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Abstract Let (X,d, 1) be a non-homogeneous metric measure space satisfy-
ing both the geometrically doubling and upper doubling conditions in the sen-
se of Hytonen. In this setting, the authors first introduce generalized Morrey
spaces LP#"(u) and generalized weak Morrey spaces WLP#"(u) for p € [1,
00); second, under assumption that the dominating function A and (p1, w2, ¥)
satisfy certain conditions, the authors prove that bilinear 6-type Calderén-Zyg-
mund operators T are bounded from product of spaces LPV¥1>% (1) x LP2 27 ()
into spaces L£P*?" (1), and also bounded from product of spaces £P1#1:%(u) X
LP292:% (1) into spaces W LP¥ ™ (u), where % = i + é for 1 < p1,p2 < oo; fi-
nally, the boundedness of the commutator Tbl,bQ formed by b1, b2 € RBMO(p)
and T on spaces £P#" (1) and on spaces W LP#" (1) is obtained.

Keywords Non-homogeneous metric measure space, bilinear 0-type Calderén-
Zygmund operator, commutator, space RBMO(u), product generalized Morrey
space.
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1. Introduction

In order to unify the spaces of homogeneous type in the sense of Coifman and Weiss
(see [2,3]) and non-doubling measure spaces whose measures satisfy the polynomial
growth conditions (for example, see [11,15,27-30]), in 2010, Hytonen [12] first intro-
duced a new class of metric measure spaces which satisfy the so-called geometrically
doubling and upper doubling conditions, which are now called non-homogeneous
metric measure spaces and simply denoted by (X,d, ). Since then, many pa-
pers focus on the integral operators and function spaces on (X, d, ). For example,
Hytonen et al. [13] showed that the boundedness of a Calderén-Zygmund operator
T on spaces L2(u) is equivalent to that of T' on spaces LP(u) for some p € (1,00).
In 2022, Wang and Xie [31] proved that the strongly singular integral operator T
and its commutator [b, T'] formed by b € RBMO(p) and T are bounded on LP () s-
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paces. In 2021, Zhao et al. [35] established some weak-type multiple weighted esti-
mates for the iterated commutator TH ; generated by the multilinear Calderén-Zy-

gmund operator T and b = (by, -+ ,by,) € (R/B_K/I/O(u))m on (X,d,pn). In 2017,
Lu and Tao [22] obtained the notion of generalized Morrey space on (X, d, i), and
also established the boundedness of some usual operators of classical analysis (like
the Hardy-Littlewood maximal operator and the Calderén-Zygmund operator) are
bounded on these spaces. The more researchers about the various integral operators
and function spaces on (X, d, 1) can be seen [1,4,6,17,18,21,23,24].

On the other hand, in 1985, Yabuta [33] first introduced the #-type Calderén-
Zygmund operator, and established the boundedness of #-type Calderén-Zygmund
operators on spaces LP(R™). Later, many researchers further studied the properties
of this operator. For example, in 2023, V.S. Guliyev [7] proves that the operator
T with Dini’s type kernel and the commutator T generated by b= (b1, -+ ,by) €
(BMO(R™))™ and the T on generalized weighted Morrey. In 2021, V.S. Guliyev [§]
obtained the boundedness of the operator T" with Dini’s type kernel and the com-
mutator T which is generated by b= (b, - ,by) € (BMO(R™))™ on generalized
weighted variable exponent Morrey spaces Mp(')"/’(w). At the same year, V.S.
Guliyev and A.F. Ismayilova [10] showed that the operators 7" and T} are bounded
on generalized weighted Morrey spaces M), ,(w). Recently, Lu in [20] has studied the
weighted bounded properties for the -type Calderén-Zygmund operator Ty and its
commutator Ty ; on weighted Morrey spaces. The more researchers on the different
kinds of f-type Calder6n-Zygmund operators can be seen [16,19,25,26,32,34, 36].

Motivated by the above results, in this paper, the authors first obtain the defi-
nitions of generalized Morrey spaces LP#*(u) and generalized weak Morrey spaces
W LP#5 (1) on (X, d, i), which are different from the definitions of generalized Mor-
rey spaces and generalized weak Morrey spaces introduced in [22]. In other words,
there are not any relations between the two classes of spaces; but, the two classes
of generalized Morrey spaces can go back to the Morrey spaces introduced in [1].
Second, under assumption that the dominating function A and the (¢1, @2, ) sati-
sfy certain conditions, the authors show that the bilinear 6-type Calderén-Zygmund
operator T is bounded from the product of generalized Morrey spaces LP1#1:5 (1) x
LP2%2:5( 1) into spaces LP#" (), and it is bounded from product spaces £P1%#1:5 (1)

1 1

x LP2%92:5 (1) into generalized weak Morrey spaces W LP#% (1), where % =+

for 1 < p1,p2 < co. Finally, the boundedness of the commutator Tbl’bQ which is gen-
erated by by, by € RBMO(y) and T on spaces L9 (1) and on spaces W LP# (1)
is also obtained.

Before stating the main results, we need to recall some necessary notions. The
following definitions of geometrically doubling condition and upper doubling condi-
tion were introduced by Hytonen [12].

Definition 1.1. A metric space (X, d) is said to be geometrically doubling if there
exists some Ny € N such that, for any ball B(z,r) C X with x € X and r € (0, 00),
there exists a finite ball covering {B(x;,7/2)}; of B(z,r) such that the cardinality
of this covering is at most Ng.

