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NUMERICAL RADIUS OF KRONECKER
PRODUCT OF MATRICES
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Abstract In this article, we present several bounds for the numerical radius
of the Kronecker product of matrices to enrich our knowledge about this topic.
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1. Introduction

For positive integers m, n, the notation M,, ,, will denote the algebra of all m x n
complex matrices. If m = n, we simply write M,, or M,,,. If A € M,, is such
that (Ax,x) > for all z € C™, we say that A is positive semi-definite, and we write
A>0.If A> 0 and A is invertible, it is said to be positive definite, and we write
A>0.

The Kronecker product of the matrix A € M,,, (C) with the matrix B €
M, 4 (C) is the mp x ng matrix, defined by the block matrix

CbllB alnB
A®B=

am1B - ayn B

The Kronecker sum of two square matrices A € M,, and B € M,, which is
symbolized by A @ B, is the matrix in M,,,, defined as

AoB=(A®1,)+ (I, ® B),

where [Ij, represents the identity matrix of size k x k for any natural number k.
This latter operation is related to the tensor product on Lie algebras and appears
naturally in physics when considering ensembles of non-interacting systems.

It is readily seen that, in general, A® B # B ® A. Yet, there exist permutation
matrices P and @ such that B® A = P(A® B)Q.
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Despite its commutativity issue, the Kronecker product enjoys many interesting
properties. If A, B € M,,, then

A Bl = [Al B, (1.1)
(A® B)" = A* ® B*, (1.2)
|A® B|=|4| @ |B|, (1.3)
where |[| - || denotes the operator norm, defined by [[A| = supy,= [|Az]|, and | - |

denotes the absolute value, defined by |A| = (A*A)%, in which A* is the conjugate
transpose of A. Further, if A, B > 0, then

(A®B) = A"@B"; (r>0). (1.4)

If A, B, C, and D are matrices of such size that one can form the matrix products
AC and BD, then
(A® B) (C® D) = (AC) ® (BD) (1.5)

which is named the mixed-product property because it mixes the ordinary matrix
product and the Kronecker product.

It follows that A ® B is invertible if and only if both A and B are invertible, in
which case the inverse is given by

(A9B) '=A"'oB .. (1.6)
This property follows directly from the mixed product property. By (1.4) and (1.6),
(A B)'=A"®@B"; (r<0).

The Kronecker product has received considerable attention in the literature due
to its significance in mathematics and mathematical physics, as seen in [11,17,27].
This paper presents several bounds for the numerical radius of Kronecker prod-
uct quantities. Here we recall that given A € M,,, the numerical radius of A is
defined by
w(A) = sup{| (Az,z) | : 2 € C", o] = 1}.

This numerical quantity has considerable significance in the literature due to its
importance in understanding the geometry of M,,, in addition to its applications in
operator theory and mathematical physics, to mention a few. We refer the reader
to [1,10,16,18-21,23-25] as a list of recent references treating the numerical radius.

Due to the difficulty in computing the exact value of the numerical radius, it
has been an important topic in the literature to find easier upper and lower bounds
for w(-). A basic inequality that gives such bounds is

SIAl < w(4) < 4], (17)

This has been significantly improved in the literature, where numerous better
bounds have been found.

Although w(-) is a norm on M, it is not a matrix norm. That is, it is not
sub-multiplicative. Therefore, it has also been important to study possible bounds
for w(AB), where A, B € M,,.

In the following lemma, we collect some related results that we will need in the
sequel.
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Proposition 1.1. Let A,B € M,,.
[4, Theorem 1] If r > 1, then

—_

W' (AB) < 3 ‘|A* >+ 1B (1.8)

2. [22, Theorem 2.10] If r > 1, then

2r 2r 1

w" (AB) < |A| + |B*|”"|| + W "(BA). (1.9)

3. [5, Theorem 1] If 0 < v < 1, then

1 -V * |2V
w(A) < 5 [14P0) 4 AP (1.10)
4. [18, Remark 2.6]
2 1 * * *

w? (4) < 7 (1472 + 147 | + 1141147 + 147 14T ) - (1.11)

In this proposition, (1.9) refines (1.8), while (1.10) refines the second inequality
n (1.7) when v = 1.
Further, we will need the following two properties of the operator norm

