
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com
Volume 13, Number 5, October 2023, 3026–3053 DOI:10.11948/20230183
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Abstract This paper investigates the dynamics of a modified Leslie-Gower
predator-prey model with Bedington-DeAngelis functional response. Some
properties are explored, including positivity, dissipativity, permanence, and
stability. In addition, the transcritical bifurcation and Hopf bifurcation taking
d as the bifurcation parameter and Bogdanov-Takens bifurcation taking d and
n as bifurcation parameters are studied. The theoretical results of this paper
are verified by numerical simulation. The results show that the system has
rich dynamical behaviors.
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1. Introduction
Biometrics is an interdisciplinary field of biology and mathematics, and it is an
interesting field of applied science. In recent years, the dynamic relationship in the
predator-prey model has attracted a great deal of attention in biological mathe-
matics. In nature, the mode of survival of predation and prey among populations
is universal. Predation is a kind of biological interaction, in which the predator
organism feeds on another kind of creature called prey or other organisms. The
interaction between prey and predator is common and well known in ecosystems,
which is one of the important fields of mathematical biology.

Lotka [16] and Volterra [24] proposed the most basic and important Lotka-
Volterra predator-prey model in 1926, which is used to describe the dynamic re-
lationship between two populations. On the basis of this model, many mathe-
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maticians and ecologists are attracted to improve and conduct research in different
fields [4, 5, 11,17,18,21,22].

The basic unit of the ecosystem is the predator-prey model. The typical one is
as follows 

dx
dt

= xg(x)− yψ(x, y),

dy
dt

= βy − yϕ(x, y),
(1.1)

where x, y denote the population densities of predator and prey respectively when
t > 0. g(x) represents the intrinsic growth rate of the prey without predators. The
constant β represents the inherent growth rate of the predator, and ψ(x, y) and
ϕ(x, y) represent the functional response function of the predator to the prey.

In recent years, in order to study the dynamic behavior of the interacting
predator-prey species in the ecosystem, researchers used different types of functional
responses, such as Holling type, Beddington-DeAngelis type, Crowley-Martin type,
Leslie-Gower type, and Hassell-Varley type, etc. In particular, Holling type II, III
and IV functional response functions are prey dependent or predator dependent.
The forms are as follows

Holling type II: ψ(x, y) = mx

a+ x
,

Holling type III: ψ(x, y) = mx2

a+ x2
,

Holling type IV: ψ(x, y) = mx

a+ x2
,

where x represents the population density of the prey, a and m are positive num-
bers, and a is a semi-saturated parameter. It can be found that the above functional
response functions only depend on the prey. Later, scholars realized that the preda-
tor’s predation rate depends not only on the density of the prey, but also on the
predator itself. To describe the mutual interference between predators and prey,
Beddington [3] and DeAngelis [8] proposed the following Beddington-DeAngelis
functional response function in 1975

Beddington-DeAngelis: ψ(x, y) = mx

a+ bx+ cy
,

where x and y represent the number of prey and predator, respectively, and a, b, c,
and m are positive parameters. There is an additional term cy in its denominator,
which simulates mutual interference between predators. The Beddington-DeAngelis
functional response function avoids some problems caused by the proportional-
dependent functional response under low population density, and thus better ex-
plains the predator feeding on various predator-prey abundances. In 1960, Leslie
and Gower established the classical Leslie-Gower model [12], which takes the fol-
lowing form

dy
dt = y

(
s− γy

x

)
,

where s is the intrinsic growth rate of the predator, and x
γ is the maximum environ-

mental capacity of the predator population. ϕ(x, y) = γy
x is called the Leslie-Gower

term. Leslie studied that the environmental carrying capacity of predators is pro-
portional to the prey population, which means that the decline of the predator
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population is only due to its preference for prey. They also found that if prey does
not exist or is in short supply, predators may turn to other foods. Therefore, a
positive parameter α is added to the denominator of the Leslie-Gower term, and
forms the so-called modified Leslie-Gower term ϕ(x, y) = γy

x+α . Then the modified
Leslie-Gower model takes the following form

dy
dt = y

(
s− γy

x+ α

)
,

and has been studied by many authors, see [1, 2, 6, 9].
In [23], bifurcation and a systematic approach for the estimation of identifiable

parameters of a modified Leslie-Gower predator-prey system with Crowley-Martin
functional response and prey refuge are discussed. Global asymptotic stability is
discussed by applying the fluctuation lemma, and the stability of Hopf bifurca-
tion is discussed. In [14], the dynamics of a diffusive predator-prey model with
modified Leslie-Gower term and strong Allee effect on prey under homogeneous
Neumann boundary condition is considered. Therefore, based on the research and
analysis of the above literature, in this article, we mainly introduce the Beddington-
DeAngelis functional response function and the modified Leslie-Gower term in the
basic predator-prey model, study the stability of its equilibria and the bifurcation
behavior under parameter conditions, and further discuss its dynamic properties.

In this paper, we consider a modified Leslie-Gower predator-prey model with
Beddington-DeAngelis functional response function. In Section 2, we give a math-
ematical model and discuss the positivity, dissipativity, and permanence of the
model. In Section 3, we discuss the existence and stability of the equilibria. In
Section 4, we study various bifurcations at different equilibria, and show that the
model undergoes transcritical bifurcations, Hopf bifurcations, and codimension two
Bogdanov-Takens bifurcations under certain conditions. In Section 5, we give some
numerical simulations to substantiate the theory findings in Section 4. Finally, we
present a brief discussion in Section 6.