Remark 1.1. Let (X,d) be a metric measure. Hyténen [12] showed that the ge-
ometrically doubling is equivalent to the following statement: for every e € (0, 1),
any ball B(z,r) C X with © € X and r € (0,00) contains at most Noe~"° centers
of disjoint balls {B(z;,er)};, here and in what follows, Ny is as in Definition 1.1
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and ng := logy Nop.

Definition 1.2. A metric measure space (X, d, u) is said to be upper doubling if p is
a Borel measure on X and there exist a dominating function A : X x (0, 00) — (0, 00)
and a positive constant Cy), only depending on A, such that, for each z € X, r —
A(z,r) is a non-decreasing and, for all x € X and r € (0, 00),

w(B(a,1) < Aw,r) < CoyAa,r/2). (L1)

A metric measure space (X, d, p) is called a non-homogeneous metric mea-
sure space if (X,d) is geometrically doubling and (X, d, 1) is upper doubling.

Remark 1.2. Hytonen et al. [14] showed that there exists another dominating fun-
ction A such that A < A, C(X) < Oy and, for all z,y € X with d(z,y) <7,

Az, 7) < ConyA(y, 7). (1.2)

Thus, in this paper, we also assume that the A defined as in (1.1) satisfies (1.2).

The following definition of the coefficient K g, which is more close to the quan-
tity Kq r introduced by Tolsa [29,30], is from [12].

Definition 1.3. For any two balls B, S with B C S C X, define

1
KB,S =1 —l—/ S E—
(29)\B e, d(x,cp))

where cp represents the center of ball B.

du(), (1.3)

We now recall the following definition of («, 8)-doubling ball introduced in [12].

Definition 1.4. Let o, 5 € (1,00). A ball B C X is said to be («, 5)-doubling if
u(aB) < Bu(B).

The more detailed contexts on the (¢, 8)-doubling balls, we refer readers to see
Lemmas 3.2 and 3.3 in [12]. In what follows, let v := log, C(») and ng := log, No.
Throughout this article, for any « € (1, 00) and ball B, the smallest («, 8, )-doubling
ball of the form o/ B with j € N is simply denoted by EO‘, where

Bo = am@{mor} 4 30m0 4 307 .= max{a™, a”} + 30" + 30”. (1.4)

Furthermore, in this paper, we always assume that a = 6 in (1.4), then the (6, 5¢)-
doubling ball BS is simply denoted by B.
The following notion of regularized BMO spaces (= RBMO(u)) is from [12].

Definition 1.5. Let p € (1,00). A real-valued function f € L{. _ is said to be in t-

loc

he space RBMO () if there exists a positive constant C' and, for any ball B C X, a
number fp such that

1
(pB)

and, for any ball B and S such that B C .S C X,

/B (@) — faldulz) < C (15)

|fB — fs| < CKp.s, (1.6)
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where fp represents the mean value of functions f over ball B, i.e.,

1
o= = /B F@)du(y).

The infimum of the positive constants C' satisfying (1.5) and (1.6) is defined to be
the RBMO(u) norm of f and denoted by || f|lrBmo(y)-

The following notion of bilinear #-type Calderén-Zygmund operators is from [37].

Definition 1.6. Let 6 be a nonnegative and nondecreasing function defined on (0,
00) and satisfy
1
ot
/ th < 00
o ¢

A kernel K(-,+,-) € Ll (X x X x X\ {(z,z,2) : & € X}) is called a bilinear 6-type

loc
Calderon-Zygmund kernel if it satisfies the following conditions:

(i) for all z,y1,y2 € X with © # y; for ¢ € {1, 2},

K| < €| SN o) (17)

=1

(ii) there exists a positive constant ¢ € (1,00) such that, for all z,z’,y1,y2 € X
with cd(z, 2") < maxi<;<o d(z, y;),

/ 2 -2
|K<x,yl,y2)_x<xgyl,y2>|gce(%)[zm,d(x,%))} . (L8
i=1 AT, Yi i=1

(iii) there exists a positive constant ¢ € (1,00) such that, for all z,y;,y],y2 € X
with ed(y1,y]) < maxi<i<od(x,y:),

K (@51 10) — K (2, 0)] < oo(zd(yd(y)y)) [ZMx,d(x,yi))]_ (9)
i=1 ALy Yi i=1

Remark 1.3. (a) Without loss of generality, for the simplicity, we may assume in
(1.8) and (1.9) that ¢ = 2.

(b) If we take 0(t) = t° with 6 € (0,1] in (1.8) and (1.9), then the bilinear 6-type
Calderén-Zygmund kernel is just the standard bilinear C-Z kernel.

Let L° (1) be the space of all L>° () functions with bounded support. A bilinear

operator Ty is called a bilinear 0-type Calderén-Zygmund operator with kernel K s-
atisfying (1.7), (1.8) and (1.9) if for all fi, fo € Lp°(p) with z € X'\ (supp(f1) N
supp(f2)),

T(f1, fo)(z) = /X2 K(z,y1,92) f1(y1) fa(y2)dp(yr)dp(y2). (1.10)

Given by, by € RBMO(y), the commutator Ty, 5, formed by by, by and T is defi-
ned by

Ty oy (f1, fo) (@) =b1 (@)b2 ()T (f1, fo) (x) — bi ()T (f1, b2 (-) f2) ()
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= ba(2)T (b1 () f1, fo) (@) + T(br(-) fr, b2 () fo) (@) (L.11)

Equivalently, fbhbz (f1, f2)(x) can be formally written as
/252 K (2, y1,y2) (b1(x) — b1(y1)) (ba(x) — ba(y2)) f1(y1) f2(y2)dpa(yr)dp(y2). (1.117)

Also, the commutators T, b, and be are respectively defined by

Ty, (f1, fo)(@) = by ()T (f1, fo)(z) — T(b1() f1, fo) (@) (1.12)

and
Ty, (f1, f2)(x) = ba(2)T(f1, f2)(x) — T(f1,b2(-) f2) (). (1.13)

Now we state the definition of a generalized Morrey space, which is sightly mod-
ified from [11], as follows.