[A[F = 1A = I AT = [ 1A%l (1.12)

and
I 1A[BI | = AB*|, (1.13)

where A, B € M,. A more delicate needed inequality asserts that if A, B > 0,

then [12]
2) . (1.14)

When dealing with matrix inequalities, it is keen to recall that when A € M,, is
Hermitian, then A = Udiag(A1, ..., \,)U™*, where U is unitary and diag(A1,...,Ay)
is the diagonal matrix whose diagonal entries are the eigenvalues of A. Now, if
f:J — Ris a function defined on an interval J that contains the eigenvalues of A,
then we can define the new matrix f(A), as follows

f(A) = Udiag(f (A1), ..., f(An))U”

The following identity holds for an arbitrary A € M,, and non-negative increasing
function f on [0, c0)

1
|A+BIl < 5 <||A|| + 18]+ \/(IIAII ~|IBI)* + 4| 4% B}

LA =1 AADIH (1.15)

The sole goal of this paper is to discuss inequalities that govern the numerical
radius of the Kronecker product in a way that complements the existing literature.
For example, we will show that

1 1
w(AB® BA) < 7 (AIP|BI® + | AB| |BA|) + jw (BA® AB),
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lA® B+ B®A|® < \/H|A|2®|B|2+|B|2®|A|2H |4+ @B+ 1B+ o |4+
+IAIP1B*w (B*A® A*B),

and

w(reT) <1 (I + ITi|imidir ) + 5o (Tor),
where T is the Aluthge transform of T € M,,. Here we recall that if T € M,,
then T' = U|T|, where U is a unitary matrix. When 0 < v < 1, the v—Aluthge
transform is defined by 7, = |T|*U|T|*~". When v = 1, we simply write T instead
of T% . The Aluthge transform is an important tool when studying numerical radius
inequalities, as found in [26].

2. Main Results

In this section, we present our main results, which focus on the numerical radius
of the Kronecker product and its variants. In particular, we study w(A ® B),

w(AB ® BA), w(T ®T), and |A® B + B ® A|. For organizational purposes, we
present our results in three subsections.
2.1. On w(A® B)

We notice that if A,B € M, then using (1.7) and (1.1), we have w(A ® B) <
I|A]l | B]|- In fact, we have better estimates as follows [7]

w(A® B) < min (||Allw(B),[|Bllw(A)) .
This subsection presents different upper bounds for w(A ® B).
Theorem 2.1. Let A,B € M,,. Then for any 0 <v <1,
w(A® B)
1 2(1—v) || p2(1—v) 2\ 20
<=
<7 (JAIPC B2 + 41> B> )

2

1 —v —v v v 2 —V| Ax|V 2 —v |V
+4\/ (AP BIP — AP I BIPY ) 4|l A~ as ||| 181 1B

In particular,

w(aeB) < 5 (IANBI + 1414 1812 1Be1]).
Proof. By (1.10), we can write
w(A®B) < = [|A® B 4 |[(A® B)*[*
=_||[Ae B 1 |a* @ B*[*"|| (by (1.2))

(1Al @ [B)* ™) + (4" @ |B*)™||  (by (1.3))

(by (14)).

N R NN~ N

|A‘2(17V) ® ‘B|2(17V) + ‘A*|2V ® |B*|2U
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That is,
]. —v —v * |2V *|alV
w(A®B) < 5 1470 @ |BPC 4 |4 @ | B

On the other hand,

[14P0 @ 1BR0) 4 a0 @ |

1 2(1-v) 2(1-v)
< =
-2 (H‘A| ©|B|

+ H|A*|2V® |B*‘2V

)

o e e o) o) |
(by (1.14))

= % (H\A|2(1_”) H'B‘Q(l_y) n H‘A*|2u H|B*|2u )
+%\/(H‘A'm_u) 1] = | )2+4H(|A\2(1_V)®|B\2(1_V))%(‘A*\2V®\B*\2V>% 2
(by (1.1))

1 —v -V * v * v
= 5 (AP BP0 1B )