2. Preliminaries
In this paper, we consider a modified Leslie-Gower predator-prey model with Beddi-
ngton-DeAngelis functional response function, assume that the prey follows the
logistic growth, then system (1.1) becomes

dx
dt = rx

(
1− x

K

)
− qxy

a+ bx+ cy
,

dy
dt = y

(
β − γy

x+ α

)
,

(2.1)

where x, y are the population densities of the prey and predator with respect to
time t. All parameters are positive. r represents the internal growth rate of the
bait, K represents the environmental carrying capacity of the prey, the growth rate
of the prey is logistic with the carrying capacity K and the intrinsic growth rate r.
q is to measure the number of prey that the predator can eat in each time unit. a is
the prey density with a half-saturated attack rate, b represents the measurement of
food abundance relative to the predator population, c is a measure of the intensity
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of competition between individuals of the predator population, β is the internal
growth rate of predator population. γ is the maximum per capita reduction rate of
predators and α measures the degree to which the environment protects predators.
Before discussing in detail, we simplified model (2.1) by dimensionless. With the
following non-dimensionalized change of variables

x̄ =
x

K
, ȳ =

qy

bkr
, t̄ = rt, d =

a

Kb
,

e =
rc

q
, m =

β

r
, n =

bγ

q
, p =

α

K
,

and dropping the bars, model (2.1) becomes
dx
dt = x(1− x)− xy

d+ x+ ey
,

dy
dt = y

(
m− ny

x+ p

)
,

(2.2)

with the initial conditions x(0) = x0 > 0, y(0) = y0 > 0. Where d, e,m, n, and p
are positive numbers and 1− e > 0. Proceeding from the biological significance of
the above models, we only consider system (2.2) in Ω = {(x, y)|x ≥ 0, y ≥ 0}. It
can be obtained that the positive invariant and bounded region of system (2.2) is
△ = {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ m(1+p)

n }. For better qualitative analysis of model
(2.2), we rewrite it as

dx
dt = x

(
1− x− y

d+ x+ ey

)
= xf(x, y),

dy
dt = y

(
m− ny

x+ p

)
= yg(x, y),

(2.3)

where f(x, y) = 1− x− y
d+x+ey , g(x, y) = m− ny

x+p . In the following, we will prove
the positivity of the solution, the dissipativity and the permanence of the system
(2.3). We can use the following lemma to prove the dissipativity and permanence.

Lemma 2.1 ( [7]). If a, b > 0, dX
dt ≤ (≥)X(t)(a− bX(t)) with X(0) > 0, then

lim sup
t→+∞

X(t) ≤ a

b

(
lim inf
t→+∞

X(t) ≥ a

b

)
.

The following lemma can be used to prove the bifurcation that occurs at positive
equilibrium.

Lemma 2.2 (Lemma 1, [10]). The system
dx
dt = y +Ax2 +Bxy + Cy2 + o(|x, y|2),

dy
dt = Dx2 + Exy + Fy2 + o(|x, y|2),

is equivalent to the system
dx
dt = y,

dy
dt = Dx2 + (E + 2A)xy + o(|x, y|2),
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after some nonsingular transformations in the neighborhood of (0, 0).

2.1. Positivity and dissipativity
Proposition 2.1. All solutions of the system (2.3) are positive with the initial
condition x(0) = x0 > 0, y(0) = y0 > 0.

Proof. From the first equation of the system (2.3), we can see that x = 0 is an
invariant set. That is, x(t) > 0 for all t with x(0) > 0. In the same way, from the
second equation of the system (2.3), we can see that y = 0 is an invariant set. That
is, y(t) > 0 for all t, if y(0) > 0. According to the existence and uniqueness of the
solution, all the solutions of the system (2.3) to the initial conditions are positive.

Proposition 2.2. System (2.3) is dissipative.

Proof. From Proposition 2.1, it is easy to see that variables x and y are positive.
According to the first equation in (2.3), we can write

dx
dt = x

(
1− x− y

d+ x+ ey

)
≤ x(1− x).

From Lemma 2.1, we have

lim sup
t→+∞

x(t) ≤ 1 ≜M1,

therefore, for arbitrary ϵ1 > 0, there exists T1 > 0, such that for arbitrary t ≥ T1,
the following inequality holds

x(t) ≤M1 + ϵ1.

According to the second equation in (2.3), we have

dy
dt = y

(
m− ny

x+ p

)
≤ y

(
m− ny

M1 + ϵ1 + p

)
.

From Lemma 2.1, we have

lim sup
t→+∞

y(t) ≤ m(M1 + ϵ1 + p)

n
≜M2,

therefore, for arbitrary ϵ2 > 0, there exists T2 > T1, such that for arbitrary t ≥ T2,
the following inequality holds

y(t) ≤M2 + ϵ2.

This proves the dissipativity of system (2.3).
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2.2. Permanence
Definition 2.1. System (2.3) is permanent if there exists positive constants K1

and K2(0 < K1 < K2) such that each positive solution (x(t, x0, y0), y(t, x0, y0)) of
system (2.3) with initial condition (x0, y0) ∈ R2

+ satisfies

min

{
lim inf
t→+∞

x(t, x0, y0), lim inf
t→+∞

y(t, x0, y0)

}
≥ K1,

max

{
lim sup
t→+∞

x(t, x0, y0), lim sup
t→+∞

y(t, x0, y0)

}
≤ K2.

Proposition 2.3. System (2.3) is permanent if

1− M2 + ϵ2
d

> 0,
n

m1 − ϵ3 + p
> 0.