Definition 1.7. Let kK > 1, 1 < ¢ < oo and p(z,7) : X x (0,00) — (0,00) be a Le-
ebesgue measurable function. Then the generalized Morrey space LP#"(u) is defin-
ed by

P2 () = {f € Lipo(w) < 1l nomny < 00},

where
1

1 lenogy = sup 1[u<B<x,m>>r%( / ( )If(y)l”du(y)>p, (1.14)

zeX,r>0 QO(ZE, /{T)

and B(z,r) = {y € X : d(z,y) < r} is an open ball centered at x € X with radius
r > 0.

Also, we denote by W.LP#*(u) the generalized weak Morrey space of all locally
integrable functions satisfying

1 llw ooy = eggpw[w(z,M)]’l[u(B(x,W))]_EHfllwm(B(z,r)), (1.15)

where W LP(B(z,r)) represents the weak LP-spaces of measurable functions f for
which

1
HfHWLP(B(m,r)) = HfXB(x,r)HWLP(X) = iggt[ﬂ({y € B(x,r) : [f(y)| > t})]7.

Remark 1.4. (i) By means of a similar method that used in the proof of Theorem
1.2 in [11] and Theorem 7 in [1], it is easy to see that the norms || f||zp.¢.x(,) and
|.fllw zpe.s () are independent of the choice of x for > 1.

(ii) If we take (X,d, p) := (R™,]|-|,dz) and k = 1, then it is easy to see that gen-
eralized Morrey spaces L£P#"*(u) and generalized weak Morrey spaces W LP#% (1)
defined as in Definition 1.7 are just the generalized Morrey space MP#(R"™) and
the weak generalized Morrey space WMP¥(R™) introduced by Guliyev (see [9]).

(iii) If we take (X, d, p) :== (R™, ||, 1), then generalized Morrey spaces LP*#% (1)
and generalized weak Morrey spaces W.LP#% (1) are just the generalized Morrey s-
pace MP?(k, u) and weak generalized Morrey space W MP¥ (k, ) with nondoubling
measure (see [11]).

(iv) When ¢(x, k1) := [u(B(z, m“))}*%, then LP#% () = LP(u) and WLP# 5 ()
— WL ().



Bilinear ©-type Calderén-Zygmund operator and its commutator - - - 2927

(v) If we take o(x, k1) = [/,L(B(a?,li’l“))]ié with 1 < p < ¢ < oo in (1.13), then t-
he generalized Morrey space LP'#" (1) is just the Morrey space M!(u) introduced
in [1].

The following definition of an e-weak reverse doubling condition is from [4].
Definition 1.8. Let € € (0,00). A dominating function A is said to satisfy the e-
weak reverse doubling condition if, for all r € (0, 2diam (X)) and a € (1, 2diam(X)/r),

there exists some number C'(a) € [1,00), depending only on a and X, such that, for
allz € X,

Az, ar) > C(a)A(z,r) (1.16)
and, moreover,
- 1
’; T <> (1.17)

The main results of this paper are stated as follows.

Theorem 1.1. Let K satisfy (1.7), (1.8) and (1.9), 1 < p1,p2 < o0, % = p% + p%,’
and the functions o, p;(i = 1,2) : X x (0,00) — (0,00) be Lebesgue measurable func-

tions with satisfying

ST wite, 6519 (B, 65 )7 < Coola, 6r)[u(B(, 6r)]7.  (1.18)

k=01=1

Suppose that T is defined as in (1.10) and the \ satisfies %-weak reverse doubling.
Then there exists a constant C > 0 such that, for all f; € LPH%15 () with i = 1,2,

IT(fr, f2)llcro () < Cllfalloner oyl f2ll coz e o) -

Theorem 1.2. Let K satisfy (1.7), (1.8) and (1.9), 1 < p1,p2 < o0, % = pil + p%
and o, p;(i =1,2) : X x (0,00) = (0,00) be Lebesgue measurable functions satisfyi-
ng (1.18). Suppose that T is defined as in (1.10) and the X satisfies %—weak reverse
doubling. Then there exists a constant C > 0 such that, for all f; € LPH%5 (1) with
i=1,2,

1T (frs f)llweo ey < Cllfill corerm [ f2ll cro-ezom (-

Theorem 1.3. Let by, by € RBMO(u), K satisfy (1.7), (1.8) and (1.9), 1 < p1,p2 <

o0, L = p% + p% and ¢, p;(i =1,2) : X x (0,00) — (0,00) be Lebesgue measurable

functions with satisfying

2

S0k + 1) T] il 6 (B, 6T )] < Copli, 6 (Bl 6r)] 7. (1.19)
k=0 i=1

Suppose that T is defined as in (1.10) and the \ satisfies %—weak reverse doubling.
Then there exists a constant C' > 0 such that, for all f; € LP¥9" () with i = 1,2,

2
1Ty b, (f1, f2) ooy < C H 10illrRBMO () || fill 273215 (10 -

i=1



2928 G. Lu & M. Wang

Theorem 1.4. Let by, by € RBMO(u), K satisfy (1.7), (1.8) and (1.9), 1 < py,p2 <
1_ 1

00, 5 = -+ p% and ¢, p;(i =1,2) : X x (0,00) — (0,00) be Lebesgue measurable
functions with satisfying (1.19). Suppose that T is defined as in (1.10) and the \ s-
atisfies %—weak reverse doubling. Then there exists a constant C > 0 such that, for
all f; € LP0P0R(u) with i = 1,2,

N 2

T, 0 (15 f2)lwr 2oy < C T Ibilrsmo o Il fill coeveion -
i=1

Remark 1.5. Once Theorem 1.1 and Theorem 1.3 are proved, it is easy to see that
Theorems 1.2 and 1.4 also hold. Hence, in this paper, we only focus the proof of
Theorem 1.1 and Theorem 1.3.

