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BIFURCATIONS OF TWISTED FINE
HETEROCLINIC LOOP FOR

HIGH-DIMENSIONAL SYSTEMS∗

Yinlai Jin1,†, Dongmei Zhang1,†, Ningning Wang1,2

and Deming Zhu3

Abstract In the paper, under twisted conditions, we consider the bifurca-
tion problem of the fine heteroclinic loop with two hyperbolic critical points
for high-dimensional systems. By using the foundational solutions of the linear
variational equation of the unperturbed system along the heteroclinic orbits as
the local coordinate system in the small tubular neighborhood of the hetero-
clinic loop, we construct the Poincaré maps and obtain the bifurcation equa-
tions. Then, by considering the small nonnegative solutions of the bifurcation
equations, we get the main results of the reservation of the heteroclinic orbits,
the existence and existence regions, the coexistence and coexistence regions
of the 1-homoclinic loop, 1-periodic orbit, 2-homoclinic loop and 2-periodic
orbit. Moreover, the bifurcation surfaces and graphs are given.

Keywords Twist, fine, heteroclinic loop, bifurcation, high-dimensional sys-
tem.
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1. Introduction and hypotheses
In the study of bifurcation theory of nonlinear dynamical systems, the bifurcation
problems of homoclinic and heteroclinic loops have been becoming more and more
important, some results can be found in [1,4,5,11,24,28,29,32,33,36,39] and their
references. At the same time, research on related problems has also been widely
carried out, such as traveling wave solutions, for some results, see [8, 10, 25, 30, 35]
and other relevant works of their authors.
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In [40,41], Zhu and Xia studied the bifurcation problems of the non-degenerated
homoclinic and heteroclinic loops by generalizing the Floquet method to built the
local coordinate system and Poincaré map. By simplifing the methods of [40, 41],
the researchers used the foundational solutions of the linear variational systems of
the unperturbed systems along the homoclinic and heteroclinic orbits to establish
a local coordinate systems in the small tubular neighborhoods of the homoclinic
and heteroclinic orbits, then, studied the bifurcations of non-twisted degenerated
homoclinic loop in [13] and non-twisted fine heteroclinic loop in [31]. From then
on, this method was used to study the bifurcation problems of homoclinic and
heteroclinic loops for higher dimensional systems. Some of the relevant results can
be found in [2, 6, 7, 9, 12,14–23,27,37,38] and their references.

In this paper, we study the bifurcations of twisted fine heteroclinic loop.
Consider the following Cr system

ż = f(z), (1.1)

where r ≥ 5, z ∈ Rm+n, m ≥ 2, n ≥ 2. At first, we assume that the following
hypotheses are valid.

(H1). (Hyperbolicity) z = pi, i = 1, 2 are the hyperbolic critical points of
(1.1), f(pi) = 0. The stable manifold W s

pi
and the unstable manifold Wu

pi
of pi

are m-dimensional and n-dimensional, respectively. Moreover, −ρi and λi are the
simple real eigenvalues of Dzf(pi) such that any other eigenvalue σi of Dzf(pi)
satisfies either Reσi < −ρ0 < −ρi < 0 or 0 < λi < λ0 < Reσi, where ρ0 and λ0 are
some positive constants.

(H2). (Non-degeneration) (1.1) has a heteroclinic loop Γ = Γ1 ∪ Γ2, where
Γi = {z = ri(t) : t ∈ R}, r1(+∞) = r2(−∞) = p2, r2(+∞) = r1(−∞) = p1.
dim(Tri(t)W

u
pi

∩ Tri(t)W
s
pi+1

) = 1, Tri(t)W
u
pi

is the tangent space of Wu
pi

at ri(t),
Tri(t)W

s
pi+1

is the tangent space of W s
pi+1

at ri(t).
(H3). (Strong inclination) lim

x→+∞
(Tri(t)W

u
pi

+ Tri(t)W
s
pi+1

) = Tpi+1
Wuu

pi+1
⊕

Tpi+1
W s

pi+1
, lim
x→−∞

(Tri(t)W
u
pi

+ Tri(t)W
s
pi+1

) = Tpi
Wu

pi
⊕ Tpi

W ss
pi
, where, Wuu

pi
and

W ss
pi

are the strong unstable manifolds and the strong stable manifolds of pi, re-
spectively. Tpi

Wuu
pi

is the tangent space of Wuu
pi

at pi, Tpi
W ss

pi
is the tangent space

of W ss
pi

at pi, Tpi
Wu

pi
is the tangent space of Wu

pi
at pi, Tpi

W s
pi

is the tangent space
of W s

pi
at pi.

