣∣f ′
(
a+ b

2m

)∣∣∣∣q]1/q}, (3.1)
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where

S1(α, s) =
2αs+3 − (1− αs)3αs+1

2× 3αs+2(αs+ 1)(αs+ 2)
,

S2(α, s) =
2

3α
B

((
2

3

)α

;
1

α
, s+ 1

)
− 1

3α
B

(
1

α
, s+ 1

)
+

1

4α
B

(
2

α
, s+ 1

)
− 2

9
2F1

(
2

α
,−s;

2

α
+ 1;

(
2

3

)α)
,

B(u;x, y) =

∫ u

0

zx−1(1− z)y−1 d z, (incomplete beta function)

B(x, y) = B(1;x, y), (beta function)

and

2F1(c, d; e; z) =
Γ(e)

Γ(d)Γ(e− d)

∫ 1

0

td−1(1− t)e−d−1(1− zt)−c d t

(the Gauss hypergeometric function)

for 0 < u ≤ 1, x, y > 0, e > d > 0, |z| < 1, and c ∈ R.

Proof. By Lemma 2.1 and the Hölder integral inequality [14], we obtain∣∣∣∣16
[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ b− a

2

∫ 1

0

∣∣∣∣ t2 − 1

3

∣∣∣∣[∣∣∣∣f ′
(
tb+ (1− t)

a+ b

2

)∣∣∣∣+ ∣∣∣∣f ′
(
ta+ (1− t)

a+ b

2

)∣∣∣∣] d t
≤ b− a

2

[∫ 1

0

∣∣∣∣ t2 − 1

3

∣∣∣∣ d t]1−1/q{[∫ 1

0

∣∣∣∣ t2 − 1

3

∣∣∣∣∣∣∣∣f ′
(
tb+ (1− t)

a+ b

2

)∣∣∣∣q d t]1/q
+

[∫ 1

0

∣∣∣∣ t2 − 1

3

∣∣∣∣∣∣∣∣f ′
(
ta+ (1− t)

a+ b

2

)∣∣∣∣q d t]1/q}, (3.2)

where ∫ 1

0

∣∣∣∣ t2 − 1

3

∣∣∣∣ d t = 5

36
(3.3)

and, from the (α, s,m)-convexity of |f ′|,∫ 1

0

∣∣∣∣ t2 − 1

3

∣∣∣∣∣∣∣∣f ′
(
tb+ (1− t)

a+ b

2

)∣∣∣∣q d t
≤

∫ 1

0

∣∣∣∣ t2 − 1

3

∣∣∣∣[tαs|f ′(b)|q +m
(
1− tα

)s∣∣∣∣f ′
(
a+ b

2m

)∣∣∣∣q] d t
= S1(α, s)|f ′(b)|q +mS2(α, s)

∣∣∣∣f ′
(
a+ b

2m

)∣∣∣∣q (3.4)

and ∫ 1

0

∣∣∣∣ t2 − 1

3

∣∣∣∣∣∣∣∣f ′
(
ta+ (1− t)

a+ b

2

)∣∣∣∣q d t
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≤
∫ 1

0

∣∣∣∣ t2 − 1

3

∣∣∣∣[tαs|f ′(a)|q +m
(
1− tα

)s∣∣∣∣f ′
(
a+ b

2m

)∣∣∣∣q]d t
= S1(α, s)|f ′(a)|q +mS2(α, s)

∣∣∣∣f ′
(
a+ b

2m

)∣∣∣∣q. (3.5)

Substituting the results (3.3), (3.4), and (3.5) into (3.2) gives the desired inequal-
ity (3.1). The proof of Theorem 3.1 is thus complete.

Using the method in the proof of Theorem 3.1, we can obtain the following
inequality for (α, s)-convex functions.