Proof. It is obvious that under the initial condition x(0) > 0 and y(0) > 0,
the solution of system (2.3) is nonnegative. As can be seen from Proposition 2.2,
for arbitrary ϵ2 > 0, there exists a T2, such that for arbitrary t ≥ T2, we have
y(t) ≤M2 + ϵ2 holds.

For the first equation of (2.3), for arbitrary t > T2 , we can write

dx
dt = x

(
1− x− y

d+ x+ ey

)
≥ x

(
1− x− y

d

)
= x

(
1− x− M2 + ϵ2

d

)
= x

(
1− M2 + ϵ2

d
− x

)
,

if 1− M2 + ϵ2
d

> 0, then according to Lemma 2.1, we have

lim inf
t→+∞

x(t) ≥ 1− M2 + ϵ2
d

≜ m1.

Therefore, for arbitrary ϵ3 > 0, there exists T3 > T2, such that for arbitrary t ≥ T3,
the following inequality holds

x(t) ≥ m1 − ϵ3.

For the second equation of (2.3), for arbitrary t > T3, we can write

dy
dt = y

(
m− ny

x+ p

)
≥ y

(
m− ny

m1 − ϵ3 + p

)
,

when n

m1 − ϵ3 + p
> 0, through Lemma 2.1, we have

lim inf
t→+∞

y(t) ≥ m(m1 − ϵ3 + p)

n
≜ m2.
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Combining the Proposition 2.2, we can draw the following conclusions

lim sup
t→+∞

x(t) ≤ 1 ≜M1, lim sup
t→+∞

y(t) ≤ m(M1 + ϵ1 + p)

n
≜M2.

Then there exists two constants K1 = min {m1,m2}, K2 = max {M1,M2}, such
that the following inequality holds

min

{
lim inf
t→+∞

x(t, x0, y0), lim inf
t→+∞

y(t, x0, y0)

}
≥ K1,

max

{
lim sup
t→+∞

x(t, x0, y0), lim sup
t→+∞

y(t, x0, y0)

}
≤ K2.

Thus, the permanence of the system (2.3) can be proved.

3. Existence and stability of equilibrium
3.1. Existence and stability of boundary equilibrium
To find the equilibrium of the system (2.2), we give the following equation

dx
dt = x

(
1− x− y

d+ x+ ey

)
= 0,

dy
dt = y

(
m− ny

x+ p

)
= 0,

(3.1)

from equation (3.1), we can get that the system (2.2) always has three boundary
equilibria A1(0, 0), A2(1, 0), A3(0,

mp
n ). The Jacobian matrix of the system (2.2) at

any equilibrium E(x, y) takes the following form

J(E) =


1− 2x− dy + ey2

(d+ x+ ey)2
− dx+ x2

(d+ x+ ey)2

ny2

(x+ p)2
m− 2ny

x+ p

 .
In the following, the stability of each boundary equilibrium is studied by using

the above Jacobian matrix.

Theorem 3.1. The origin A1(0, 0) is always an unstable node.

Proof. The Jacobian matrix of model (2.2) at A1(0, 0) is

J(A1(0, 0)) =

1 0

0 m

 ,
J(A1(0, 0)) has two eigenvalues λ1 = 1 > 0 and λ2 = m > 0. Therefore, A1(0, 0) is
always an unstable node.

Theorem 3.2. The Boundary equilibrium A2(1, 0) is always a saddle point.
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Proof. The Jacobian matrix of model (2.2) at A2(1, 0) is

J(A2(1, 0)) =

−1 − 1

d+ 1

0 m

 ,
J(A2(1, 0)) has two eigenvalues λ1 = −1 < 0 and λ2 = m > 0. Therefore, A2(1, 0)
is always a saddle point.

Theorem 3.3. For the stability of A3(0,
mp
n ), we have

(1)The Boundary equilibrium A3(0,
mp
n ) is always a saddle point if d > pm(1− e)

n
.

(2)The Boundary equilibrium A3(0,
mp
n ) is always a stable node if 0<d< pm(1− e)

n
.

(3)The Boundary equilibrium A3(0,
mp
n ) is a degenerate equilibrium if d =

pm(1− e)

n
.

Proof. The Jacobian matrix of model (2.2) at A3(0,
mp
n ) is

J
(
A3

(
0,
mp

n

))
=

1−
pm

nd+ epm
0

m2

n
−m

 ,
from the Jacobian matrix, the characteristic equation at the boundary equilibrium
A3(0,

mp
n ) is as follows

λ2 −
(
1− pm

nd+ epm
−m

)
λ+m

(
pm

nd+ epm
− 1

)
= 0.

The determinant and trace of the above Jacobian matrix at the boundary equi-
librium A3(0,

mp
n ) are

trJ(A3) = 1− pm

nd+ epm
−m, det J(A3) = m

(
pm

nd+ epm
− 1

)
,

the point A3(0,
mp
n ) is a saddle point for det J(A3) < 0, and the following condition

is obtained

d >
pm(1− e)

n
,

the point A3(0,
mp
n ) is a stable node for trJ(A3) < 0 and det J(A3) > 0. This gives

the following condition

0 < d <
pm(1− e)

n
,

the point A3(0,
mp
n ) is a degenerate equilibrium for detJ(A3)=0. This gives the

following condition
d =

pm(1− e)

n
.
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Theorem 3.4. The boundary equilibrium A3(0,
mp
n ) of system (2.2) is a saddle-

node, if d = pm(1−e)
n and 2pmn+ (1− e)mn− 2n2 ̸= 0.