Denote e±i = lim
t→∓∞

ṙi(t)/|ṙi(t)|, where e+i ∈ Tpi
Wu

pi
and e−i ∈ Tpi+1

W s
pi+1

are unit eigenvectors corresponding to λi and −ρi+1, respectively. Furthermore,
span(Tpi

Wuu
pi

, e+i ) = Tpi
Wu

pi
, span(Tpi

W ss
pi
, e−i−1) = Tpi

W s
pi

.
(H4). (Fineness) β1 = ρ1/λ1 > 1, β2 = ρ2/λ2 < 1, β1β2 = 1.
Now, we study the following Cr perturbed system of (1.1)

ż = f(z) + g(z, µ), (1.2)

where µ ∈ Rl, l ≥ 3, 0 ≤ |µ| � 1, g(z, 0) = 0, g(pi, µ) = 0, i = 1, 2.
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2. Local coordinate system
Denote F(z, µ) = f(z) + g(z, µ), then, there is a sufficiently small neighborhood Ui

of z = pi, such that system (1.2) has the following form

ż =

(
DF(z, µ)

Dz
|z=pi

)
z + o(z), (2.1)

where, DF(z,µ)
Dz |z=pi is the coefficient matrix of the linear approximation system,

o(z) is the high order term of z. According to the standard theory of Jordan, there
is a nonsingular linear transformation such that (2.1) has the following form

ż =


λi(µ) 0 0 0

0 −ρi(µ) 0 0

0 0 Ai(µ) 0

0 0 0 −Bi(µ)

 z + o(z), (2.2)

where λi(0) = λi, ρi(0) = ρi, Reσ(Ai(0)) > λ0, Reσ(−Bi(0)) < −ρ0, z =
(x, y, u∗, v∗)∗, x, y ∈ R1, u ∈ Rn−1, v ∈ Rm−1, ∗ means transposition.

Moreover, for |µ| small enough, we can introduce a Cr transformation such that
(2.2) has the following form in Ui:

ẋ = [λi(µ) + · · · ] x+O(u)[O(y) +O(v)],

ẏ = [−ρi(µ) + · · · ] y +O(v)[O(x) +O(u)],

u̇ = [Ai(µ) + · · · ] u+O(x)[O(y) +O(v)],

v̇ = [−Bi(µ) + · · · ] v +O(y)[O(x) +O(u)].

(2.3)

In other words, the unstable manifold, stable manifold, strong unstable manifold,
strong stable manifold, principal stable manifold and principal unstable manifold
were all straightened in Ui:

Wu
pi

= {z : y = 0, v = 0}, W s
pi

= {z : x = 0, u = 0},

Wuu
pi

= {z : x = 0, y = 0, v = 0}, W ss
pi

= {z : x = 0, u = 0, y = 0},

Wu
pi
/Wuu

pi
= {z : u = 0, y = 0, v = 0}, W s

pi
/W ss

pi
= {z : x = 0, u = 0, v = 0},

where Wu
pi
/Wuu

pi
⊕Wuu

pi
= Wu

pi
,W s

pi
/W ss

pi
⊕W ss

pi
= W s

pi
. Obviously, for the unper-

turbed system (1.1), the local heteroclinic orbits were all straightened in Ui:

Γ ∩Wu
pi

= {z : u = 0, y = 0, v = 0}, Γ ∩W s
pi

= {z : x = 0, u = 0, v = 0}.

Denote ri(t) = (rxi (t), r
y
i (t), (r

u
i (t))

∗, (rvi (t))
∗)∗. Assume ri(−T 1

i ) = (δ, 0, 0, 0∗)∗,
ri(T

2
i )=(0, δ, 0∗, 0∗)∗, where T 1

i >0, T 2
i >0 are large enough such that {(x, y, u∗, v∗)∗ :

|x|, |y|, |u|, |v| < 2δ} ⊂ Ui.
Consider the linear system

ż = Df(ri(t))z, (2.4)
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and its adjoint system
ż = −(Df(ri(t)))

∗z. (2.5)
By [42,43], we see (2.4) and (2.5) have exponential dichotomies in both R− and

R+. Similar to [22,23,31], we have the following Lemma.

Lemma 2.1. System (2.4) has a fundamental solution matrix Zi(t) = (z1i (t), z
2
i (t),

z3i (t), z
4
i (t)) satisfying

z1i (t) ∈ (Tri(t)W
u
pi
)c ∩ (Tri(t)W

s
pi+1

)c,

z2i (t) = −ṙi(t)/|ṙyi (T
2
i )| ∈ Tri(t)W

u
pi

∩ Tri(t)W
s
pi+1

,

z3i (t) = (z3,1i (t), · · · , z3,n−1
i (t)) ∈ Tri(t)W

u
pi

∩ (Tri(t)W
s
pi+1

)c,

z4i (t) = (z4,1i (t), · · · , z4,m−1
i (t)) ∈ (Tri(t)W

u
pi
)c ∩ Tri(t)W

s
pi+1

,

Zi(−T 1
i ) =


w11

i w21
i 0 w41

i

w12
i 0 0 w42

i

w13
i 0 I w43

i

0 0 0 w44
i

 , Zi(T
2
i ) =


1 0 w31

i 0

0 1 w32
i 0

0 0 w33
i 0

w14
i 0 w34

i I

 ,

where W ss
3 = W ss

1 , w21
i < 0, w12

i 6= 0, detw44
i 6= 0, detw33

i 6= 0. Moreover,
for δ small enough, ||w1j

i (w12
i )−1|| � 1 for j 6= 2, ||w3j

i (w33
i )−1|| � 1 for j 6= 3,

||w4j
i (w44

i )−1|| � 1 for j 6= 4.