2
1 21— 21— 2 o n2e) 2 21— 21=0)\ 2 (| 402 J2v) 2
+5\/(|| AL PN BL P = as 1B PY) + 4 (1P @ 1BPC) (JasP @ |

(by (1.15))
1 21-1) || p2(1—v) 2| 11120
= L (AP B + A1 51

2
1 2(1—v 2(1—v 2v 2v 2 2(1—-v 2(1—v % «|2V «|2V %
+2\/(|An< NBPC™ = 4B ) + 4| (142 @ [BPU) (4 @ 1B

(by (1.12))
1 -V -V v 1%
= 5 (AP BIP + AP™ B> )

1 -V -V v v 2 -V -V v * |V 2
%QVQMﬁleﬁl)fMWHMF)+4KMP ®1B]'™) (14 @ |B*]")
(by (1.4))

1 2(1—v 2(1—v 2\ 120

= 5 (AP 1B + A BI™)

2

1 2(1-v 2(1— 2 20 2 10| 4x 10| pow
+2J(mu< WBIPC™ LA™ BI™) + 4|4 142" @1 BI B

(by (1.5))
_ } 2(1—v) 2(1—v) 2v 2v
= 5 (1P 2UBIPC ) + 4™ BI™)

1 2(1—v 2(1—v 2v 2v 2 1—v v
+2J(A|( ABIPC AP IBI™) " + 4] 14147

(by (L1)).

So,

2 1—v v 2
18115

w(A® B)
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1 2(1—v 2(1—v 2v 2v
<7 (IAPC1BIPC 4 14> B> )

1 2(1—v 2(1—v 2v 2v 2 1—v v 2 1—v v 2
+4\/(||A||< NBIPC™ = A BI™) "+ 4|4l 14| 18118+

which proves the first desired inequality. Letting v = % in the first inequality implies
the second. This completes the proof. O

Remark 2.1. If A, B > 0, then [2, Theorem IX.2.1] implies
[A"B"|| < |AB]I"; (0<r<1). (2.1)

Thus, for any A, B € M,,, Theorem 2.1 implies

1 11 11
w(A® B) < 5 (1A11BI + |||zl # | 181718+ )
1
< 5 (1AIIBI + VTTATTATTITBIBT) - (by (2.1))
1
=5 (141181 + VIZTIB) - (by (1.13))
< |4l B

From Remark 2.1, we deduce that

1
wA®B) <5 (IIAII I1BII + V1 1Al [A=[ 1B B~ II)-

Squaring this inequality and applying the arithmetic-geometric mean inequality
imply
1 * *
w(A® B) < o (IAIPIBIP + 1A A[ BB -

In the following theorem, we present a refinement of this latter inequality.

Theorem 2.2. Let A,B € M,,. Then
2 1 2 2 * *
W (49 B) < 5 (JAIPIBI + (14 14| © || B*))

Proof. Replacing A by A® B in (1.11) implies

w*(A® B)
Si (IlA® B +[(A® B)* [’ + | |A® Bl [(A® B)*| + [(A® B)*| [A® B ||) .
(2.2)
The identities (1.2), (1.1) and (1.12) imply
IA® B+ [(A® B)* || < 2[|AlI*|| B>, (2.3)

On the other hand, (1.2), (1.3) and (1.5) imply
[A®B| [(A©B)*|+|(A® B)*| |[A®B| = |A|[A"||B| | B*[+|A™| [A[2|B*[ |B], (2.4)
which is Hermitian, by (1.2). Therefore

IA[A" @ [B|[B*| + |A"[|A] @ [B"[ |B] |
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=w (|A]|A*[ @ |B]|B*| + [A*||A] ® |B*||B])

<w (|Al|A"| @ [B]|B*|) + w (|A*||A| @ |B*||B])
(by the triangle inequality)

=w (|A||A*| @ |B||B*|) + w ((|A*] |A] @ |B*||B|)")
(since w (T') = w (T))

=w (|A|[A*| @ |B||B*|) + w ((|A*] |A])" @ (|B*[|B])")
(by (1.2))

=2w (|A[|A"| ® |B|[|B*]).

This latter inequality, (2.4) and (2.3) imply the desired result upon substitution in
(2.2). O

2.2. On w(AB ® BA)

In this subsection, we focus on finding upper bounds for w(AB ® BA), with some
applications on the Aluthge transform.