Proof. The transformation (X,Y ) =
(
x, y − mp

n

)
changes the equilibrium from

A3(0,
mp
n ) to the origin, and the system (2.2) becomes

dX
dt =

(
n

pm
− 1

)
X2 − (1− e)n

2pm
XY + P1(X,Y ),

dY
dt =

m2

n
X −mY − m2

np
X2 +

m

p
XY − n

p
Y 2 +Q1(X,Y ),

(3.2)

where P1(X,Y ) and Q1(X,X) are terms of at least third order in X and Y . The
Jacobian matrix of system (3.2) is diagonalizable with eigenvalues λ1 = 0 and λ2 =
−m, and the eigenvectors corresponding to the above eigenvalues are w1 = ( n

m , 1)
T

and w2 = (0, 1)T . By the transformation
x =

m

n
X,

y = −m
n
X + Y,

system (3.2) becomes

dx
dt =

2n2 − 2pmn− (1− e)mn

2pm2
x2 − (1− e)n

2pm
xy + P2(x, y),

dy
dt = −my − 2n2 + 2m2n− 2pmn− (1− e)mn

2pm2
x2 +

(1− e)n− 2mn

2pm
xy

− n

p
y2 +Q2(x, y),

here P2(x, y) and Q2(x, y) are terms of at least third order in x and y. Introduce
new variable τ = −mt, we obtain

dx
dτ =

2pmn+ (1− e)mn− 2n2

2pm3
x2 +

(1− e)n

2pm2
xy + P3(x, y),

dy
dτ = y +

2n2 + 2m2n− 2pmn− (1− e)mn

2pm3
x2 − (1− e)n− 2mn

2pm2
xy

+
n

pm
y2 +Q3(x, y),

where P3(x, y) and Q3(x, y) are terms of at least third order in x and y. When
2pmn+(1− e)mn− 2n2 ̸= 0, by Theorem 7.1 in [25], we know that the equilibrium
A3(0,

mp
n ) is a saddle-node.

3.2. Existence and stability of positive equilibrium
Next, we will study the positive equilibrium of the system (2.2), whose coordinates
x and y satisfy the following equation

1− x− y

d+ x+ ey
= 0,

m− ny

x+ p
= 0.

(3.3)
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The system (2.2) has positive equilibria is equivalent to

F (x) = k2x
2 + k1x+ k0

has positive zeros, where

k2 = −(n+ em), k1 = n+ em− nd− epm−m, k0 = nd+ epm− pm.

It can be seen from the above formula that F (x) = 0 has at most two positive
real roots. Let’s study the existence of the positive real roots of F (x) = 0, denote

∆ = k21 − 4k2k0, x1,2 =
−k1 ±

√
∆

2k2
(x1 < x2),

x̄ =
−k1
2k2

, yi =
m(xi + p)

n
(i = 1, 2).

Lemma 3.1. For the existence of positive roots of F (x) = 0, we have the following
conclusion:

(i) If ∆ > 0, k0 < 0, k1

2k2
< 0, the equation has two distinct roots x1, x2;

(ii) If ∆ = 0, k0 < 0, k1

2k2
< 0, the equation has two identical roots x1 = x2;

(iii) If k0 = 0, k1

2k2
< 0, the equation always has a root x2;

(iv) If k0 > 0, the equation always has a root x2;
(v) If ∆ < 0, the equation has no roots.

According to Lemma 3.1, when the parameters satisfy condition (i), system
(2.2) has two positive equilibria E∗

1 (x1, y1) and E∗
2 (x2, y2); if the parameter satisfies

condition (ii), then two positive equilibria E∗
1 (x1, y1) and E∗

2 (x2, y2) of system (2.2)
collide with each other, and the only positive equilibrium is Ē(x̄, ȳ); when the
parameters satisfy conditions (iii) and (iv), system (2.2) has a positive equilibrium
E∗

2 (x2, y2); when the parameters satisfy conditions (v), system (2.2) has no positive
equilibria.

The graph of the equation system (3.3) under different parameters is shown in
Figure 1. The green and blue curves correspond to the first and second equations of
(3.3), respectively. The two lines have positive intersections, meaning that F (x) =
0 has positive roots, which means that the system (2.2) has positive equilibria.
According to Lemma 3.1 we choose the parameters m = 0.2, n = 0.6, p = 0.4, for
other parameters, we have

(a) d = 0.12, e = 0.0008, the parameter satisfies condition (i), the system (2.2)
has two positive equilibria;

(b) d = 0.0327355913, e = 0.0008, the parameter satisfies condition (ii), the
system (2.2) has two identical positive equilibria;

(c) d = 0.0907, e = 0.32, the parameters satisfy conditions (iii), the system (2.2)
has a positive equilibrium;

(d) d = 0.2, e = 0.008, the parameters satisfy conditions (iv), the system (2.2)
has a positive equilibrium;

(e) d = 0.0000052, e = 0.0008, the parameter satisfies condition (v), the system
(2.2) has no positive equilibria,
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Figure 1. Number of positive equilibrium under parameter conditions.

which is illustrated in Figure 1.

Remark 3.1. We express any positive equilibrium of system (2.2) as E∗(x∗, y∗),
where the coordinate x∗ = ξ and y∗ = m(ξ+p)

n .

Theorem 3.5. E∗(x∗, y∗) is locally asymptotically stable if

d >
m(1− 2ξ)(ξ + p)− em(ξ + p)(1− ξ)2 −m2(ξ + p)

n(1− ξ)2
,

and
d >

m(1− 2ξ)(ξ + p)2 − em(ξ + p)2(1− ξ)2 − nξ2(1− ξ)2

n(ξ + p)(1− ξ)2 + nξ(1− ξ)2
.