Thus, we select z1i (t), z2i (t), z3i (t), z4i (t) as a local coordinate system along
Γi. Let Φi(t) = (ϕ1

i (t), ϕ
2
i (t), ϕ

3
i (t), ϕ

4
i (t)) = (Z−1

i (t))∗ be the fundamental solution
matrix of (2.5), where ϕ1

i (t) is bounded and tends to zero exponentially as t → ±∞.
Denote w12

i = ∆i|w12
i |, we say that Γi is non-twisted as ∆i = 1, and twisted as

∆i = −1. Furthermore, we say that Γ is non-twisted as ∆1∆2 = 1, and twisted as
∆1∆2 = −1. In this paper, we consider the bifurcations for twisted case ∆1∆2 =
−1.

3. Successor function and bifurcation equation
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Figure 1. Heteroclinic loop
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Let hi(t) = ri(t) + Zi(t)Ni, Ni = (n1
i , 0, (n

3
i )

∗, (n4
i )

∗)∗, n3
i = (n3,1

i , · · · , n3,n−1
i )∗,

n4
i = (n4,1

i , · · · , n4,m−1
i )∗. Define S1

i = {z = hi(−T 1
i ) : |x|, |y|, |u|, |v| < 2δ}, S2

i =
{z = hi(T

2
i ) : |x|, |y|, |u|, |v| < 2δ} be the cross sections of Γi at t = −T 1

i and t = T 2
i ,

respectively. (Figure 1)
Now, we consider the map F 1

i : q2i−1 ∈ S2
i−1 7→ q1i ∈ S1

i , and the map F 2
i :

q1i ∈ S1
i 7→ q2i ∈ S2

i , where S2
0 = S2

2 . Denote

q1i =(x1
i , y

1
i , (u

1
i )

∗, (v1i )
∗)∗=ri(−T 1

i ) + Zi(−T 1
i )N

1
i , N1

i =(n1,1
i , 0, (n1,3

i )∗, (n1,4
i )∗)∗,

q2i =(x2
i , y

2
i , (u

2
i )

∗, (v2i )
∗)∗=ri(T

2
i ) + Zi(T

2
i )N

2
i , N2

i =(n2,1
i , 0, (n2,3

i )∗, (n2,4
i )∗)∗.

By the expressions of Zi(−T 1
i ) and Zi(T

2
i ), i = 1, 2, we get x1

i ≈ δ, y2i ≈ δ, and
n1,1
i = (w12

i )−1(y1i − w42
i (w44

i )−1v1i ),

n1,3
i = u1

i − w13
i (w12

i )−1y1i + ai(w
44
i )−1v1i ,

n1,4
i = (w44

i )−1v1i ,

(3.1)


n2,1
i = x2

i − w31
i (w33

i )−1u2
i ,

n2,3
i = (w33

i )−1u2
i ,

n2,4
i = −w14

i x2
i + (w14

i w31
i − w34

i )(w33
i )−1u2

i + v2i ,

(3.2)

where, ai = w13
i (w12

i )−1w42
i − w43

i , i = 1, 2.
Now, we construct the Poincare maps. By the continuity of βi(µ) = ρi(µ)/λi(µ),

we have β1(µ) > 1, β2(µ) < 1 for |µ| � 1. In this paper, we just assume
β1(µ)β2(µ) = 1. May as well denote β := β1(µ) = 1/β2(µ).

Let τi be the flying time from q2i−1 to q1i , s1 = e−λ1(µ)τ1 , s2 = e−ρ2(µ)τ2 , then,
using the linearization of (1.2) at pi, and neglecting the higher order terms, we can
get F 1

1 defined by

x2
0 ≈ s1δ, y11 ≈ sβ1 δ, u2

0 ≈ s
A1(µ)/λ1(µ)
1 u1

1, v11 ≈ s
B1(µ)/λ1(µ)
1 v20 , (3.3)

and F 1
2 defined by

x2
1 ≈ sβ2 δ, y12 ≈ s2δ, u2

1 ≈ s
A2(µ)/ρ2(µ)
2 u1

2, v12 ≈ s
B2(µ)/ρ2(µ)
2 v21 , (3.4)

where, (si, u1
i , v

2
i−1), i = 1, 2 are called Silnikov coordinates.

Suppose that z = hi(t) is the solution of (1.2) in some small tube neighborhood
of Γi, substituting it into (1.2) and using ṙi(t) = f(ri(t)), Żi(t) = Df(ri(t))Zi(t),
we obtain the maps F 2

i defined by

n2,j
i = n1,j

i +M j
i µ+ h.o.t., j = 1, 3, 4, (3.5)

where, M j
i =

∫ +∞
−∞ ϕj

i

∗
(t)gµ(ri(t), 0)dt, i = 1, 2, j = 1, 3, 4 are called Melnikov

vectors.
Thus, we have defined the Poincaré maps F1 = F 2

1 ◦ F 1
1 : S2

2 7→ S2
1 as

n2,1
1 = (w12

1 )−1δsβ1 +M1
1µ+ h.o.t.,

n2,3
1 = u1

1 − w13
1 (w12

1 )−1δsβ1 +M3
1µ+ h.o.t.,

n2,4
1 = (w44

1 )−1s
B1(µ)/λ1(µ)
1 v20 +M4

1µ+ h.o.t.,

(3.6)



Bifurcations of twisted fine heteroclinic loop 2911

and F2 = F 2
2 ◦ F 1

2 : S2
1 7→ S2

2 as
n2,1
2 = (w12

2 )−1δs2 +M1
2µ+ h.o.t.,

n2,3
2 = u1

2 − w13
2 (w12

2 )−1δs2 +M3
2µ+ h.o.t.,

n2,4
2 = (w44

2 )−1s
B2(µ)/ρ2(µ)
2 v21 +M4

2µ+ h.o.t..

