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THE DYNAMICS OF GENE TRANSCRIPTION
INDUCED BY VARIATION IN
TRANSCRIPTION KINETICS∗

Haichao Fang1 and Qiwen Sun2,†

Abstract In single cells, the process of gene transcription generally demon-
strates complicated and stochastic behaviors. The stochasticity of transcrip-
tion brings about large variations in the number of mRNA molecules, even in a
homogeneous intracellular environment. Randomly switching between periods
of active and inactive gene expression is considered to be the main cause of the
high variation of the mRNA distributions. Many studies have revealed that
the transcription system will enter a steady state after several transcription
cycles in the last three decades. Changes in the intracellular or intercellu-
lar environment give rise to changes in transcription parameters, resulting in
perturbations of a homeostatic state. In this paper, we mainly studied the
dynamic behaviors of the mean mRNA level and the noise following the oc-
currence of the variation in transcription kinetics. We defined three quantities
that are used to determine the monotonicity of the average transcription level.
When the mean level is not monotonous, the value may reach the potential
thresholds, thereby changing the fate of cells. This is extremely significant for
researching gene expression regulation.

Keywords Gene transcription, dynamic behavior, stochastic model, varia-
tion in transcription kinetics.

MSC(2010) 92C40, 92C37, 60J20, 37H10.

1. Introduction
Gene transcription is intrinsically a stochastic and complex biochemical reaction
process [21, 24, 34, 43]. It produces an RNA chain identical in sequence with the
coding strand from each allele. Almost all critical life evolution processes, such as
cell proliferation, growth, and differentiation, are inseparable from gene transcrip-
tion. In eukaryotic cells, differences in the expression of encoding protein genes
are the main cause responsible for the phenotypic differences of the cells. During
gene expression, frequent regulation is required in several stages. Transcription
is the first stage in gene expression and is the step at which it is regulated most
often [7, 10,24,31].
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Increasing experiments suggest that cells possess the ability to respond to diverse
types of stimuli and intra- or extracellular environmental changes by sensing certain
molecules [12, 26, 28, 38]. Take as rapid cell growth in an embryo or the motion of
bacteria in response to chemical stimuli for instance. In mouse embryonic stem cells,
Skinner et al [35] observed that the mean OFF duration in the transcription for Oct4
boosts from 108 min before DNA duplication to 173 min after the duplication. In
yeast cells, Trcek et al [40] found that mRNA degradation for both SWI5 and
CLB2 is accelerated to a higher rate of 30-fold during prometaphase/metaphase.
Changes in nuclear size, resource and architecture could impact gene transcription
via regulating burst size or frequency [5, 27,32].

The transcription reaction process can be divided into three stages: initiation,
elongation, and termination. In the stage of initiation, the promoter is recognized,
and a stable transcription factor-DNA complex is formed. When it enters elonga-
tion, the RNA polymerase moves along the DNA as the transcript is synthesized.
Then the RNA transcript is released and the bubble closes. Ko [22] presented a
stochastic model by assuming that a gene switches randomly between active and
inactive states three decades ago. This telegraph or two-state model has been
broadly employed in the literature to study the stochasticity of gene transcription
and is generally quoted to explain the observed single-cell variability in mRNA
numbers [6, 8, 9, 38]. The stochasticity and bursting fashion of transcription were
widely studied both in experiments and theoretical researches in the last two decades
to explore the intrinsic regulation mechanism [4, 14–16, 33, 42]. However, how the
variation in transcription kinetics affects the dynamics of transcription remains un-
clear. A number of literature has paid attention to the regulation of transcription
caused by such variation, but they mainly considered the regulation in a steady
state [19,32,41,46,47] or assumed that the gene is in the inactive state at the initial
moment and only counted the newly produced transcripts [23,31,44,46].

We employ a two-state model to dig into changes in transcription behavior
induced by variations in transcription parameters. In this model, we hypothesize
that the transcription system is in an equilibrium state. The equilibrium state is
broken due to the variation of the parameters, and the level as well as distribution
of transcripts change accordingly. The transcription outputs and stochasticity have
often been quantified by the mean, the noise, and the noise strength [1,23,30,37,38].
For a random variable X, E[X] denotes the mean value, and the noise is defined by

η2[X] =
Var[X]