Finally, we make some conventions on nations. Throughout this paper, we alw-
ays denote by C, c or ¢ is a positive constant being independent of the main param-
eter, but may vary from line to line. Furthermore, we use C(,) to denote a positive
constant depending on the main parameter «. Given any p € [1,00), we denote p’
as its conjugate index, i.e., p’ := p/(p—1). Also, for any measurable subset F C X,
xE denotes its characteristic function. For any ball B and f € L. (u), mp(f) also
represents the mean value of f over B, namely,

1
mp(f) = w/}gf(x)dﬂ(x)-

2. Preliminaries

To prove the main results of this paper, we should recall some necessary results.

Lemma 2.1 (Lemmas 5.1 and 5.2, [12]). Let (X, d, u) be a non-homogeneous metric
measure Space.

(i) For all balls BC RC S, Kpr < Kps.

(ii) For any p € [1,00), there exists a positive constant C(,), depending on p,
such that, for all balls B C S with rg < prp, Kps < C().

(iii) For any a € (1,00), there exists a positive constant C ), depending on a,
such that, for all balls B, KB)EQ < Cl-

(iv) There exists a positive constant ¢ such that, for all balls BC R C S,

Kp s < Kpr+cKgs.

In particular, if B and R are concentric, then ¢ = 1.
(v) There exists a positive constant ¢ such that, for all balls B C R C S,
Kp.s <cKp,g; moreover, if B and R are concentric, then Kr s < Kp g.

Lemma 2.2 (Proposition 2.10, [12]). Let p € (1,00) and f € Li (). The following
statements are mutually equivalent:
(i) f € RBMO();
(ii) there exists a positive constant C such that, for all balls B,
),
——— [ |f(@) =mp(f)ldu(z) < C
1(pB) Jp B
and, for all doubling balls B C S,
img(f) —mg(f)| < CKps. (2.1)
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Corollary 2.1 (Corollary 2.3, [5]). If f € RBMO(u), then there exists a positive
constant C such that, for any ball B, p € (1,00) and r € [1,00),

1

<M(;B)/Bf(x) mg(f)|rdu($)>r < C|fllrB™MO(1)- (2.2)
Moreover, the infimum of positive constants C satisfying both (2.2) and (2.1) is an
equivalent RBMO(p)-norm of f.
Lemma 2.3 (Theorem 1.5, [37]). Let 1 < p1,p2 < 00, % = p% + p%, and K satisfy
(1.7), (1.8) and (1.9). Suppose that T defined as in (1.10) is bounded from product

of spaces L*(p) x L(p) into spaces Lz>°(y). Then there exists some constant C
such that, for all fi € LP*(u) and fo € LP2(u),

IT(f1, f2) oy < ClFallpon ol foll Loz (-

Lemma 2.4 (Theorem 10, [32]). Let by, by € RBMO(p) and T be as in (1.10) with
kernel K satisfying (1.7), (1.8) and (1.9), which is bounded from product of spaces
LPr(p) x LP2(p) into spaces LP(u) for all 1 < py1,pa < oo and % = p% + p%. Then

the commutator Tvbhbz satisfies that there exists a positive constant C' such that, for
all fy € LPr(p) and fo € LP2(p),

1 Toy 6, (f1, f2) | 2o () < Cllb1llrBMO(W) 102 |lRBMO () | f11 Z21 (10) | f2 |l 22 (10 -

3. Proof of Theorem 1.1

Proof. With loss of generality, we may assume that £ = 6 in (1.14). Represent f-
unctions f; as

fii=fL+ 72 = fixen + fixa\m), 1=1,2, (3.1)

where B = B(z,r) represents the open ball centered at  with radius . Then write

IT(f1, f2)ll oo ()
= sup [p(x,60)]) " u(B(x,60))] " # | T(f1, f2)ll Lo By

x€eX,r>0
— 1.~
< sup [p(@, 60)] 7 u(B(x, 6r)] 7 IT(f1, f2)ll e (B
zeX,r>0
_ _1l.5 oo
+ sup [ip(a, 6r)] 7 (B (@, 6r)] " T f5°) e (B
zeX,r>0

+ sup [p(e, 6)] (B, 67)] 77 | T ) Lo (B
zeX,r>0

+ sup [p(x,6r)]) (B, 6r)]) P T, £5°) | o (Blary)
zeX,r>0

=D; + Dy + D3 + Dy.