(3.7)

Let q20 = q22 and Gi(q
2
i−1) = (G1

i , G
3
i , G

4
i ) = Fi(q

2
i−1)− q2i . Owing to (3.1)∼(3.7),

we get the successor functions Gi as following:

G1
1 = δ[(w12

1 )−1sβ1 − sβ2 ] +M1
1µ+ h.o.t.,

G3
1 = u1

1 − w13
1 (w12

1 )−1δsβ1 − (w33
1 )−1s

A2(µ)/ρ2(µ)
2 u1

2 +M3
1µ+ h.o.t.,

G4
1 = −v21 + w14

1 δsβ2 + (w44
1 )−1s

B1(µ)/λ1(µ)
1 v20 +M4

1µ+ h.o.t.,

G1
2 = δ[(w12

2 )−1s2 − s1] +M1
2µ+ h.o.t.,

G3
2 = u1

2 − w13
2 (w12

2 )−1δs2 − (w33
2 )−1s

A1(µ)/λ1(µ)
1 u1

1 +M3
2µ+ h.o.t.,

G4
2 = −v20 + w14

2 δs1 + (w44
2 )−1s

B2(µ)/ρ2(µ)
2 v21 +M4

2µ+ h.o.t..

(3.8)

We call the following equation the bifurcation equation.

(G1
1, G

3
1, G

4
1, G

1
2, G

3
2, G

4
2) = 0. (3.9)

Thus, there is an one to one correspondence between the 1-heteroclinic orbit, 1-
homoclinic orbit, 1-periodic orbit of (1.2) and the solution Q = (s1, s2, u

1
1, u

1
2, v

2
1 , v

2
2)

of (3.9) with s1 ≥ 0, s2 ≥ 0.
Obviously, the equation (G3

1, G
4
1, G

3
2, G

4
2)=0 always has a solution u1

i =u1
i (s1, s2, µ),

v2i = v2i (s1, s2, µ) i = 1, 2 for δ, |µ|, s1, s2 sufficiently small. Substituting it into
(G1

1, G
1
2) = 0, we get (w12

1 )−1sβ1 − sβ2 + δ−1M1
1µ+ h.o.t. = 0,

(w12
2 )−1s2 − s1 + δ−1M1

2µ+ h.o.t. = 0.
(3.10)

Thus, we only need to consider the solutions s1 ≥ 0, s2 ≥ 0 of (3.10).

4. The preservations of heteroclinic orbits and bi-
furcations of 1-homoclinic loop and 1-periodic or-
bit

Denote R2
1 = {µ : M1

1µ > 0, ∆2M
1
2µ < 0, |µ| � 1}, R1

2 = {µ : ∆1M
1
1µ < 0,

M1
2µ > 0, |µ| � 1}.

Theorem 4.1. Suppose that the hypotheses (H1)∼(H4) are valid, rank(M1
1 , M1

2 )=

2, |µ| � 1, then

(i) There exists a (l − 1)-dimensional surface Li defined by

M1
i µ+ h.o.t. = 0, i = 1, 2, (4.1)



2912 Y. Jin, D. Zhang, N. Wang & D. Zhu

such that (1.2) has a heteroclinic orbit joining p1 and p2 near Γi if and only
if µ ∈ Li, i = 1, 2, that is, the heteroclinic orbit Γi is reserved for µ ∈ Li.
Moreover, (1.2) has a heteroclinic loop near Γ if and only if µ ∈ L12 = L1∩L2

which is a (l − 2)-dimensional surface with normal plane span{M1
1 ,M

1
2 } at

µ = 0, that is, the heteroclinic loop Γ is reserved for µ ∈ L12.
(ii) There exists a (l − 1)-dimensional surface L2

1 ⊂ R2
1 which is defined by

(−δ−1w12
2 M1

2µ+ h.o.t.)β = δ−1M1
1µ+ h.o.t., (4.2)

and tangent to L1 at µ = 0 such that (1.2) has a unique homoclinic loop Γ2
1

connecting p1 for µ ∈ L2
1. Meanwhile, there also exists a (l − 1)-dimensional

surface L1
2 ⊂ R1

2 which is defined by

(δ−1M1
2µ+ h.o.t.)β = −δ−1w12

1 M1
1µ+ h.o.t., (4.3)

and tangent to L1 at µ = 0 such that (1.2) has a unique homoclinic loop Γ1
2

connecting p2 for µ ∈ L1
2.

Proof. Substitute s1 > 0, s2 > 0 ( or s1 = 0, s2 > 0, or s1 > 0, s2 = 0 ) into
(3.10), and then, by some simple calculations, the conclusions can be obtained.