[E[X]]
2 and Var[X] = µ[X]− [E[X]]2, (1.1)

where µ[X] denotes the second moment of X.
The amount of mRNA molecules, commonly in the form of positive integer, is

a random variable in a single cell. In this paper, we primarily examine the average
expression level of the transcripts and employ the noise to depict the fluctuation
of the transcripts in a cell population. In Section 2, we introduce the model with
more details and present the time evolution of the mean and the noise. When the
parameters of the transcription system are altered, the original equilibrium state will
be demolished, causing the mean level and the fluctuation of the transcripts in the
cell population to change accordingly. In Section 3, we will provide the analytical
expressions of the mean transcription level and the noise, and then analyze the
dynamic behavior of the mean level. We carry out some simulations to exhibit the
dynamic behavior of transcription induced by some variations in Section 4.
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2. The model

2.1. Description of the transcription model
In the past three decades, the two-state model has been widely employed to char-
acterize stochastic gene transcription in single cells. In the model, as depicted in
Figure 1, the promoter of the gene shifts randomly between two basic states: the
active state and the inactive state. RNA synthesis is catalyzed by the enzyme RNA
polymerase, which creates the transcription bubble when it binds to a promoter.
The active state is considered to be the instant when the first RNA polymerase
binds to the promoter. In this state, RNA polymerase synthesizes RNA transcripts
while moving along the template. The inactive state is described by the lack of
specific bindings of transcription factors and RNA polymerase to the promoter.
The duration that the promoter resides at the active state is assumed to have an
exponential distribution with a constant parameter γ, which is called the activation
rate. Likewise, the duration that the promoter resides at the inactive state has an
exponential distribution with a constant parameter λ, which is called the inactiva-
tion rate. The mRNA molecules are produced with a synthesis rate ν only when
the promoter is active, and are degraded at a rate of δ in either state.

OFF mRNAON

𝝀

𝜸

𝝂 𝜹

Parameter(s) 𝑚(𝑡)

𝒕 𝒕

(A) (B) (C)

𝒕=0 𝒕=0

Figure 1. Stochastic gene transcription induced by parameter changes. (A) The promoter is activated
by binding transcription factors to the regulation region, and transcription starts when RNA polymerase
binds to a promoter, and then moves along the template and produces an RNA chain. (B) Transcription
is regulated frequently by RNA polymerase and other regulatory factors, leading to variations in tran-
scription kinetics. (C) The variation in parameters enables the transcription system to deviate from the
original equilibrium state.

For a deeper insight of the dynamic behavior of transcription resulting from the
variation in transcription kinetics, the two-state bursting model with an occurrence
of variation in parameters is studied. A few assumptions are as follows to complete
the description of the model:

(1) The transcription system is in a steady state before variation occurs.

(2) The variation in transcription kinetics is completed instantaneously.

(3) The transition between ON and OFF is also completed instantaneously.

We will maintain these assumptions when analyzing dynamic behavior of tran-
scription from a steady state after variation occurs. In order to demonstrate a
clearer picture of the model, we assume that the variation in transcription kinetics
occurs at some time point, denoted by t = 0. The transcription is described by
a two-state model, but the parameter set switches instantaneously from ν0, δ0, λ0,
and γ0 for t ≤ 0 to ν1, δ1, λ1, and γ1 for t > 0.
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2.2. Differential equations and initial conditions
Since the transcription system can be described by a two-state model before and af-
ter parameter changes, we simply need to discuss the two-state transcription model
governed by constant parameters ν, δ, λ, and γ, and then vary the parameters to
the corresponding ones to derive the kinetic equations before and after the variation
occurs. As usual, we denote by M(t) the amount of mRNA molecules for the gene
in a single cell with M(t) ∈ {0, 1, 2, · · · } and I(t) denote the promoter state with
I(t) ∈ {O,E}. I(t) = O indicates that the promoter resides on the OFF state and
I(t) = E the ON state. We introduce PO(m, t) to represent the probability of the
amount of m transcripts in the cell and the promoter is in the OFF state at time t,
that is,

PO(m, t) = Prob{M(t) = m, I(t) = O}, m = 0, 1, 2, · · · . (2.1)

Similarly,

PE(m, t) = Prob{M(t) = m, I(t) = E}, m = 0, 1, 2, · · · (2.2)

is defined to indicate the probability of the amount of m transcripts in the cell
and the promoter has already been ON. By employing a standard procedure in
stochastic process [39, 44], we derive the time evolution of these two probabilities,
that is,

P ′
O(m, t) = γPE(m, t) + (m+ 1)δPO(m+ 1, t)− (λ+mδ)PO(m, t), (2.3)

P ′
E(m, t) = λPO(m, t) + (m+ 1)δPE(m+ 1, t)− (γ +mδ)PE(m, t)

×νPE(m− 1, t)− νPE(m, t). (2.4)

By adding the joint probabilities P0(m, t) and P1(m, t) in (2.1) and (2.2) when
m takes all natural numbers, we derive two other probabilities,

PO(t) =

∞∑
m=0

PO(m, t) and PE(t) =

∞∑
m=0

PE(m, t).