Theorem 3.2. For some fixed α ∈ (0, 1] and s ∈ (−1, 1], let f : I ⊆ R → R be a
differentiable mapping on I◦ such that f ′ ∈ L1([a, b]) for a, b ∈ I with a < b. If |f ′|q
is (α, s)-convex on

[
a, b

]
for q ≥ 1, then∣∣∣∣16

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ b− a

2

(
5

36

)1−1/q

×
{[

S1(α, s)|f ′(a)|q + S2(α, s)

∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣q]1/q
+

[
S1(α, s)|f ′(b)|q + S2(α, s)

∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣q]1/q},

where S1(α, s) and S2(α, s) are defined as in Theorem 3.1.

In Theorem 3.2, if α = 1, then

Corollary 3.1. For some fixed s ∈ (−1, 1], let f : I ⊆ R → R be a differentiable
mapping on I◦ such that f ′ ∈ L1([a, b]) for a, b ∈ I with a < b. If |f ′|q is extended
s-convex on

[
a, b

]
for q ≥ 1, then∣∣∣∣16

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ b−a

2

(
5

36

)1−1/q[( [2s+3−(1−s)3s+1]|f ′(a)|q+[(2s+1)3s+1+2]
∣∣f ′(a+b

2

)∣∣q
2× 3s+2(s+1)(s+2)

)1/q

+

(
[2s+3 − (1− s)3s+1]|f ′(b)|q + [(2s+ 1)3s+1 + 2]

∣∣f ′(a+b
2

)∣∣q
2× 3s+2(s+ 1)(s+ 2)

)1/q]
. (3.6)

In particular, if q = 1, we have∣∣∣∣16
[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣

≤ b− va

2

[2s+3 − (1− s)3s+1]
[
|f ′(a)|+ |f ′(b)|

]
+2[(2s+ 1)3s+1 + 2]

∣∣f ′(a+b
2

)∣∣


2× 3s+2
(
s+ 1

)(
s+ 2

) . (3.7)

Remark 3.1. If
∣∣f ′(a+b

2

)∣∣ = 0, the estimation accuracy of the inequality (3.6)
is better than that of the inequality (1.3). If 2

∣∣f ′(a+b
2

)∣∣ ≤ |f ′(a)| + |f ′(b)|, the
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estimation accuracy of the inequality (3.7) is better than that of the inequality (1.2).
This can be demonstrated by the following computation:

(s− 4)6s+1 + 2× 5s+2 − 2× 3s+2 + 2

6s+2(s+ 1)(s+ 2)
[|f ′(a)|+ |f ′(b)|]

− 2s+3 − (1− s)3s+1

4× 3s+2
(
s+ 1

)(
s+ 2

)[|f ′(a)|+ |f ′(b)|
]

− v
(2s+ 1)3s+1 + 2

2× 3s+2
(
s+ 1

)(
s+ 2

) ∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣
≥

2× 5s+2 − 4× 6s+1 − 2× 3s+2

+2− 2× 4s − 3× 6ss− 2s+1

 |f ′(a)|+ |f ′(b)|
6s+2(s+ 1)(s+ 2)

≥ 0.

Theorem 3.3. For some fixed (α,m) ∈ (0, 1]2 and s ∈ (−1, 1], let f :
[
0, b

m

]
→ R

be a differentiable mapping on I◦ such that f ′ ∈ L1([a,
b
m ]) for b > a ≥ 0. If |f ′|q

is (α, s,m)-convex on
[
0, b

m

]
for q > 1, then∣∣∣∣16

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ b− a

2

[
2(1 + 2p+1)

6p+1(p+ 1)

]1/p{[
|f ′(b)|q

αs+ 1
+

m

α
B

(
1

α
, s+ 1

)∣∣∣∣f ′
(
a+ b

2m

)∣∣∣∣q]1/q
+

[
|f ′(a)|q

αs+ 1
+

m

α
B

(
1

α
, s+ 1

)∣∣∣∣f ′
(
a+ b

2m

)∣∣∣∣q]1/q}, (3.8)

where B(x, y) is defined as in Theorem 3.1 and 1
p + 1

q = 1.