Theorem 2.3. Let A,B € M,,. Then for any r > 1,

r 1 r r r T r % |T 1 r
W (AB® BA) < ¢ (A1 |BIP + W] 1B | 1B 14*["])) + 5" (BA® AB).
In particular,

1
w(AB® BA) < 7 (JAIP|BI® + |AB| | BA| ) + Jw (BA® AB).

o=

Proof. It follows from (1.9) that

W ((A® B) (B® A))
=W (AB® BA) (by (L5))
gi [A® B +|(BeA)[" +%wr((B®A)(A®B))
:i [A® B +|(BeA)[" +%wT(BA®AB) (by (1.5))
:i |A® B> +|B* @ A*|*" +%w’"(BA®AB) (by (1.2))
= L0 1B)T + (B @147 | + Jor (BA® AB) by (13)
=ﬁ A" @ |B]* + |B*|*" @ |A*|* +%wT(BA®AB) (by (1.4)).
That is,

1 T T * |27 * |27 1 r
W™ (AB ® BA) < ZH|A|2 ® B + B ® A7 || + 3w (BA® AB).  (2.5)

On the other hand, (1.14) implies

147" @ 1B + 1B @ |4
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)

1 r
<5 ([lar @182

+ H|B*|2T® |A*|27"

+;\/<H|A2T®Bzr =i @ ar )2+4H(|A\2T®IB\W)%(\B*\”@\A*\w)% 2
I

+;\/(H|A|2T | = e flac >2+4’<|A|2T®|B|2r>%(|B*|2r®|A*|2r)% ?
(by (1.1))

1 2r 2r * 2r * 2r
= 5 (NTATIPT I 1BI I + 1B 171 147 17)

+§\/ (N T VeI +4H(|AF"‘ @ 1B) (1B @ |ar)”
(by (1.15))

= [|AI*"IBI*" + [(1A]" @ |B]") (1B @ |A*[")]| (by (1.12))

= [|AI*"(IBI* + A" B*[" @ [BI"|A*"||  (by (1.4))

= [|AI*"IBI* + A" BB A" (by (1.5))

i.e.,

HIA*I2T®|B*|2T+ B ® JAP|| < JAIPIBI™ + WA B 1B AT (2.6)

Now, (2.5), together with (2.6), implies the first inequality.
The second inequality follows from the first inequality by letting » = 1. Indeed,

1 N N 1
w(AB® BA) < 7 (JAIPIBI® + 1Al1B°(| 1B |A"|l}) + 5 (BA® AB)
1 1
= 5 (IAIPIBI? + IABI | BA) + 5w (BA® AB)  (by (1.13)).

This completes the proof. O
We employ Theorem 2.3 to obtain the following version for the Aluthge trans-
form.

Corollary 2.1. Let T € M,,. Then for anyr >1 and 0 <v <1,

~ 1 Vs (1—v 1 /=
o (TeT) < 7 (ITP + |7 i) + 50" (T e 7).

In particular,

)+%w (T@T).

Proof. Let T = U|T)| be the polar decomposition of T. Let A = U|T|'™" and
B = |T|”, in Theorem 2.3. Then AB =T, BA =T,, |B|* = |B*|* = |T|*. Using
the basic properties of the polar decomposition [6, p.58], we have

~ 1 1 1
w(TeT) <7 (W + 170 |2

AP = U = TP,
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and
‘A|2 _ ‘T|17VU*U|T|17V — |T|2(17V).

Now from the inequality (2.5), we reach

j— 1 r(l—v rv rv «12r(1l—v 1 r (4
W (TeT,) < ¢ TP e P + 1P @ P + o (T, e 7).

By (1.14), we see that

2r r rv xr(l—v
<7 + 7| 7))

)

H|T‘2’l‘(171/) ® |T|2TV + |T‘2’l"l/ ® |T*|2T(1fll)

which completes the proof. O

2.3. On |[A® B+ B® A

In [8, Theorem 2.8], it has been shown that if A, B € M,, are positive semi-definite,

then
2

|A® B+ B Al <||A] |B] +||4t B

For general matrices A, B € M,,, it was shown in [8, Theorem 2.13] that
[A® B+ B® Al < ||A]| [|B|| + max(||AB™||, || A*BJ|).