These probabilities PO(t) and PE(t) describe the percentages of inactivated and
activated cells in the cell population, respectively. By adding (2.3) and (2.4) in m,
we obtain a system of PO(t) and PE(t), that is,

P ′
O(t) = γPE(t)− λPO(t), (2.5)

P ′
E(t) = λPO(t)− γPE(t). (2.6)

We use f∗ to denote the equilibrium point of f(t) before a variation occurs, and
f∗∗ to denote its new equilibrium point of f(t) after the variation occurs. We will
maintain these notations throughout the rest of this paper.

As is stated above in the assumptions, we can derive the steady state of (2.5) and
(2.6) before the variation occurs, which is characterized by the equilibrium point,

P ∗
O =

γ0
λ0 + γ0

and P ∗
E =

λ0

λ0 + γ0
. (2.7)

In fact, the dynamic behavior of transcription is determined by parameters ν0, δ0, λ0

and γ0. The equilibrium point of (2.5) and (2.6) can be derived by letting limt→∞ P ′
O(t) =

limt→∞ P ′
E(t) = 0 and PO(t) + PE(t) ≡ 1.
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The definition of the mean number of mRNA molecules is

m(t) = E[M(t)] =

∞∑
m=0

mP (m, t),

where P (m, t) characterizes the probability that the cell has exactly m transcripts
at the time t, that is,

P (m, t) = Prob{M(t) = m} = PO(m, t) + PE(m, t).

The probability mass function P (m, t) is another widely used and important quan-
tity to depict the randomness of mRNAs in cells, and many novel approaches were
established to calculate the probability mass function [2, 3, 17,20,36,45].

In order to derive the noise, we need to calculate two transcription levels, that
is,

mO(t) =

∞∑
m=0

mPO(m, t) and mE(t) =

∞∑
m=0

mPE(m, t).

By definition of m(t), it is easy to find that
m(t) = mO(t) +mE(t).

Multiplying (2.3) and (2.4) by m and taking the sum, we derive
m′

O(t) = γmE(t)− (δ + λ)mO(t), (2.8)
m′

E(t) = νPE(t) + λmO(t)− (δ + γ)mE(t). (2.9)
The equilibrium point of (2.8) and (2.9) is

m∗
O =

ν0λ0γ0
δ0(λ0 + γ0)(δ0 + λ0 + γ0)

and m∗
E =

ν0λ0(δ0 + λ0)

δ0(λ0 + γ0)(δ0 + λ0 + γ0)
. (2.10)

The derivative of m(t) is given as
m′(t) = νPE(t)− δm(t), (2.11)

and its equilibrium point is

m∗ =
ν0λ0

δ0(λ0 + γ0)
. (2.12)

The noise of transcripts is defined as

η2(t) =
σ2(t)

m2(t)
=

µ(t)−m2(t)

m2(t)
,

where µ(t) is the second moment of transcripts, that is,

µ(t) = E[M2(t)] =

∞∑
m=0

m2P (m, t). (2.13)

Differentiating (2.13) and with the help of (2.3) and (2.4) again, we obtain its
derivative of the second moment as

µ′(t) = 2νmE(t) + νPE(t) + δm(t)− 2δµ(t). (2.14)
Before the variation of transcription kinetics occurs, the second moment is also in
a steady state with a stationary value,

µ∗ =
ν0λ0

δ0(λ0 + γ0)
+

ν20λ0(δ0 + λ0)

δ20(λ0 + γ0)(δ0 + λ0 + γ0)
. (2.15)
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3. Results
3.1. The average transcription level
Increasing experimental and theoretical results demonstrate that highly variable
mRNA distributions in bacterial, yeast, and mammalian cells are the result of ran-
domly switching between active and inactive states, and also are largely driven by
variations in transcription initiation and mRNA stability.

All eight system parameters are involved in this transcription system before and
after the variation of parameters occurs. Solving (2.5) and (2.6) with the initial
condition (2.7), we derive

PO(t) =
γ1

λ1 + γ1
+

(
P ∗
O − γ1

λ1 + γ1

)
e−(λ1+γ1)t, (3.1)

PE(t) =
λ1

λ1 + γ1
+

(
P ∗
E − λ1

λ1 + γ1

)
e−(λ1+γ1)t. (3.2)

The limits of them are

P ∗∗
O = lim

t→∞
PO(t) =

γ1
λ1 + γ1

and P ∗∗
E = lim

t→∞
PE(t) =

λ1

λ1 + γ1
.