From % = p% + p%, (1.14), (1.18) and Lemma 2.3, it then follows that

Dr< sup [p(e,6r)] (Bl ) P IT(L ) ar )
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- 1
<€ suwp [p(e,6r)] (B, 6r)] 7 L fill s (w6 L foll Loz (B o6

<C sup (e, 6r)] M (B, 6r)]F o (@, 36r)pa(w, 36r)[u( Bz, 36r))] 71 * 75

rzeX ,r>0
x [ip1(, 367)] (B, 36r))] P (| fill Lor (B2 ,6r)
_1
x [pa(a, 36r)] 7 [(B(x,36r))] " 72 || f2ll Loz (B(a 6r))

2 1
1:[1 pi(w, 367)[u(B(z,367))]7i
<O fillgrr el fallgrzieam(ny  sup =

x>0 iz, 6r)[u(B(x,6r))]7
<Cllfillgrrermullfollcrzeom (-

To estimate Dy, we first need to consider |T(fL, f5°)(y)| for y € B(x,r).

applying (1.7), (1.14), the Holder inequality and (1.17), we have

IT(f1, £5°)(y)]
|fL (z)IIf5° (22)]
X2 [)‘(y7d(y7 Zl)) + )‘(ya d(ya 22))}2
| f2(22)| s
<C [0l [ o e
= 1
SC’/ |fl(21)|d/£(21)z:W/ﬁk+1 | f2(z2)|dp(22)

k=1

<C; a:6k 2H/6k1 | fi(z:)|dp(z;)
O L 6‘“ P H (/ﬁwfl 2 dﬂ<zz>>“[u<6k+13>]l—;i

1

© k+lB -3 .
Z /J’[G m Gk HSOZ (E 6/€+2 B(x,6k+2r))]l’7
k=1

<C dpu(z1)dp(z2)

I /\

\ /\

< i, 64720~ (B, 64207 ( / ﬁ(zl-)v”du(zi))

Az, 65+1r)]2 %
SC”flHﬁplw’lv“(u)Hf2||£1’2=“’2*“(u) E : [)\(x 6’%)]2
k=1 ’

k+1pB

1
stoz  6520) [u(B(x, 652r))] 71

<Cl fillgrrer s Lf2ll grzeam ()

00
SCHleﬁpl’wl'N(M)HfQHLPz»wgm(#)Z i=1 7
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further, via (1.1), (1.14) and (1.18), we obtain
_ 1 00
Dz = sup_ lp(w,6r)] Hu( B, 6r)] " IT(L 59 e (i)

SC[|frllzrrer oyl fall rae gy eb;lpw[so(x,67")]”[#(3(36,67‘))]7

o0
<C|\ fill goroor iy foll graonmuy  sup D =
FAS

<O f1llgor el foll crezm (-

With an argument similar to that used in the estimate of Ds, it is easy to obtain
that

Dy < Cllfullzrvensol f2ll raeam ()

Now let us estimate Dy. For any y € B(x,r), by applying the (1.7), (1.14), the
Holder inequality and (1.17), we deduce

IT(f5°, £5°) ()]
()l S50 (22)]
<C | N dly, 20)) + Ay, d(y 2P
| f1(21)[| f2(22)]
SC/XQ\(GB)Z N, d(z, =) + Az, d(z,
2

SC Xz\(63)2 - >\(£L’ d(l’ ZZ))d'u(ZZ)

<CZH)\:¢67¢ ([ |fi<zi>|pidu<zi>)l[ (B

CZHAmGk (6 B i, 642 [u(Blar, 64 7r))] 70

dp(z1)dp(22)

x L1, 6420 (B, 65+20)) 70 (/ fi<zi>|mdu<~%>> E

i, 6520 [u(B(x, 6’€+2r>>]pf
<C| fillzrroer gyl f2ll £rz ez () Z H
k=1i=1 [)\(m 6Fr )]

o0
i=1
SClfillernormgollfalleravanin Y

oo 121 @i (x, 652 [u(B(x, 65 +27))] 70

SCHleﬁpl"Fl’K(M)Hf2||£1727&02,n(u)Z i=1 .
k=1 A(z,7)]>
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further, from (1.1), (1.14) and (1.18), it then follows that

Dy= sup [p(z,6r)]  [u(B(a,6r))] 7 IT(f°, £59) o (B

xeX,r>0
<Ol fille ool fellraeanyy sup_ o, 6r)] 7 (B, 6r))] ">
2
o 1 @i, 68420 [u(B(z, 65+2r))] 70
l i=1
X 1’ Z 1
A, 7)]»

. ﬁ s, 6420 [u(B(x, 65+21))

<C||f1||£:1’1 @1 ( ||f2Hl:P2 ®2.5(y)  SUP Z T
TEX,r>0) 2 o(x, 6r)[u(B(x,6r))]

<Cllfillgrrerm gyl follcraeam(u)-

Which, combining the estimates of D1, Dy and D3, the proof of Theorem 1.1 is
finished. O

4. Proof of Theorem 1.3
Proof. Let x =6 in (1.14), and decompose f; using the same form in (3.1) as
f2:f11+f100’ 1=1,2,

where f}! = fxep and B = B(z,r) is the open ball. Then, via the Minkowski inequ-
ality, we have

”Tbl,bz (flv fQ)HLP-,wm(,u)

_ 1~
= sup [@(z,6r)]  [u(B(x,6r))] % | Ts, b, (f1, f2)ll Lo (B2
zeX,r>0

_ 1.5
< eigp>0[ p(a, 6] [u(B(w,6r))]" 7 [Ty, (F1, £2)l| Lo (8o,

_ —1,.5 oo
+ sup (e, 6r)] 7 (B, 6r))] 7 # | Thy b, (1 f5°) 2o (B
zeX,r>0

_ _1l,5 oo
+ ES;1P>O[<P(%67“)] (B, 6r)] 7 | To, 0 (7, f2 )l Lo (B2

+ sup [, 61)] " (B (@, 6r)] 7 [ Toy s (£ 52 L (30

zeX,r>0

Z:El -|— E2 + E3 + E4.