Proof. The Jacobian matrix of system (2.2) at E∗(x∗, y∗) is

J(E∗(x∗, y∗)) =


m(1−2ξ)(ξ+p)−[nd+em(ξ+p)](1−ξ)2

m(ξ+p) −n2ξ(d+ξ)(1−ξ)2

m2(ξ+p)2

m2

n −m

 .
Then, the characteristic equation of the positive equilibrium E∗(x∗, y∗) is λ2 −

Tλ+D = 0, where

T =
m(1− 2ξ)(ξ + p)− [nd+ em(ξ + p)](1− ξ)2 −m2(ξ + p)

m(ξ + p)
,

D =
m(2ξ − 1)(ξ + p)2 + [nd+ em(ξ + p)](ξ + p)(1− ξ)2 + nξ(d+ ξ)(1− ξ)2

(ξ + p)2
,
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from the above expressions of T and D, we can know that if

d >
m(1− 2ξ)(ξ + p)− em(ξ + p)(1− ξ)2 −m2(ξ + p)

n(1− ξ)2
,

and
d >

m(1− 2ξ)(ξ + p)2 − em(ξ + p)2(1− ξ)2 − nξ2(1− ξ)2

n(ξ + p)(1− ξ)2 + nξ(1− ξ)2
,

then −T > 0, D > 0. By Routh-Hurwitz criteria, positive equilibrium E∗(x∗, y∗) is
locally asymptotically stable.

Theorem 3.6. The positive equilibrium E∗(x∗, y∗) is a degenerate cusp, if

d =
mξ2(1− 2ξ)− emξ2(1− ξ)2 −m2ξ2

meξ(1− ξ)2 +m2(2ξ + p)−mξ(1− 2ξ)
,

and
n =

meξ(ξ + p)(1− ξ)2 +m2(2ξ + p)(ξ + p)−mξ(1− 2ξ)(ξ + p)

ξ2(1− ξ)2
.

It is codimension 2 when K1K2 ̸= 0, and it is at least codimension 3 when K1K2 = 0,
where K1 = −b4i

3+(a4−b3)i
2+(a3−b5)i

s and K2 = (2a4 + b3)i+ a3 + 2b5.

Proof. The Jacobian matrix of system (2.2) at E∗(x∗, y∗) is

J(E∗(x∗, y∗)) =

m(ξ+p)(1−2ξ)−(nd+emξ+emp)(1−ξ)2

m(ξ+p) −n2ξ(d+ξ)(1−ξ)2

m2(ξ+p)2

m2

n −m

 .
If

d =
mξ2(1− 2ξ)− emξ2(1− ξ)2 −m2ξ2

meξ(1− ξ)2 +m2(2ξ + p)−mξ(1− 2ξ)
,

n =
meξ(ξ + p)(1− ξ)2 +m2(2ξ + p)(ξ + p)−mξ(1− 2ξ)(ξ + p)

ξ2(1− ξ)2
,

then T = 0 and D = 0, therefore, the characteristic values are λ1 = λ2 = 0. Let’s
do some transformations first, considering the expression (d + x + ey)(x + p) > 0,
by transformation dt = (d+ x+ ey)(x+ p)dτ , system (2.2) becomes

dx
dt = x(1− x)(d+ x+ ey)(x+ p)− xy(x+ p),

dy
dt = my(d+ x+ ey)(x+ p)− ny2(d+ x+ ey).

(3.4)

Under linear transformation
x = X + ξ,

y = Y +
m(ξ + p)

n
,
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the positive equilibrium E∗(x∗, y∗) of system (2.2) was changed to the origin, and
we have

dX
dt = a1X + a2Y + a3XY + a4X

2 + a5X
3 + a6X

2Y + o(|X,Y |4),

dY
dt = b1X + b2Y + b3XY + b4X

2 + b5Y
2 + b6X

2Y + b7XY
2 + o(|X,Y |4),

(3.5)
where

a1 =
(−4n− 3em)ξ3 + [3n((1− d− p) + 2(e− 1)m− 5emp]ξ2

n

+
[2n(d+ p− dp) +mp(3e− 2ep− 3)]ξ +mp(ep− p) + ndp

n
,

a2 =− eξ3 + (e− ep− 1)ξ2 + p(e− 1)ξ, a3 = −3eξ2 + 2(e− ep− 1)ξ + ep− p,

a4 =
−6emξ2 + [−12n(1 + d+ p) + 2m(e− 4ep− 1)]ξ

2n

+
2n(d+ p− dp) + 2mp(e− ep− 1)

2n
,

a5 =
−6(nd+ emξ + emp+ 4nξ + np− n)

n
, a6 = 2(e− 3eξ − ep− 1),

b1 =
(em3 +m2n)ξ2 +m2(dn+ pn+ 2pem)ξ +m2p(emp+ nd)

n2
,

b2 =
(−m2ne−mn2)ξ2 +mn(−2emp− dn− pn)ξ −mnp(emp+ nd)

n2
,

b3 =
2em2ξ +m(2emp− np+ nd)

n
, b4 =

m2ξ +m2p

n
,

b5 =
−n(2em+ n)ξ − n(2emp+ dn)

n
, b6 = 2m, b7 = 2(me− n).