Proof. By Lemma 2.1 and the Hölder integral inequality [14], we obtain∣∣∣∣16
[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ b− a

2

∫ 1

0

∣∣∣∣ t2 − 1

3

∣∣∣∣[∣∣∣∣f ′
(
tb+ (1− t)

a+ b

2

)∣∣∣∣+ ∣∣∣∣f ′
(
ta+ (1− t)

a+ b

2

)∣∣∣∣]d t
≤ b− a

2

[∫ 1

0

∣∣∣∣ t2 − 1

3

∣∣∣∣p d t]1/p{[∫ 1

0

∣∣∣∣f ′
(
tb+ (1− t)

a+ b

2

)∣∣∣∣q d t]1/q
+

[∫ 1

0

∣∣∣∣f ′
(
ta+ (1− t)

a+ b

2

)∣∣∣∣q d t]1/q}. (3.9)

Since |f ′|q is (α, s,m)-convex on
[
0, b

m

]
, we acquire∫ 1

0

∣∣∣∣f ′
(
tb+ (1− t)

a+ b

2

)∣∣∣∣q d t ≤ ∫ 1

0

[
tαs|f ′(b)|q +m(1− tα)s

∣∣∣∣f ′
(
a+ b

2m

)∣∣∣∣q]d t
=

|f ′(b)|q

αs+ 1
+

m

α
B

(
1

α
, s+ 1

)∣∣∣∣f ′
(
a+ b

2m

)∣∣∣∣q (3.10)

and∫ 1

0

∣∣∣∣f ′
(
ta+ (1− t)

a+ b

2

)∣∣∣∣q d t ≤ |f ′(a)|q

αs+ 1
+

m

α
B

(
1

α
, s+ 1

)∣∣∣∣f ′
(
a+ b

2m

)∣∣∣∣q. (3.11)
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It’s easy to calculate that ∫ 1

0

∣∣∣∣ t2 − 1

3

∣∣∣∣p d t = 2(1 + 2p+1)

6p+1(p+ 1)
. (3.12)

Substitution of (3.10), (3.11), and (3.12) into (3.9) gives the desired (3.8). The
proof of Theorem 3.3 is thus complete.

By similar approach as in the proof of Theorem 3.3, we arrive at the following
theorem.

Theorem 3.4. For some fixed α ∈ (0, 1] and s ∈ (−1, 1], let f : I ⊆ R → R be a
differentiable mapping on I◦ such that f ′ ∈ L1([a, b]) for a, b ∈ I with a < b. If |f ′|q
is (α, s)-convex on

[
a, b

]
for q > 1, then∣∣∣∣16

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ b− a

2

[
2(1 + 2p+1)

6p+1(p+ 1)

]1/p{[
|f ′(b)|q

αs+ 1
+

1

α
B

(
1

α
, s+ 1

)∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣q]1/q
+

[
|f ′(a)|q

αs+ 1
+

1

α
B

(
1

α
, s+ 1

)∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣q]1/q},

where B(x, y) is defined as in Theorem 3.1 and 1
p + 1

q = 1.

Corollary 3.2. Under conditions of Theorem 3.4 with α = 1, we have∣∣∣∣16
[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ b− a

2

[
2(1 + 2p+1)

6p+1(p+ 1)

]1/p{[ |f ′(b)|q +
∣∣f ′(a+b

2

)∣∣q
s+ 1

]1/q
+

[ |f ′(a)|q +
∣∣f ′(a+b

2

)∣∣q
s+ 1

]1/q}
,

where 1
p + 1

q = 1.

4. Conclusions
In this paper, we presented several integral inequalities of the Simpson type for
functions whose derivatives are (α, s,m)-convex. The key tool is the identity in
Lemma 2.1 and Hölder’s integral inequality. The main results are contained in four
theorems and two corollaries established in the third section.
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