From 5 = -+ -1, (1.14), (1.19) and Lemma 2.4, it then follows that

_1,
Ei < sup [p(@,6r)]  u(B(z, 6r))] 7 [ Toy 0, (fis f2)ll oy
zeX,r>0
1

o1 (2, 367) [u(B(x, 36r))] 71 72 o (, 36r)

<Cb1[lrBMO () 102/l RBMO sup 1
RO TRIRENO0 s (e, 6r) [u(B(a, 6r))]

6r
% [p1(z, 367)] " [u(B(x, 367))] 7 (/B (e )pl

(z,67)
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xwxa%mlmwwaw»ré(é LM@WMMQOM

(z,67)

<CbrllrBMO () 102 [RBMO () | f1ll o150 15m () | f2ll £p20w2m ()

T 1 (2, 360) (B, 36r))]7

A

R

X sup 1
zeX,r>0  o(x,6r)[u(B(x,6r))]?

<ClbrllrBmou 102 llrBMO () [ 1l o erom oy L f2 ]l 2r2 o2 ()
1
¢(x, 6r)[u(B(x, 36r))] 7
TEX, >0 gp(x,GT)[u(B(l'aGT))]%

<Cb1lrBMmOo () 102 lRBMO () 11 22101 () | f2 |l 292002 (103 -

X

To estimate Ey, we first consider [Ty, 4,(f1, £5°)(y)| for y € B(x,r). By applying
(1.7), (1.14), the Holder inequality, (1.17) and Corollary 2.1, we have

|Tb1,bz(fllaf200)(y)|
101(y) — b1(21)|1b2(y) — ba(z2)[|f1 (20)]1£5° (22)]
=€ e Ay, 20) T A dy, z)p )du()

Cbi(z 5 . b2(y) — ba(22)|lf2(22)|
<C [ -nnlineane) [ RO

dpu(z2)

sc/|mw—mwmmwmw@n
" Z/ |b2(y )*b2(22)|\f2(2’2)|dﬂ(22)

6k+1 B\ (6% B) )\(w,d(x,zg))]Q

gc/|m@—mammwmw@n
6B
i 1

X Z Mz, 6512 /6k+1 |b2(y) — ba(22)|] f2(22)|du(22)

k=1
<C E i(y) — bi(2:)|| fi(2i)|dp(2:)
; Az, 6k H/6k+1 a
SCZ: e 6k E H(Ib —mep(b \/ |fi(zi)|dp(z:)
. mwumﬁmmmw)
k+lB

Z m 6k 2 H (|b m6B ‘/ |f1 Zi |d‘LL Zz)
k=1

1 |(bi)grsr i — mos (b |/ i) ldpz)

+ /6k+13 |b7,(Z7,) - m6"+1B(bz)|fz(22)|dﬂ(zl)>



2934 G. Lu & M. Wang

Z % 2H bi(y) — mep(b )\[u(B(x,(SkHr))]l*;%
Az, 6Fr

1

( ‘fl Zq I d/L(ZJ) "
Gk+1B

+ klbillRBMO (1) </61«+1B fi(Zi)pidﬂ(Zi)> P [M(B(xﬁkﬂr))]l_’%

’ ) ) — s 0Pz )
(fioraca) ([ B

X
—
8
D
x>
+
N
—
=
—~
&
—
=
D
x>
+
N
J
=
i
8
7N
s =
=
o
N—
)
oL
=
R
N
)

xmmﬁ“%nwmm@w”mﬂé(/

1
1 o
s .
X (M(Q X 6F+17) ~/6k+1B |bi(2i) — mgrr1g(b;)[Pidu(z;) ) }

Z (2 x 6k+1 25 2 w2,
SCHflHL:P1’4F17'€(M)Hf2||£p2,&p2,m(u) [)\(m 6k: H x, 6 +
k=1 i=1

X [M(B($a6k+27“))]pl’{|bi(y) —mgp(bi)| + El|bi|lrBMO(10) + 110illRBMO (1 )}

2, 6812 2 ki2,
<C||f1H£P1 m*‘(y)HfQHU’z ©2: ”(#)ZWH% x,6 +
=1

X [u(B(z, 6k+2r))]p% { bi(y) — mep(bs)] + k||biRBMo(u)}

o T i 620 (B, 6420

<C\ fullgorer iyl foll cooenmy S = 1 |
! ’ ; [C(69)]7 [A(w, )]

X {|bi(y) —mep(bi)| + k”biRBMO(u)},

where we have used the following fact (see [5])

Imep(bi) — merr1(bi)| < Ckl|bi||[rBMO()- (4.1)
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Furthermore, via (1.1), (1.14) and (1.19), we obtain that

_ 1 ~
Ey = sup [p(z,6r)] " [1u(B(z,6r)] 7 | To, b, (f15 £5°) | Lo (B2
zeX,r>0

< Clb1[[rBMO (1) ||b2HRBMO il over eyl fall ooz ez ()

o TT il 6520 Bz, 6+21)) ] [u(B(w, )]
su =L i i
. meX,E>0kZ::1 o, 6r) (B, 6r))]F Mz, r)]F

+ Cl fill corer o wyll f2ll o2en s ()
2 1
oo [ @i(z,6"2r)[u(B(z, 6 2r))]

i=1

= ola,6r) A, )7 [u(B(z, 6r))]7

’ </B(a: 7) 10:(y) = (bi)63|pdu(y)>;

< Cb1[[rBMO(4 ||b2HRBMO I fillzerernuyll foll crz oo )
H i, 652r) [u(B(x, 64+2r))] 70
X sup Z (k+1)*

reXr>0 ol 67)[u(B(x, 6r))]»