Solving (2.11) with the initial condition (2.12) or solving (2.8) and (2.9) with
initial condition (2.10), we derive the following theorem, which gives the mean
transcription level m(t).

Recall that for a given function g(t), its Laplace transform is given by

G(s) = L (g(t)) =

∫ ∞

0

e−stg(t)dt.

And for a given function G(s), its inverse Laplace transform is given by

g(t) = L−1 (G(s)) ⇐⇒ G(s) = L (g(t)) .

Theorem 3.1. Assume that the transcription is maintained homeostasis. Tran-
scription kinetics alter at time t = 0, then the expected value m(t) = E[M(t)] of its
mRNA copy number M(t) is given by

m(t) =
ν1λ1

δ1(λ1 + γ1)
− ν1[λ1 − (λ1 + γ1)P

∗
E ]

(λ1 + γ1)(δ1 − λ1 − γ1)
e−(λ1+γ1)t

+

[
m∗ +

ν1(λ1 − δ1P
∗
E)

δ1(δ1 − λ1 − γ1)

]
e−δ1t. (3.3)

When the time t → ∞, m(t) approaches a constant value,

m∗∗ = lim
t→∞

m(t) =
ν1λ1

δ1(λ1 + γ1)
. (3.4)

Proof. We will derive the mean transcription level (3.3) by solving (2.8) and (2.9)
with initial condition (2.10) through the Laplace transform and the inverse Laplace
transform.
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To begin with, by applying the Laplace transform to (2.5)-(2.6) and noticing
that the initial condition (2.7) holds, we transform the two equations into a closed
system of algebraic equations, (s+ λ1)L(PO)− γ1L(PE) = P ∗

O,

(s+ γ1)L(PE)− λ1L(PO) = P ∗
E .

Solving the system, we have the Laplace transforms of PO(t) and PE(t) as

L(PO) =
sP ∗

O + γ1
s(s+ λ1 + γ1)

and L(PE) =
sP ∗

E + λ1

s(s+ λ1 + γ1)
, (3.5)

which can be rewritten as

L(PO) =
γ1

λ1 + γ1
· 1
s
+

(
P ∗
O − γ1

λ1 + γ1

)
· 1

s+ λ+ γ1
,

L(PE) =
λ1

λ1 + γ1
· 1
s
+

(
P ∗
E − λ1

λ1 + γ1

)
· 1

s+ λ1 + γ1
.

Then by applying the inverse Laplace transform to them, we derive analytical for-
mulas of PO(t) and PE(t) as given in (3.1) and (3.2).

Next, we calculate the exact forms of mO(t) and mE(t) under a similar discussion
above. By applying the Laplace transform to the two equations to (2.8) and (2.9),
we obtain another closed system sL(mO)−m∗

O = γ1L(mE)− (δ1 + λ1)L(mO),

sL(mE)−m∗
E = ν1L(PE) + λ1L(mO)− (δ1 + γ1)L(mE).

We solve the system and derive

L(mO) =
ν1γ1L(PE) + γ1m

∗
E + (s+ δ1 + γ1)m

∗
O

(s+ δ1)(s+ δ1 + λ1 + γ1)
, (3.6)

L(mE) =
ν1(s+ δ1 + λ1)L(PE) + (s+ δ1 + λ1)m

∗
E + λ1m

∗
O

(s+ δ1)(s+ δ1 + λ1 + γ1)
. (3.7)

Noting that the Laplace form of PE(t) has been given in (3.5), substituting it into
(3.6) and (3.7), and applying the inverse Laplace transform, we gain the analytical
expressions of mO(t) and mE(t), that is,

mO(t) =
ν1λ1γ1

δ1(λ1 + γ1)(δ1 + λ1 + γ1)
− ν1γ1[λ1 − (λ1 + γ1)P

∗
E ]

δ1(λ1 + γ1)(δ1 − λ1 − γ1)
e−(λ1+γ1)t

+
δ1γ1(λ1 + γ1 − δ1)m

∗ − ν1γ1(λ1 − δ1P
∗
E)

δ1(λ1 + γ1)(λ1 + γ1 − δ1)
e−δ1t

−ν1λ1γ1 + (δ1 + λ1 + γ1)[δ1γ1m
∗
E − δ1λ1m

∗
O − ν1γ1P

∗
E ]

δ1(λ1 + γ1)(δ1 + λ1 + γ1)
e−(δ1+λ1+γ1)t,

mE(t) =
ν1λ1(δ1 + λ1)