Now, we consider the 1-periodic orbits bifurcating from Γ. That is, consider the
solutions of (3.10) which satisfy s1 > 0, s2 > 0.

If (3.10) has solutions s1 > 0, s2 > 0, then, we have

−
(
w12

2 (s1 − δ−1M1
2µ+ h.o.t.)

)β
+ (w12

1 )−1sβ1 + δ−1M1
1µ+ h.o.t. = 0, (4.4)

(w12
1 )−1

(
(w12

2 )−1s2 + δ−1M1
2µ+ h.o.t.

)β − sβ2 + δ−1M1
1µ+ h.o.t. = 0. (4.5)

Denote L1(s1) and L2(s2) as the left hands of (4.4) and (4.5), respectively.
(A1). ∆1 = 1, ∆2 = −1
In this case, R2

1 = {µ : M1
1µ > 0,M1

2µ > 0, |µ| � 1}, R1
2 = {µ : M1

1µ <
0,M1

2µ > 0, |µ| � 1}. We divide the parameter space into the following sub-
regions(Figure 5):

(R2
1)0 ⊂ R2

1 bounded by L2 and L2
1, (R2

1)1 ⊂ R2
1 bounded by L2

1 and L1.

(R1
2)0 ⊂ R1

2 bounded by L2 and L1
2, (R1

2)1 ⊂ R1
2 bounded by L1

2 and L1.

R0 = {µ : M1
2µ < 0, |µ| � 1}.

(A2). ∆1 = −1, ∆2 = 1
In this case, R2

1 = {µ : M1
1µ > 0,M1

2µ < 0, |µ| � 1}, R1
2 = {µ : M1

1µ >
0,M1

2µ > 0, |µ| � 1}. We divide the parameter space into the following sub-
regions(Figure 6):

(R2
1)0 ⊂ R2

1 bounded by L1 and L2
1, (R2

1)1 ⊂ R2
1 bounded by L2

1 and L2.

(R1
2)0 ⊂ R1

2 bounded by L1 and L1
2, (R1

2)1 ⊂ R1
2 bounded by L1

2 and L2.

R0 = {µ : M1
1µ < 0, |µ| � 1}.

Theorem 4.2. Suppose that the hypotheses (H1)∼(H4) and (A1) or (A2) hold,
then
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(i) system (1.2) has not any 1-periodic and 1-homoclinic loop connecting p1 near
Γ as µ ∈ R0.

(ii) If µ ∈ (R2
1)0, then L1(s1) = 0 has no any small non-negative solution, that is,

system (1.2) has not any 1-periodic and 1-homoclinic loop connecting p1 near
Γ as µ ∈ (R2

1)0.
(iii) If µ ∈ L2

1, then L1(s1) = 0 has no any small positive solution except s1 = 0,
that is, system (1.2) has exactly one 1-homoclinic loop connecting p1 near Γ
as µ ∈ L2

1, but no any simple 1-periodic orbit.
(iv) If µ ∈ (R2

1)1, then L1(s1) = 0 has exactly one small positive solution, that is,
system (1.2) has exactly one simple 1-periodic orbit near Γ as µ ∈ (R2

1)1.

Proof. We only consider the case (A1) ∆1 = 1, ∆2 = −1, another case (A2)
∆1 = −1, ∆2 = 1 is similar.

Obviously, if s1 ≥ 0, s2 ≥ 0, w12
2 < 0 and M1

2µ < 0, then, the left hand of
the second equation of (3.10) will be negative, so, (3.10) has not any nonnegative
solution s1 ≥ 0, s2 ≥ 0 if w12

2 < 0 and M1
2µ < 0. (i) proved.

In R2
1, we consider the nonnegative solutions of equation (4.4). By (4.2) we have

L1(0) > 0, µ ∈ (R2
1)0,

L1(0) = 0, µ ∈ L2
1,

L1(0) < 0, µ ∈ (R2
1)1.

Due to

L̇1(s1) = −βw12
2

(
w12

2 (s1 − δ−1M1
2µ+ h.o.t.)

)β−1
+ β(w12

1 )−1sβ−1
1 > 0,

so, the function L1(s1) is monotonically increasing with respect to s1. Thus, we get
the three conclusions (ii) (iii) and (iv) (See Figure 2, 3, 4).

-

6

s1

h
L1(s1)

Figure 2. µ ∈ (R2
1)0

-

6

s1

h

L1(s1)

Figure 3. µ ∈ L2
1

-

6

s1

h

L1(s1)

Figure 4. µ ∈ (R2
1)1

Theorem 4.3. Suppose that the hypotheses (H1)∼(H4) and (A1) or (A2) hold,
then

(i) System (1.2) has not any 1-periodic and 1-homoclinic loop connecting p2 near
Γ as µ ∈ R0.

(ii) If µ ∈ (R1
2)0, then L2(s2) = 0 has no any small non-negative solution, that is,

system (1.2) has not any 1-periodic and 1-homoclinic loop connecting p2 near
Γ as µ ∈ (R1

2)0.
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(iii) If µ ∈ L1
2, then L2(s2) = 0 has no any small positive solution except s2 = 0,

that is, system (1.2) has exactly one 1-homoclinic loop connecting p2 near Γ
as µ ∈ L1

2, but no any simple 1-periodic orbit.
(iv) If µ ∈ (R1

2)1, then L2(s2) = 0 has exactly one small positive solution, that is,
system (1.2) has exactly one simple 1-periodic orbit near Γ as µ ∈ (R1

2)1.
Proof. The proof is similar to that of Theorem 4.2, we omit the details.