X sup
zeX,r>0

< CHblHRBMO(;L)||b2HRBMO(u)||f1”L‘Pl’%‘)lv"(u)||f2H£P2v%"2=”(u)~

With an argument similar to that used in the estimate of Eo, it is easy to obtain
that
E3 < C|lbillremo) b2llrByvo ) | f1ll coiers (| f2ll cravean -
To estimate Ey4, write

- . o0 oo
By = ei}lp>0[90(x,ﬁr)] (B, 6r)]™ % | Toy by (7%, £5°) | o (B2

< sup [p(x,6r)] 7 [u(B(z, 6r))]
rzeX,r>0

% [[ (b1 — mep (b1)) (be — men (b2))T(F£°, f5) | Lo (B (o,

+ sup [p(z,6r)] [u(B(z,6r))] "7
zeX,r>0

% [[(br = mep (b1))T (£, (by — mep (02)) f5°) | Lo (B,
+ sup [, 6r)] 7 [u(B(x,6r))] 7

zeX,r>0

x || (b2 — mep (b2))T (b1 — men (1)) F£°, £5°) || Lo (B

+ sup [p(z,6r)] [u(B(x,6r))] 7
rzeX,r>0

< | T((by — mep(b1)) ££°, (br — mep (52)) f5°) | Lo (B (2,
= Ey41 + Eg2 + Ey3 + Eyq.

Sl

From the Holder inequality, % =+ p—2 and (2.2), it then follows that

Ey = sup [go(x,6r>1-1[u<8<x,6r>>r%
zeX,r>0
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% [| (b1 — mep (b1)) (b2 — men (b2))T(f2°, [5) | o (5o,
<C| fillgoroor iyl foll craoamiy  sup (@, 6r)] L u( Bz, 6r))] 77

zxeX ,r>0

= 1,7 i (0, 65 2r) [u( B, 64+ 2r) ]
> o)
X ||(b1 — mep (b1))(b2 — M (b2))l|Lr (B(2,r))

SClfrllzrreer ol fall raea ) eS);lp>0[<ﬂ(w,6T)]’1[N(B(x,67"))]_5

o 11 il 620 u( Bz, 6+20))] 7

i=1

= Az, r)]7

x </B(x,r) b1(y) — mGB(b1)|p1du(y)) oy

’ </B(a: 7) 102(y) = mGB(b2)|p2d,u(y)) Pz

<C|by lrBMO () 102l RBMO () |1 L 221010 () | f2 |l 222 02 (10 Sup 0[@(3%67”)]_1
reEX ,r>

X

[T iz, 6++2r) (B (z, 65+2r))] 2

=1 . . 36B)]#
S e e e

<C|by lrBMO () 102l RBMO () |1 L 221010 () | f2 |l 222 02 10

) ]-;[1Qai($,6k+2'r)['u(B(x’6k+2T))]p%
X IGSQRE>01¢ 1 o(x, 6r)[u(B(z, 6r))]%

<C|lbrllrBMmOo () 1b2]lRBMO () 11l 211 () 1 2l o2 o2 () -

For any y € B(x,r), by applying (1.7), (1.14), the Holder inequality, (1.17) and
(4.1), we obtain

IT(f°, (by — men (b2)) £5°) ()]
<C | f1(21)[|b2(22) — mep(b2)]] f2(22)]
~ Janeny My, d(y, 1)) + Ay, d(y, 22))]?
- | f1(21)[|b2(22) — mep(b2)]] f2(22)]
SCZ/WBV\ spy @, d(, 21)) + M, d(z, 22))]

k=1
| f1(z0)[| f2(22)|dpa(z1)dp(z2)
k1) (6+B)? [A(@, d(T, 21)) + Az, d(, 22))]?

dpu(z1)dp(22)

dp(z1)dp(z2)

<C Z Imep(b2) — mek+1p(b2)]

k=1
- | f1(21)[|b2(22) — mgr+15(b2)][ f2(22)]
C d d
T 1/(6k+lB)2\(6kB)2 N A, 20) + N d(a, )7 (e du(z)
|fi(zi)]
<CZ|mGB (b2) — mgr+1p(b2) |H/k+1B\(6kB) mdu(%’)
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. |f1(21)|
c bl
' ,;/ew\m) N, d(a, z27)

|ba(22) — mgr+15(ba)|| f2(22)]
X /GWBWB) Nz, d(z, 22)) du(z2)

o] 2 1
<C> |mep(ba) — mrrip(bs))| 71;[1 N, 6Fr) /6k+1B | fi(z)|dpe(z:)

k=1

> 1
+ Y ) [y eI

X W /6k+1B |b2(22) — mgrr1p(b2)|] f2(22)|dp(22)

= T k+1r 171%
SO Z |m63(b2) - m6k+1B(b2)| H [M(B()\’(i GkT)))]

k=1 i=1

1

’ </6k+13 |fi(zz‘)”id,l(zi)>

* C}i W </6k+13 |f1(21)p1du(21)) g [u(B(z, 65 1)) " or
e I
X </6k-+13 b2 (22) — m6k+1B(b2)|pédU(22))

o) 2 1—L 1
x 6k+1 ))} Py ‘ i
<Cltalimsiony YA [T PGS () inGarant) )

L
)

k=1 11=1
oo 2 _ 1 1
B, 6++2r))]' 7 < ’
+Cb / fzzz pldu%)
alvonioun - TTAPEEGI (| i
[e%e) 2 1—L 1
B(z, 6’“rl Pi . Pi
<Clpalsnionn 3k + D[ LS (] ppian)
k=1 i=1 A, 6518

) [0 )] i 62 Bl 6]