Let B = (v1, v2) =

i s

1 0

, v1, v2 are the generalized eigenvectors of the Jacobian

matrix J(E∗(x∗, y∗)) for zero eigenvalues, where i = i1
i2

, s = i+1
a1+b1

. The values of i1
and i2 are shown in the appendix. Under the transformation (X,Y )T = B(x, y)T ,
that is 

x = Y,

y =
1

s
X − i

s
Y,

then system (3.5) becomes
dx
dt

= y + h1xy + h2x
2 + h3y

2 + o(|x, y|3),

dy
dt

= l1xy + l2x
2 + l3y

2 + o(|x, y|3),
(3.6)

where h1 = b3s+ 2b4is, h2 = b3i+ b4i
2 + b5, h3 = b4s

2, l1 = a3 + 2a4i− b3i− 2b4i
2,

l2 = −b4i
3+(a4−b3)i

2+(a3−b5)i
s , l3 = a4s− b4si, and we choose not to present here for

the complexity.
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By Lemma 2.2, system (3.6) is equivalent to the following system in the small
domain near (0, 0) 

dx
dt = y,

dy
dt = K1x

2 +K2xy + o(|x, y|3),
(3.7)

where K1 = −b4i
3+(a4−b3)i

2+(a3−b5)i
s ,K2 = (2a4 + b3)i+ a3 + 2b5. According to lit-

erature [20], we can conclude that if K1K2 ̸= 0, the positive equilibrium E∗(x∗, y∗)
is a cusp of codimension 2, and if K1K2 = 0, it is a cusp of at least codimension 3.

4. Bifurcation analysis of model (2.2)
In this section, we study various bifurcations of the system (2.2) at positive equi-
librium.

Theorem 4.1. System (2.2) undergoes transcritical bifurcation at A3(0,
mp
n ), if

d = dtc =
mp(1− e)

n
,

and
n+me− 2mp−m ̸= 0.

Proof. According to Theorem 3.3, when d = mp(1−e)
n , the eigenvalues of the

characteristic equation of the Jacobian matrix J(A3) of the system (2.2) at A3 are

λ1 = 0, λ2 = −m.

The eigenvectors corresponding to the zero eigenvalue of J(A3) and (J(A3))
T

are v = ( n
m , 1)

T and w = (1, 0)T respectively. Let

F (X) =

x(1− x)− xy

d+ x+ ey

y

(
m− ny

x+ p

)
 , X = (x, y) ∈ Ω, F ∈ R2,

by calculation, we have

Fd(A3, d
tc) = (0, 0)T ,

DFd(A3, d
tc) =

 n

mp
0

0 0

 ,
D2F (A3, d

tc)(v, v) =

n(n+me− 2mp−m)

m2p

0

 ,
from the above formula, we can get

wTFd(A3, d
tc) = 0,
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wT [DFd(A3, d
tc)v] =

n2

m2p
,

wT [D2F (A3, d
tc)(v, v)] =

n(n+me− 2mp−m)

m2p
.

When d = dtc = mp(1−e)
n and n+me− 2mp−m ̸= 0, we calculate that

wTFd(A3, d
tc) = 0,

wT [DFd(A3, d
tc)v] ̸= 0,

wT [D2F (A3, d
tc)(v, v)] ̸= 0.

By Sotomayor’s theorem [20], we know that when d = dtc = mp(1−e)
n and n+me−

2mp−m ̸= 0, system (2.2) undergoes transcritical bifurcation.

Theorem 4.2. System (2.2) undergoes Hopf bifurcation at E∗(x∗, y∗), if

d = d∗ =
m(1− 2ξ)(ξ + p)− em(ξ + p)(1− ξ)2 −m2(ξ + p)

n(1− ξ)2
,

and
−eξ3 + 2(e− 1)ξ2 + (1− 2m− e)ξ −mp > 0.

Proof. The eigenvalues of the Jacobian matrix of system (2.2) at E∗(x, y) are

λ1,2 =
T (d)±

√
T 2(d)− 4ω2(d)

2
, ω2(d) = D(d),

where

T (d) =
m(1− 2ξ)(ξ + p)− [nd+ em(ξ + p)](1− ξ)2 −m2(ξ + p)

m(ξ + p)
,

ω2(d) =
m(2ξ − 1)(ξ + p)2 + [nd+ em(ξ + p)](ξ + p)(1− ξ)2 + nξ(d+ ξ)(1− ξ)2

(ξ + p)2
.

When

d = d∗ =
m(1− 2ξ)(ξ + p)− em(ξ + p)(1− ξ)2 −m2(ξ + p)

n(1− ξ)2
,

then T (d) = 0, and

ω2(d∗) =
m(ξ + p)[−eξ3 + 2(e− 1)ξ2 + (1− 2m− e)ξ −mp] + nξ2(1− ξ)2

(ξ + p)2
.

When
−eξ3 + 2(e− 1)ξ2 + (1− 2m− e)ξ −mp > 0,

then ω2(d∗) > 0 and λ1,2 = ±iω(d∗). Let M = T (d)
2 , we have

dM

dd

∣∣∣∣
d=d∗

=
T

′
(d∗)

2
=

−n(1− ξ)2

2m(ξ + p)
̸= 0.
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Through verification of the above transversality condition, we can know that
system (2.2) undergoes the Hopf bifurcation at E∗(x∗, y∗). To determine the stabil-
ity and direction of the bifurcation periodic solution, we need to calculate the first
Lyapunov coefficient σ. The system (3.5) is obtained through a series of transfor-
mations and the specific process is shown in Theorem 3.6.

If the above two conditions are satisfied, then the eigenvalues of the system (3.5)
are λ = ±iη, where

η =

√
m(ξ + p)[−eξ3 + 2(e− 1)ξ2 + (1− 2m− e)ξ −mp] + nξ2(1− ξ2)

ξ + p
.