δ1(λ1 + γ1)(δ1 + λ1 + γ1)
− ν1(δ1 − γ1)[λ1 − (λ1 + γ1)P

∗
E ]

δ1(λ1 + γ1)(δ1 − λ1 − γ1)
e−(λ1+γ1)t

+
δ1λ1(λ1 + γ1 − δ1)m

∗ − ν1λ1(λ1 − δ1P
∗
E)

δ1(λ1 + γ1 − δ1)(λ1 + γ1)
e−δ1t
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+
ν1λ1γ1 + (δ1 + λ1 + γ1)[δ1γ1m

∗
E − δ1λ1m

∗
O − ν1γ1P

∗
E ]

δ1(λ1 + γ1)(δ1 + λ1 + γ1)
e−(δ1+λ1+γ1)t.

Adding up mO(t) and mE(t), we derive the average transcription level m(t) as
shown in (3.3). Taking the limit to m(t) as t → ∞, we obtain its limit value. This
establishes the theorem.

Since exp(−(λ1 + γ1)t) and exp(−δ1t) in (3.3) exponentially decay, the mean
transcription level m(t) will stay close to the steady state after a short time. During
such a short time, the level displays several different behaviors caused by variations
in transcription kinetics, as shown in the following proposition. To display the
proposition, we give three notations denoted by

∆ =
ν1
δ1

− ν0
δ0

, Θ =
λ1

λ1 + γ1
− λ0

λ0 + γ0
, Λ = (λ1 + γ1)(m

∗∗ −m∗)− δ1P
∗
E ·∆.

VIII

I, IV, V

II

III, VI, VII

I

III II

IV

VI

V

VII

VIII
Δ

Θ

Λ

Figure 2. The planes ∆ = 0, Θ = 0, and Λ = 0 divide the space into eight octants. The monotonicity
of m(t) is determined by the octant that the point (∆,Θ,Λ) lies in.

Proposition 3.1. Under the basic Assumptions (1)-(3), we have the analytical
behaviors of m(t) after the variation of parameters occurs, that is,

(a) When the condition ∆ > 0 holds, the transcription level m(t) increases at time
t = 0, and
(1) if Θ ≥ 0, the level m(t) increases over (0,+∞),
(2) if Θ < 0, the level m(t) increases over (0,+∞) when Λ ≥ 0, and peaks at

some time t = tp when Λ < 0.
(b) When ∆ = 0 and

(1) if Θ > 0, the level m(t) increases over (0,+∞),
(2) if Θ = 0, the level m(t) is maintained over (0,+∞),
(3) if Θ < 0, the level m(t) decreases over (0,+∞).

(c) When ∆ < 0, the transcription level m(t) decreases at time t = 0 and
(1) if Θ > 0, the level m(t) decreases over (0,+∞) when Λ ≤ 0, and bottoms

out at some time t = tq when Λ > 0.
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(2) if Θ ≤ 0, the level decreases over (0,+∞).

Proof. Differentiating the mean level m(t) with respect to t, we obtain the deriva-
tive, that is,

m′(t) = e−δ1t · θ(t),

where

θ(t) =
ν1[λ1 − (λ1 + γ1)P

∗
E ]

δ1 − λ1 − γ1
e(δ1−λ1−γ1)t − m∗δ1(δ1 − λ1 − γ1) + ν1(λ1 − δ1P

∗
E)

δ1 − λ1 − γ1
.

From this derivative, we find that

m′(0) =

(
ν1
δ1

− ν0
δ0

)
· δ1P ∗

E ,

which implies that m(t) increases at time t = 0 when ∆ > 0 or decreases when
∆ < 0. Then the monotonicity of m(t) over (0,+∞) is determined by the existence
of positive roots of θ(t) = 0.

(a) We consider the first case that ∆ > 0, which means that m(t) increases at
time t = 0. If the condition Θ ≥ 0 holds, we have

θ′(t) = ν1
[
λ1 − (λ1 + γ1)P

∗
E

]
e(δ1−λ1−γ1)t ≥ 0,

which implies that

θ(t) ≥ θ(0) = δ1P
∗
E ·∆ > 0.

There is no positive time t such that θ(t) = 0. Thus m(t) is increasing on the
interval (0,+∞).

When Θ < 0, by using a similar discussion as above, we have θ′(t) < 0 and
θ(0) > 0. If δ1 − λ1 − γ1 > 0, the limit of θ(t) when t → +∞ is

θ(+∞) = lim
t→+∞

θ(t) = −∞.