By Theorem 4.1, 4.2 and 4.3, we get the bifurcation graphs. (See Figure 5, 6)

���AAK

M1
2 M1

1

L1

L1

L2

L2

L2
1

L1
2

(R2
1)0

(R2
1)1

(R1
2)0

(R1
2)1

R0

Figure 5. ∆1 = 1, ∆2 = −1
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2
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1

(R1
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(R1
2)1

R0

(R2
1)0

(R2
1)1

Figure 6. ∆1 = −1, ∆2 = 1

5. Bifurcations of 2-homoclinic loop and 2-periodic
orbit

Let τ1, τ2, τ3, τ4 be the flying times from q20(x
2
0, y

2
0 , (u

2
0)

∗, (v20)
∗) ∈ S2

2 to q11(x
1
1, y

1
1 ,

(u1
1)

∗, (v11)
∗) ∈ S1

1 , q21(x
2
1, y

2
1 , (u

2
1)

∗, (v21)
∗) ∈ S2

1 to q12(x
1
2, y

1
2 , (u

1
2)

∗, (v12)
∗) ∈ S1

2 ,
q22(x

2
2, y

2
2 , (u

2
2)

∗, (v22)
∗) ∈ S2

2 to q13(x
1
3, y

1
3 , (u

1
3)

∗, (v13)
∗) ∈ S1

1 , q23(x2
3, y

2
3 , (u

2
3)

∗, (v23)
∗) ∈

S2
1 to q14(x

1
4, y

1
4 , (u

1
4)

∗, (v14)
∗) ∈ S1

2 , respectively. s1 = e−λ1(µ)τ1 , s2 = e−ρ2(µ)τ2 ,
s3 = e−λ1(µ)τ3 , s4 = e−ρ2(µ)τ4 . (See Figure 7)
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Figure 7. Two cycle mapping

Let q24 = q20 . By some calculation, we get the following bifurcation equation.

(G1
1, G

3
1, G

4
1, G

1
2, G

3
2, G

4
2, G

1
3, G

3
3, G

4
3, G

1
4, G

3
4, G

4
4) = 0, (5.1)
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where, the successor functions Gi = (G1
i , G

3
i , G

4
i ), i = 1, 2, 3, 4 as followings.

G1
1 = δ[(w12

1 )−1sβ1 − sβ2 ] +M1
1µ+ h.o.t.,

G3
1 = u1

1 − w13
1 (w12

1 )−1δsβ1 − (w33
1 )−1s

A2(µ)/ρ2(µ)
2 u1

2 +M3
1µ+ h.o.t.,

G4
1 = −v21 + w14

1 δsβ2 + (w44
1 )−1s

B1(µ)/λ1(µ)
1 v20 +M4

1µ+ h.o.t.,


G1

2 = δ[(w12
2 )−1s2 − s3] +M1

2µ+ h.o.t.,

G3
2 = u1

2 − w13
2 (w12

2 )−1δs2 − (w33
2 )−1s

A1(µ)/λ1(µ)
3 u1

3 +M3
2µ+ h.o.t.,

G4
2 = −v22 + w14

2 δs3 + (w44
2 )−1s

B2(µ)/ρ2(µ)
2 v21 +M4

2µ+ h.o.t.,


G1

3 = δ[(w12
1 )−1sβ3 − sβ4 ] +M1

1µ+ h.o.t.,

G3
3 = u1

3 − w13
1 (w12

1 )−1δsβ3 − (w33
1 )−1s

A2(µ)/ρ2(µ)
4 u1

4 +M3
1µ+ h.o.t.,

G4
3 = −v23 + w14

1 δsβ4 + (w44
1 )−1s

B1(µ)/λ1(µ)
3 v22 +M4

1µ+ h.o.t.,


G1

4 = δ[(w12
2 )−1s4 − s1] +M1

2µ+ h.o.t.,

G3
4 = u1

4 − w13
2 (w12

2 )−1δs4 − (w33
2 )−1s

A1(µ)/λ1(µ)
1 u1

1 +M3
2µ+ h.o.t.,

G4
4 = −v20 + w14

2 δs1 + (w44
2 )−1s

B2(µ)/ρ2(µ)
4 v23 +M4

2µ+ h.o.t..

Thus, there is an one to one correspondence between the 2-heteroclinic loop, 2-
homoclinic and 2-periodic orbit of (1.2) and the solution Q = (s1, s2, s3, s4, u

1
1, u

1
2, u

1
3,

u1
4, v

2
1 , v

2
0 , v

2
2 , v

2
3) of (5.1) with s1 ≥ 0, s2 ≥ 0, s3 ≥ 0, s4 ≥ 0.