Let u = u1 + iu2 be the eigenvector corresponding to the eigenvalue λ = iη,
where u1 and u2 are real vectors. By calculation, we can get u1 = (q, 1)T , and
u2 = ( η

r1
, 0)T , where

q =
(m2ne+mn2)ξ2 +mn(2emp+ dn+ pn)ξ +mnp(emp+ nd)

(em3 +m2n)ξ2 +m2(dn+ pn+ 2pem)ξ +m2p(emp+ nd)
,

r1 =
(em3 +m2n)ξ2 +m2(dn+ pn+ 2pem)ξ +m2p(emp+ nd)

n2
.

Let A = (u1, u2) =

q η

r1

1 0

, under the transformation (X,Y )T = A(x, y)T ,

namely 
x = Y,

y =
r1
η
X − r1q

η
Y,

the system (3.5) has the following normal form
dx
dt = ηy + c1xy + c2x

2 + c3y
2 + c4x

3 + c5x
2y + c6xy

2 + o(|x, y|4),

dy
dt = −ηx+ d1xy + d2x

2 + d3y
2 + d4x

3 + d5y
3 + d6x

2y + d7xy
2 + o(|x, y|4),

(4.1)
where

c1 =
ηb3 + 2qηb4

r1
, c2 = b3q + b4q

2 + b5, c3 =
b4η2

r21
, c4 = b6q

2 + b7q,

c5 =
2qηb6 + ηb7

r1
, c6 =

η2b6
r21

, d1 =
2a4qη + ηa3 − b3qη − 2q2b4η

η
,

d2 =
r1(a3q + a4q

2 − b3q
2 − b4q

3 − b5q)

η
,

d3 =
η(r1 − b4q)

r1
, d4 =

r1(a5q
3 + a6q

2 − b6q
3 − b7q

2)

η
, d5 =

η2

r21
,

d6 =3q2a5 + 2a6q − 2q2b6 − qb7, d7 =
η(3a5q + a6 − b6q)

r1
.
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By using the formula in [19,20], the first Lyapunov coefficient σ is calculated as
follows

σ =
3π

2
[3(c4 + d5) + (c6 + d6)− 2(c2d2 − c3d3) + c1(c3 + d2)− d1(d3 + d2)].

Due to the complexity of ci and di(i = 1, 2, 3, 4, 5, 6, 7) , we cannot determine the
sign of σ and whether the value of σ is zero. However, the following three conditions
can be used to determine the type of Hopf bifurcation of the positive equilibrium
E∗(x∗, y∗) of the system (2.2).
(1) If σ < 0, system (2.2) undergoes supercritical Hopf bifurcation at E∗(x∗, y∗);
(2) If σ > 0, system (2.2) undergoes subcritical Hopf bifurcation at E∗(x∗, y∗);
(3) If σ = 0, system (2.2) undergoes degenerate Hopf bifurcation at E∗(x∗, y∗).

Theorem 4.3. System (2.2) undergoes cusp bifurcation at E∗(x∗, y∗), if

d =
m(1− 2ξ)(ξ + p)2 − em(ξ + p)2(1− ξ)2 − nξ2(1− ξ)2

n(ξ + p)(1− ξ)2 + nξ(1− ξ)2
,

and
b7k1 +

1

k3
(a5k

3
1 + a6k

2
1 − b7k

2
1) ̸= 0.

Proof. According to Theorem 4.2, translate the positive equilibrium E∗(x∗, y∗)
to the origin, system (2.2) becomes equation (3.4). Assuming

d =
m(1− 2ξ)(ξ + p)2 − em(ξ + p)2(1− ξ)2 − nξ2(1− ξ)2

n(ξ + p)(1− ξ)2 + nξ(1− ξ)2
,

then T ̸= 0 and D = 0. For the convenience of subsequent calculations, let

k11 = m(1− 2ξ)(ξ + p)2 − em(ξ + p)2(1− ξ)2 − nξ2(1− ξ)2,

k12 = n(ξ + p)(1− ξ)2 + nξ(1− ξ)2.

Therefore, we can obtain that the eigenvalues of system (2.2) at the positive
equilibrium E∗(x∗, y∗) are λ1 = 0 and

λ2 =
[nξ2 − emξ(ξ + p)](1− ξ)2 + (ξ + p)[mξ(1− 2ξ)− 2m2ξ −m2p]

m(ξ + p)(2ξ + p)
,

the eigenvectors corresponding to the above eigenvalues are w1 = (k1, 1)
T and

w2 = (k2, 1)
T , where

k1=
k12n(meξ

2 + nξ2 + 2empξ + npξ +mp2e) + k11n
2(ξ + p)

k12m[emξ2 + nξ2 + (pn+ 2pem)ξ +mp2e] + k11mn(ξ + p)
,

k2=
n2k12{[nξ2−emξ(ξ+p)](1−ξ)2+(ξ+p)[mξ(1− 2ξ)−2m2ξ−m2p]}

m(ξ+p)(2ξ+p){k12m2[emξ2+nξ2+(pn+2pem)ξ+mp2e]+k11m2n(ξ+p)}
−k1.