<C||bz]lrBMO(W) Z(]H'l Az, 6%r)

k=1 i=

< Lpi . 65720~ [ B, 6++2r)] 5 ( /
6
<ClballrBMmO (1 f1ll criversm (|| f2ll craieaom ()

oo 2 ix,6k+27° B $,6k+27" p%; A x,6k+17“ 1—1%
<S4 ) T 2 )[1(B( A(Mk):)] IA( )

_

fi(zi)pid/‘(zi)> "

k+1p

<Cllba[lrBMO() | f1ll cororm (uy | foll oo o2m ()
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ﬁ s(, 6542 (B, 6++2r))]

x Y (k+1)= . )
; [A(w, 6Fr)]

further, from (1.14), (1.19) and (2.2), it then follows that

Ep = sup [p(z,6r)] [u(B(z,6r)] 7
zeX,r>0

% (| (b1 — mem (b1))T (£, (bs — mep (02)) f5°) | Lo (B,
<C|lb2llrBMO I f1ll2rrerm gy || fall craeamquy  sup [(a, 6r)] 7"

rzeX,r>0

R | P e i)
X (z,6r)] 7Y (k+1)=L .
Bl o2 STk

| /B - man (b auts) )

<C|lbrllrBMmo ) 1b2lRBMO () |1l 221015 () | f2ll 202 (1)

o T 6 ) Bl 6 )
su (k+1)° n
. 16X13>OI; o(x, 6r)[u(B(z,6r))]?

<C|lbr|lrBMo(w) 1b2llRBMO () | f1 Il 210155 () || f2 || 2P 020 (1) -
Similarly, we have
Eaz < C|lb1llrBmow) 102llrBMO () | f1ll o1-o0m () | f2ll 22 (1) -

Finally, let us show Ey4y. For any y € B(z,r), by applying (1.7), the Holder
inequality, (1.14), (1.17), (2.2) and (4.1), we have

T((by = o (b)) ST, (b2 = mop (02)) f5°)(w)|
T Ok m63< MAE o

C
= X2\(6B)? ;7 y,d(y, i)
3 btz = mon (o1 1)
- ’;/(GkJrlB)Q\(ﬁkB)Z }—[1 (z,d(z, z;)) u(zi)
<CZH Az, 6k / |bi(2i) — mep(b)|| f1(2i)|dp(2)
k=1i=1 6418
i(2i) — Megr+13(0; ) |dp(z;
<Ckz:111—[1)\$6k </6k+13|b (2i) = mgr+1(bi)|[f1(20)[dp(z:)

+ |mgrr1p(b;) — mgp(b |/ | f1 (2 |dp(zl)>

SO | e {(/ e

k=1i=1

Pau()) "
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() = )

+ k| billRBMO (1) [1(B (2, 6F ) T w (/6

1
7

()"

k+1pB

|f1<zz->|mdu<zi>)“}
<CZH e, o " </B bi(z:) = mea s (00 11 (20 ldp(z2)
+ |mer+1p(bi) — mep(b |/ | f1(zi |du(zz)>

<CZHA$ 6hr { 2,657 20) [u(B(w, 6" 27))] 7 [u(B(w, 2 x 6" 7)) 5

k=1i=1

Pdu(z >)‘°1i

1

I ML) e A

1 Y
X@mmwwwéwmw %ww>mm0

b maton [(B(w, 655 )] 5 g, 654 20) [u( B, 65+ 21r)) 77

x [pi(z,652r)] 7 u(B(z, 6k+2r))]_p% (/6’“*13 fl(zi)|p'idll<2i)) pi}

<o [l o { o, 62 [n( B, 62|  u(Ba, 2 x 6]

k=11i=1
||b ||RBMO ||fl||£:ﬂ1 Pirr () + k”b ||RBMO(/_L)||fZ||LPL iR ()

x [u(B(xﬁk“r))]l‘émx,6’“+2r>[u<B<x,6’“+2r>>l”li}

SO”bl ”RBMO(M) Hb2 ||RBMO(M) ||f1 ||LP1,<P1,R(H) ||f2 ||Lp2,gp2’){(u)

co 2 i$,6k+2r B$,6k+2’l" p% BJZ,Q 6k+17‘ 171%
« STIk+ & )(B( A&?}lef( (2,2 x 6+17))]

k=1=1

<C|[by ”RBMO(M) 162 lRBMO () || f1ll 2proerm () | f2ll p2vea s ()

@7 x, 6+ 12 Bz, 6k+2 NG i
x;}_[lk+l [A(z, 6Fr )]

SCf||b1||RBMO(#)Hb?HRBMO(;L)||f1||,cp1 mw(#)”fg”/;m,apg,m(u)
H il, 6527 [u( B(x, 6%2r))]
X Z (k> + 2k +1)= .
k=1 [A(z, 6Fr)] >
SC’HMHRBMO(M)Hb2||RBM0(H)||f1||5p1,¢1,ﬁ(u)||f2||Lp2,¢2,,i(M)
H i, 6 20) (B, 6542

A(z, 65r)]

XS (k)
k=1
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further, from (1.1), (1.14) and (1.19), we obtain that

Bas= sup [p(w,6r)] " [u(B(x,6r))) >
zeX,r>0

< T (b1 — mep(b1)) f5°, (bo — mep(52)) £5°) | Lo (B )
< C|brllrBMO () [1b2][RBMO (1) | f1 | 221010 () | f2ll 29202 (1)

o TT i 6B, 62 [u(Blw, )
U E+1)&L . - -
L, B e O P NP

< Olfb1|lrBmo ) 102 llrBMO () |11 221005 (0 | f2 292025 (10 -

Which, combining the above whole estimates, we finish the proof of Theorem 1.3.
O
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