It is easy to see that the equation (G3
1, G

4
1, G

3
2, G

4
2, G

3
3, G

4
3, G

3
4, G

4
4) = 0 always has

a solution (u1
1, u

1
2, u

1
3, u

1
4, v

2
1 , v

2
0 , v

2
2 , v

2
3) = (u1

1, u
1
2, u

1
3, u

1
4, v

2
1 , v

2
0 , v

2
2 , v

2
3)(s1, s2, s3, s4, µ)

for δ, |µ|, s1, s2, s3, s4 sufficiently small. Substituting it into (G1
1, G

1
2, G

1
3, G

1
4) = 0,

we have the bifurcation equation as following.

(w12
1 )−1sβ1 − sβ2 + δ−1M1

1µ+ h.o.t. = 0,

(w12
2 )−1s2 − s3 + δ−1M1

2µ+ h.o.t. = 0,

(w12
1 )−1sβ3 − sβ4 + δ−1M1

1µ+ h.o.t. = 0,

(w12
2 )−1s4 − s1 + δ−1M1

2µ+ h.o.t. = 0.

(5.2)

Thus, we only need to consider the solutions s1 ≥ 0, s2 ≥ 0, s3 ≥ 0, s4 ≥ 0 of (5.2).
Case 1. If (5.2) has a solution s1 > 0, s2 > 0, s3 = s4 = 0, then (5.2) becomes

sβ2 = (w12
1 )−1sβ1 + δ−1M1

1µ+ h.o.t.,

(w12
2 )−1s2 + δ−1M1

2µ+ h.o.t. = 0,

δ−1M1
1µ+ h.o.t. = 0,

s1 = δ−1M1
2µ+ h.o.t..

(5.3)
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Substitute the second, third and fourth formulas of (5.3) into the first formula,
we get (

(w12
1 )

1
β w12

2 + 1
) (

δ−1M1
2µ+ h.o.t.

)
+ h.o.t. = 0.

If (w12
1 )

1
β w12

2 + 1 6= 0, we get M1
2µ + h.o.t. = 0, combined with (5.3), we get

s1 = 0, s2 = 0, this means that the 2-heteroclinic loop is just the 1-heteroclinic loop
for µ ∈ L1 ∩ 2, so, system (1.2) has not any 2-heteroclinic loop near Γ.

Case 2. It is obvious that system (1.2) has the 2-homoclinic loop joining p1
near Γ if and only if (5.2) has the solution s1 > 0, s2 > 0, s3 = 0, s4 > 0; system
(1.2) has the 2-homoclinic loop joining p2 near Γ if and only if (5.2) has the solution
s1 > 0, s2 > 0, s3 > 0, s4 = 0.

Theorem 5.1. Suppose that hypotheses (H1)∼(H4), (A1)(or (A2)) are valid,
then, in (R2

1)1, there exist a (l − 1)-dimensional surface L124
3 which is tangent to

L1 at point µ = 0, such that system (1.2) has one 2-homoclinic loop connecting p1
near Γ for µ ∈ L124

3 , |µ| � 1. (See Figure 8, 9)

Proof. If (5.2) has a solution s1 > 0, s2 > 0, s3 = 0, s4 > 0, then (5.2) becomes

sβ2 = (w12
1 )−1sβ1 + δ−1M1

1µ+ h.o.t.,

s2 = −δ−1w12
2 M1

2µ+ h.o.t.,

sβ4 = δ−1M1
1µ+ h.o.t.,

s1 = (w12
2 )−1s4 + δ−1M1

2µ+ h.o.t..

(5.4)

So, we have M1
1µ > 0,∆2M

1
2µ < 0, and

(−δ−1w12
2 M1

2µ+ h.o.t.)β

= (w12
1 )−1

[
(w12

2 )−1(δ−1M1
1µ)

1
β + δ−1M1

2µ+ h.o.t.
]β

+ δ−1M1
1µ+ h.o.t..

(5.5)

Denote L124
3 is the (l − 1)-dimensional surface defined by (5.5) in (R2

1), then,
L124
3 is tangent to L1 at point µ = 0, and (1.2) has one 2-homoclinic loop connecting

p1 near Γ for µ ∈ L124
3 , |µ| � 1. Moreover

If ∆1 = 1, ∆2 = −1, then, by (5.5), we have

δ−1M1
1µ‖L124

3
< (−δ−1w12

2 M1
2µ+ h.o.t.)β = δ−1M1

1µ‖L2
1
.

This means that L124
3 is located in the open region (R2

1)1.
Similarly, if ∆1 = −1, ∆2 = 1, then, by (5.5), we have

δ−1M1
1µ‖L124

3
> (−δ−1w12

2 M1
2µ+ h.o.t.)β = δ−1M1

1µ‖L2
1
.

This means that L124
3 is located in the open region (R2

1)1.
Obviously, L124

3 is tangent to L1 at point µ = 0 for the reason that β > 1.

Theorem 5.2. Suppose that hypotheses (H1)∼(H4), (A1)(or (A2)) are valid,
then, in (R1

2)1, there exist a (l − 1)-dimensional surface L123
4 which is tangent to

L1 at point µ = 0, such that system (1.2) has one 2-homoclinic loop connecting p2
near Γ for µ ∈ L123

4 , |µ| � 1.
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Proof. The proof is similar to that of Theorem 5.1, we omit the details.
Case 3. Denote D2 is the open region which is bounded by L124

3 and L123
4 .