We begin this subsection with the following lemma that we will need to prove a new
upper bound for ||[A® B + B® AJ|.

Lemma 2.1. Let A,B € M,,. Then for any 0 <v <1,

|4+ BJ* < \/ 141 + 1By + Al 1Bl w (B~A).

HlA*|4(17V) + |B*‘4(17V)

Proof. Let x,y € C™ be any unit vectors. Then

((A+ B)a,y)|*

< ({Az,y)| + |(Bz,y)|)*> (by the triangle inequality)

= [(Az,y)|” + |{Bz,)|” + 2|(Az, y)| |{Bz, y)]

< <\A|2V:c,:c> <|A*|2(17u)y7y> n <|B|2”x,x> <|B*\2(17”)y,y>
+ | Az | B[ [(Az, Bx)]
(by the Buzano’s inequality [3])

< \/ (o) + (Bae) ) (AP m) 4 (B0 0)’)

+ | Az | Bz[| [(Az, Bz)]
(by the Cauchy-Schwarz inequality)

< \/ (1A + 1B1™) ) { (14510 4 |B107) g,y )

+ || Az|| | Bz| [{Az, Bz)|
(by the McCarty inequality)
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S \/H|A|4l/ + |B|4l/

That is,

HlA*|4(1—u) 4 |B*\4(1_”)

+ 1Al IBl[w (B"A).

H‘A*|4(1_V) + |B*|4(1—'/)

K4+ B < f[la + 15 A 1B w (B 4).

Taking the supremum over unit vectors z,y € C" in the above inequality, we get

14+ BIE <A + 31 +1A] 1Bl w (B 4),

HlA*|4(1—u) T |B*\4(1_”)

as expected. O
Now we show our main result concerning a possible upper bound of ||A® B +
B ® A|.

Theorem 2.4. Let A,B € M,,. Then for any 0 <v <1,

|[A® B+ B® Al

H‘A*‘zl(lfu) ® |B*|4(17u) i |B*‘4(17u) ® |A*|4(17u)

<\l o B + 15 o L4
2 2 * *
+ |AIPIBFw (B*"A® A™B).
In particular,

|A® B+ B® A’

;g¢wAF®u%2HBF®LMﬂHmﬂ%mBﬂQHBﬂ%gM*w (2.7)
2 2 * *
+ A% Bl*w (B*A© A*B).
Proof. We have by Lemma 2.1,

|A® B+ B® Al

</t +iBoar| |as sy + (3o a0

+A@B|||Be Alw((B® A)" (A® B))

_ \/ |A®B|4V + |B®A‘4V |A* ®B*‘4(17U) + |B* ®A*‘4(17V)

+lA@B[l[|[Be Alw((B"@A") (Ae B))  (by (1.2))

__¢|A®BW“HB®A4" |A* @ B*[*17) 4 |B* @ A*[1(17)

+ A7 B|*w (B* © A*) (A® B))  (by (L.1))

= ¢ (4] [B)™ + (1B| & |A)*™

+ AP B|*w ((B* © A*) (A® B))  (by (L.3))

(141 @ [B=)*07) + (1B*| @ Jar)y 0

H‘A*‘Al(lfu) ® |B*|4(17u) i lB*‘4(17u) ® |A*|4(17u)

_ \/H|A|4U ® |B|4V + ‘B|4I/ ® |A|4l/
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+ I AIPIB°w (B* © A%) (A® B))  (by (1.4))

=4 o B+ 131 o L4

H‘A*‘4(17V) ® |B*|4(17V) + |B*‘4(17D) ® |A*|4(17V)

2 2 * *
+ AP BFw (B*"A® A*B)  (by (1.5))
which completes the proof. O
Remark 2.2. If we replace A by A* and B by B*, in (2.7), we get

|A® B+ B® A|?
< |14 @ 1B + 1B @ 1P| 141 @ |B*[* + 18" @ |4*
+ [|A]%|B])* min (w (B*A ® A*B) ,w (BA* @ AB*)).
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