The Intermediate Value Theorem says there is a zero of θ(t) on (0,+∞). At this
moment, we claim that Λ < 0. In fact, from θ(0) > 0 we get

δ1Λ = m∗δ1(δ1 − λ1 − γ1) + ν1(λ1 − δ1P
∗
E) < ν1

[
λ1 − (λ1 + γ1)P

∗
E

]
< 0.

If δ1 − λ1 − γ1 < 0, the limit of θ(t) when t → +∞ is

θ(+∞) = lim
t→+∞

θ(t) = −m∗δ1(δ1 − λ1 − γ1) + ν1(λ1 − δ1P
∗
E)

δ1 − λ1 − γ1
= − δ1

δ1 − λ1 − γ1
Λ.

Thus, θ(+∞) < 0 when Λ < 0 and there is a positive root of θ(t) = 0 on (0,+∞),
θ(+∞) > 0 when Λ > 0 and there is no positive root on (0,+∞).

(b) We consider the second case ∆ = 0. At this moment, we find θ(0) = 0 and

θ′(t) = ν1
[
λ1 − (λ1 + γ1)P

∗
E

]
e(δ1−λ1−γ1)t


> 0, Θ > 0,

≡ 0, Θ = 0,

< 0, Θ < 0.
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The monotonicity of m(t) can be derived.
(c) The last case ∆ < 0 can be discussed similarly as in (a), we omit the detailed

discussion.
A three-dimensional space can be established by using vector (∆,Θ,Λ). The

ΘΛ-plane (∆ = 0), ∆Λ-plane (Θ = 0) and ∆Θ-plane (Λ = 0) divide the space into
eight octants as shown in Figure 2. The Proposition 3.1 tells the monotonicity of
m(t) in detail. For instance, when ∆ > 0, Θ > 0 and Λ > 0, the point (∆,Θ,Λ) lies
in the first octant and the mean transcription level m(t) increases over the whole
time interval (0,+∞). Similarly, the monotonicity of m(t) is determined by the
plane that the point (∆,Θ,Λ) lies in. When Λ = 0, the point (∆,Θ,Λ) will lie in
∆Θ-plane. We find that m(t) increases when ∆ > 0 and decreases when ∆ < 0, as
shown in Figure 3. We also find that there is no point (∆,Θ,Λ) will lie in Λ-axis.
In fact, when ∆ = 0 and Θ = 0, the value of Λ must be zero.

Θ

ΘΔ Δ

Λ Λ

Figure 3. The dynamic behaviors of m(t) when the point (∆,Θ,Λ) lies in three coordinate planes.
The monotonicity of m(t) is determined by the plane that the point (∆,Θ,Λ) lies in. There is no point
(∆,Θ,Λ) which will lie on Λ-axis except the Origin (0, 0, 0).

From Proposition 3.1, we find that when (∆,Θ,Λ) lies in the second or the
eighth octant, the mean level m(t) has a unique local minimum or maximum value.
At this moment, the stationary point is determined by solving m′(t) = 0, that is,

tp =
1

δ1 − λ1 − γ1
ln

(
δ1m

∗(δ1 − λ1 − γ1) + ν1(λ1 − δ1P
∗
E)

ν1[λ1 − (λ+γ1)P ∗
E ]

)
.

Since tp is the unique stationary point, the critical value m(tp) is the global minimum
value with (∆,Θ,Λ) ∈ II or the global maximum value with (∆,Θ,Λ) ∈ VIII.

3.2. The noise
To determine how the numbers of mRNA molecules measured in individual cells
deviate from the mean, we compute the ratio of the variance and the square of
the mean, or the noise. By definition (1.1), we first give the analytical form of the
second moment µ(t) in the following theorem.

Theorem 3.2. Under the same condition of Theorem 3.1, the second moment
µ(t) = E[M2(t)] of the mRNA copy number M(t) takes the form

µ(t) = µ0 + µ1e
−δ1t + µ2e

−2δ1t + µ3e
−(λ1+γ1)t + µ4e

−(δ1+λ1+γ1)t, (3.8)

with the coefficients given by

µ0 =
ν21λ1(δ1 + λ1) + ν1λ1δ1(δ1 + λ1 + γ1)

δ21(λ1 + γ1)(δ1 + λ1 + γ1)
,
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µ1 =
(2ν1λ1 + δ1λ1 + δ1γ1)[(λ1 + γ1 − δ1)δ1m

∗ − ν1(λ1 − δ1P
∗
E)]

δ21(λ1 + γ1)(λ1 + γ1 − δ1)
,

µ2 = µ∗ −m∗ +
2ν1δ1(λ1 + γ1 − 2δ1)(δ1m

∗
E − λ1m

∗) + ν21(λ1 − δ1)(λ1 − 2δ1P
∗
E)