Where, for the case ∆1 = 1, ∆2 = −1, the vector M1
1 points into D2 from L123

4 , and
points to the outside of D2 from L124

3 , for the case ∆1 = −1, ∆2 = 1, the vector
M1

1 points into D2 from both of L123
4 and L124

3 .

Theorem 5.3. System (1.2) has a 2-periodic orbit in the neighborhood of Γ for
µ ∈ D2. (See Figure 8, 9)

Proof. (i) If (5.2) has a solution s1 > 0, s2 > 0, s3 > 0, s4 > 0, then, in the
neighborhood of L124

3 , we have

s3=(w12
2 )−1

{
(w12

1 )−1

[
(w12

2 )−1
(
(w12

1 )−1sβ3+δ−1M1
1µ

) 1
β

+δ−1M1
2µ

]β
+δ−1M1

1µ

} 1
β

+ δ−1M1
2µ+ h.o.t..

Applying the Taylor expansion formula at sβ3 = 0 for the right hand, we get

s3= K3 • sβ3+(w12
2 )−1

{
(w12

1 )−1
[
(w12

2 )−1(δ−1M1
1µ)

1
β +δ−1M1

2µ
]β
+δ−1M1

1µ

} 1
β

+δ−1M1
2µ+ h.o.t.,

(5.6)
where,

K3 =
1
β

[
(w12

2 )−1(δ−1M1
1µ)

1
β +δ−1M1

2µ

]β−1

(δ−1M1
1µ)

1− 1
β (w12

2 )2(w12
1 )2

{
(w12

1 )−1

[
(w12

2 )−1(δ−1M1
1µ)

1
β +δ−1M1

2µ

]β

+δ−1M1
1µ

}1− 1
β
.

Because of β > 1, we have
{
(w12

1 )−1
[
(w12

2 )−1(δ−1M1
1µ)

1
β+δ−1M1

2µ
]β
+δ−1M1

1µ

} 1
β

+

δ−1M1
2µ is O

(
(µ)

1
β

)
order, thus, we can take (5.6) as the following.

s3 = K3 • sβ3 + (w12
2 )−1

{
(w12

1 )−1(w12
2 )−β + 1

} 1
β (δ−1M1

1µ)
1
β + h.o.t.. (5.7)

Differentiating (5.7), and denoting the gradient of s3(µ) with respect to µ by
(s3)µ, we get

(s3)µ =βK3 • sβ−1
3 (s3)µ

+
1

β
(w12

2 )−1
{
(w12

1 )−1(w12
2 )−β + 1

} 1
β (δ−1M1

1µ)
1
β−1δ−1M1

1 + h.o.t..

Thus, if µ ∈ L124
3 , then,

(s3)µ ‖s3=0=
1
β (w

12
2 )−1

{
(w12

1 )−1(w12
2 )−β + 1

} 1
β (δ−1M1

1µ)
1
β−1δ−1M1

1 + h.o.t..

(5.8)
(5.8) means that s3 = s3(µ) increases along the direction w12

2 M1
1 in the small

neighborhood of µ ∈ L124
3 .
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(ii) If µ is situated in the neighborhood of L123
4 , the proof is similar to that of

(i).
By the Theorem 5.1, 5.2 and 5.3, we get the bifurcation graphs as following.

(See Figure 8, 9)
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Figure 8. ∆1 = 1, ∆2 = −1
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Figure 9. ∆1 = −1, ∆2 = 1

6. Conclusion
Note that µ ∈ (R2

1)
1
1 is the open sub-region of (R2

1)1 which is bounded by L2
1 and

L124
3 , µ ∈ (R1

2)
1
1 is the open sub-region of (R1

2)1 which is bounded by L1
2 and L123

4 .
Based on Theorems 4.1, 4.2, 4.3, and 5.1, 5.2 and 5.3, we obtain the following
conclusions:
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Figure 10. Bifurcation graph for ∆1 = 1,
∆2 = −1
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Figure 11. Bifurcation graph for ∆1 = −1,
∆2 = 1

Theorem 6.1. Suppose that the hypotheses (H1)∼(H4) and (A1) or (A2) hold,
then

(i) system (1.2) has not any 1-periodic orbit and 1-homoclinic loop near Γ as
µ ∈ R0

∪
(R2

1)0
∪
(R1

2)0.
(ii) system (1.2) has one 1-homoclinic loop connecting p2 near Γ as µ ∈ L1

2, but
no any simple 1-periodic orbit.

(iii) system (1.2) has one 1-homoclinic loop connecting p1 near Γ as µ ∈ L2
1, but

no any simple 1-periodic orbit.
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(iv) system (1.2) has one simple 1-periodic orbit near Γ as µ ∈ (R2
1)

1
1

∪
(R1

2)
1
1.

(v) system (1.2) has one 1-periodic orbit and one 2-homoclinic loop connecting p1
near Γ for µ ∈ L124

3 ,
(vi) system (1.2) has one 1-periodic orbit and one 2-homoclinic loop connecting p2

near Γ for µ ∈ L123
4 ,

(vii) System (1.2) has one 1-periodic orbit and one 2-periodic orbit in the neigh-
borhood of Γ for µ ∈ D2.

About the bifurcation graphs, see Figure 10 and 11.
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