δ21(λ1 + γ1 − δ1)(λ1 + γ1 − 2δ1)
,

µ3 = − [λ1 − (λ1 + γ1)P
∗
E ][2ν

2
1(δ1 − γ1) + ν1δ1(2δ1 − λ1 − γ1)]

δ1(λ1 + γ1)(δ1 − λ1 − γ1)(2δ1 − λ1 − γ1)
,

µ4 =
2ν1

[
δ1(δ1 + λ1 + γ1)(γ1m

∗
E − λ1m

∗
O) + ν1γ1[λ1 − (δ1 + λ1 + γ1)P

∗
E ]
]

δ1(λ1 + γ1)(δ1 + λ1 + γ1)(δ1 − λ1 − γ1)
.

And the steady form of µ(t) is

µ∗∗ =
ν21λ1(δ1 + λ1) + ν1λ1δ1(δ1 + λ1 + γ1)

δ21(λ1 + γ1)(δ1 + λ1 + γ1)
. (3.9)

Proof. By the definition of noise (1.1), to acquire the analytical form of noise,
we only need to calculate the second moment. Since the transcription system has
reached a dynamic equilibrium before parameter changes, we will derive the ana-
lytical form of the second moment (3.8) by solving (2.14) with the initial condition
(2.15) through the Laplace transform.

By applying the Laplace transform to (2.14), we have

sL(µ)− µ∗ = 2ν1L(mE) + ν1L(PE) + δ1L(m)− 2δ1L(µ).

Solving this algebra equation gives

L(µ) = 2ν1L(mE) + ν1L(PE) + δ1L(m) + µ∗

s+ 2δ1
.

Since the Laplace transforms of mE(t) and PE(t) have been obtained, and the
Laplace transform of m(t) can be given by summing L(mO) and L(mE) up, we
derive

L(µ) = 1

s(s+ δ1)(s+ 2δ1)(s+ λ1 + γ1)(s+ δ1 + λ1 + γ1)

×
[
ν1(sP

∗
E + λ1)(s+ 2δ1)(s+ δ1 + λ1 + γ1)

+[m∗δ1(s+δ1+λ1+γ1)+2ν1m
∗
E(s+δ1+λ1)+2ν1λ1m

∗
O]s(s+ λ1 + γ1)

+2ν21(s+δ1+λ1)(sP
∗
E+λ1)+µ∗s(s+δ1)(s+λ1+γ1)(s+ δ1 + λ1 + γ1)

]
.

The application of the inverse Laplace transform to L(µ) gives the analytical form
of µ(t) as shown in (3.8). The steady form of µ(t) can be obtained by taking a limit
on it. What has mentioned above establishes the proof.

By using the definition (1.1), combined with the analytical expression (3.4) for
the stationary mean transcription level, and (3.9) for the second moments, we derive
the noise of mRNA copy numbers at steady state, that is,

η2∗∗ =
1

m∗∗ +
δ1γ1

λ1(δ1 + λ1 + γ1)
,

which is also independent of the initial state.
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4. Simulation
We take advantage of a set of experimental data to explain the conclusions. By
means of the smFISH (single molecule fluorescence in situ hybridization) method,
Skinner et al [35] measured nascent and mature Oct4 mRNAs in mouse embryonic
stem cells. It was observed that the average OFF duration in the transcription
of Oct4 is about 108 min, and the average ON duration is about 56 min before
the gene replication. The mRNA synthesis rate is 114 hr−1 during each ON state,
and the average lifetime for mature mRNA is about 7.14 hr. As a result, the four
parameters that govern gene transcription before gene replication are given as

ν0 = 114 hr−1, δ0 = 0.14 hr−1, λ0 = 0.5556 hr−1 and γ0 = 1.0714 hr−1.
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Figure 4. The temporal profiles of the mean transcription level m(t) and the noise η2(t)
after the occurrence of the variation in transcription kinetics. In order to double the mRNA
number, we can accelerate the synthesis rate, or delay the degradation rate, or increase the transcription
frequency. (A) The dynamic behavior of the mean level m(t). (B) The dynamic behavior of the noise
η2(t).

As stated in Proposition 3.1, we discover that the mean transcription level m(t)
displays a very simple behavior. Especially, when only one parameter changes,
the point (∆,Θ,Λ) lies in one coordinate plane and the level m(t) is increasing or
decreasing on the interval (0,+∞). For instance, when the synthesis rate changes
from ν0 to ν1 and other parameters are maintained, the level m(t) can be simplified
to

mν(t) =
ν1λ0

δ0(λ0 + γ0)
+

(ν0 − ν1)λ0

δ0(λ0 + γ0)
e−δ0t. (4.1)

From Proposition 3.1 and Equation (4.1), it is easy to find that mν(t) is increasing
when ν1 > ν0 and decreasing when ν1 < ν0.

From the expression (3.3), we learn that the mean transcription level will ap-
proach a stationary value m∗∗ after several transcription cycles. We explore the
dynamic behaviors of the mean level m(t) and the noise η2(t) by assuming that the
level m∗∗ is twice as much as m∗. There are three simple strategies that can help
us achieve the goal of doubling the mRNA number: accelerating the synthesis rate
to 2 fold (ν1 = 2ν0), doubling the lifespan of mRNAs (δ1 = δ0/2), or increasing
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transcription frequency to 2 fold (P ∗∗
E = 2P ∗

E). To improve the transcription fre-
quency, we could increase the duration of the ON state or decrease the duration of
the OFF state.

As shown in Figure 4 (A) and described in Proposition 3.1, the dynamic behavior
of the level m(t) is monotonously increasing. In fact, when we set ν1 = 2ν0 or
δ1 = δ0/2 and maintain other parameters, ∆ > 0,Θ = 0 and (∆,Θ,Λ) lies in the
∆Λ-plane. Figure 4 (A) also tells us that, compared to the other three parameters,
the change in degradation rate makes the mean level m(t) increase slowly and
eventually tend to a stable value. From Figure 4 (B), we find that the dynamic
behaviors of the noises manifest a large difference. When the synthesis rate doubles,
the noise η2(t) increases very abruptly and attains the maximum value 0.22, then
decays to 0.155, as shown by the blue curve in Figure 4 (B). However, when the other
three parameters change respectively, the noise decreases sharply and approaches
smaller stable values. The variation in the inactivation rate produces the smallest
noise, as shown by the orange curve in Figure 4 (B).
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Figure 5. The temporal profile of the mean transcription level m(t) when (∆,Θ,Λ) =
(814.3,−0.1804,−58.9184) ∈ VIII. The level m(t) increases from its initial value 278.1 and reaches
its maximum level 299.1 at time t = 1.6 hr, and subsequently decays to a stationary value 262.4, which
is smaller than its initial value.

Owing to the variation of multiple parameters, the average level m(t) may dis-
play a non-monotonous behavior. For example, at time t = 0, the synthesis rate
ν varies from 114 hr−1 to 228 hr−1, and the inactivation rate λ varies from 0.5556
hr−1 to 0.2058 hr−1, then the point (∆,Θ,Λ) will lie in the eighth octant. As
shown by the curve in Figure 5, m(t) increases sharply in the beginning and peaks
at t = 1.6 hr, with maximum value of 299.1. After the plunge, m(t) steadily decays
to a smaller stationary value 263.4 than its initial value. The maximum value is
7.55% higher than its initial value and 14% than its stationary value.

5. Conclusion
For living organisms in the stable environment, the mRNAs and proteins in their
bodies are generally in dynamic balances. When the internal or external environ-
ment changes, the response mechanism of the organism is induced to respond to
the changes in the environment.

At first, we assumed that the transcription system resides on one equilibrium
state. The changes of environment led to a variation in the transcription kinetics.
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By means of using the two-state transcription model, we derived the analytical
expressions of the mean level m(t) and the noise η2(t). Simultaneously, we defined
three quantities ∆,Θ and Λ. The three coordinate planes ∆ = 0,Θ = 0, and Λ = 0
divide space into eight octants. Via using the location where the point (∆,Θ,Λ) lies,
we could easily determine the monotonicity of m(t). With the method of varying
the four parameters respectively in simulation, we found that the behavior of m(t)
is similar, but the noise takes on different forms.

The study of this article tells us that when regulating gene expression, we need
to pay special attention to the existence of thresholds of expression outputs. Es-
pecially, when the outputs approach a threshold, any variable is very robust to
perturbations of a homeostatic state [11, 13, 25]. These values may touch the po-
tential thresholds, thereby altering the fate of cells [18]. For instance, Mukherji
et. al [29] established a threshold level of target messenger RNA via regulation
by microRNAs, such as addition of miR-20 binding sites or modulation of miR-20
abundance. Below this threshold, protein production is highly repressed. Near the
threshold, protein expression responds sensitively to target mRNA input. When it
comes to regulation of gene transcription, we not only have to consider the vari-
ation of the transcription level, but also pay special attention to the existence of
local extremum in the meantime. This exerts a significant impact on researching
gene expression regulation.
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