Let C = (w1, w2) =

k1 k2

1 1

, by the transformation (X,Y )T = C(x, y)T , de-

note k3 = k1 − k2, that is 
x =

1

k3
X − k2

k3
Y,

y = − 1

k3
X +

k1
k3
Y,
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so equation (3.5) is transformed into the following form
dx
dt = o1x

2 + o2xy + o3y
2 + o4x

3 + o5x
2y + o6xy

2 + o7y
3 + o(|x, y|4),

dy
dt = λ2y + q1x

2 + q2xy + q3y
2 + q4x

3 + q5x
2y + q6xy

2 + q7y
3 + o(|x, y|4),

(4.2)
where

o1 =b3k1 + b4k
2
1 + b5 +

1

k3
(a3k1 + a4k

2
1 − b3k

2
1 − b4k

3
1 − b5k1),

o2 =b3k1 + b3k2 + 2b4k1k2 + 2b5 +
1

k3
(a3k1 + a3k2 + 2a4k1k2 − b3k

2
1 − b3k1k2

− 2b4k
2
1k2 − 2b5k1),

o3 =b3k2 + b4k
2
2 + b5 +

1

k3
(a3k2 + a4k

2
2 − b3k1k2 − b4k1k

2
2 − b5k1),

o4 =b7k1 +
1

k3
(a5k

3
1 + a6k

2
1 − b7k

2
1),

o5 =2b7k1 + b7k2 +
1

k3
(3a5k

2
1k2 + 2a6k1k2 + a6k

2
1 − 2b7k

2
1 − b7k1k2),

o6 =b7k1 + 2b7k2 +
1

k3
(3a5k1k

2
2 + a6k

2
2 + 2a6k1k2 − b7k

2
1 − 2b7k1k2),

o7 =b7k2 +
1

k3
(a5k

3
2 + a6k

2
2 − b7k1k2),

q1 =− 1

k3
(a3k1 + a4k

2
1 − b3k

2
1 − b4k

3
1 − b5k1),

q2 =− 1

k3
(a3k1 + a3k2 + 2a4k1k2 − b3k

2
1 − b3k1k2 − 2b4k

2
1k2 − 2b5k1),

q3 =− 1

k3
(a3k2 + a4k

2
2 − b3k1k2 − b4k1k

2
2 − b5k1),

q4 =− 1

k3
(a5k

3
1 + a6k

2
1 − b7k

2
1),

q5 =− 1

k3
(3a5k

2
1k2 + 2a6k1k2 + a6k

2
1 − 2b7k

2
1 − b7k1k2),

q6 =− 1

k3
(3a5k1k

2
2 + a6k

2
2 + 2a6k1k2 − b7k

2
1 − 2b7k1k2),

q7 =− 1

k3
(a5k

3
2 + a6k

2
2 − b7k1k2).

The center manifold of system (4.2) near the origin is

y = − q1
λ2
x2 + P (x),

where P (x) are terms of at least third order in x. Substitute the above equation
into the first equation of equation (4.2), and obtain the equation induced by this
equation on the x-axis as

dx
dt = o1x

2 +Q(x),
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where Q(x) are terms of at least second order in x.
If o1 = 0 and q1 = 0, then the center manifold of system (4.2) near the origin

becomes
dx
dt = o4x

3 +Q(x),

where Q(x) are terms of at least third order in x.
Assuming b7k1 +

1
k3
(a5k

3
1 + a6k

2
1 − b7k

2
1) ̸= 0, then there is o4 ̸= 0, according

to reference [19], when the previous assumption holds, system (2.2) undergoes cusp
bifurcation at E∗(x∗, y∗).

Theorem 4.4. When K1K2 ̸= 0 in Theorem 3.6 holds, system (2.2) undergoes
Bogdanov-Takens bifurcation in a small neighborhood of E∗(x∗, y∗), if

dBT =
mξ2(1− 2ξ)− emξ2(1− ξ)2 −m2ξ2

meξ(1− ξ)2 +m2(2ξ + p)−mξ(1− 2ξ)
,

and

nBT =
meξ(ξ + p)(1− ξ)2 +m2(2ξ + p)(ξ + p)−mξ(1− 2ξ)(ξ + p)

ξ2(1− ξ)2
.

Proof. We first provide the perturbations of parameters d and n near dBT and
nBT , have d = dBT + ϵ1 and n = nBT + ϵ2, ϵ1 and ϵ2 are parameters in the small
neighborhood of (0, 0). Then system (2.2) is transformed into the following model

dx
dt = x(1− x)− xy

dBT + ϵ1 + x+ ey
,

dy
dt = y

(
m− (nBT + ϵ2)y

x+ p

)
.

(4.3)

Under linear translation {
x = X + x∗,

y = Y + y∗,

the positive equilibrium of system (2.2) was changed from E∗(x∗, y∗) to the origin,
and we have

dX
dt = h10 + h11X + h12Y + h13X

2 + h14XY + h15X
3 + h16X

2Y + P (X,Y ),

dY
dt = l10+l11X+l12Y +l13X

2+l14XY +l15Y
2+l16X

2Y +l17XY
2 +Q(X,Y ),

(4.4)
where P (X,Y ) and Q(X,Y ) are terms of at least fourth order in X and Y , and

h10 = (1− x∗)(x∗ + p)x∗ϵ1,

h11 = (dBT + ϵ1 + ey∗ + x∗)[(x∗ + p)(1− 2x∗) + (1− x∗)x∗] + (x∗ + p)[x∗ − x∗2

− y∗ − x∗y∗],

h12 = (x∗ + p)[ex∗(1− x∗)− x∗],

h13 = 2[(dBT + ϵ1 + ey∗ + x∗)(1− 3x∗ − p) + (x∗ + p)(1− 2x∗) + (1− x∗)x∗ − y∗],

h14 = ep(1− x∗)− (x∗ + p)(ex∗ + 1)− x∗,
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h15 = −6(dBT + ϵ1 + ey∗ + 4x∗ + p− 1),

h16 = 2[e(1− 3x∗ − p)− 1],

l10 = my∗ϵ1(x
∗ + p)− ϵ2y

∗2(dBT + ϵ1 + ey∗ + x∗)− ny∗2ϵ1,

l11 = my∗(dBT + ϵ1 + ey∗ + 2x∗ + p)− (nBT + ϵ2)y
∗2,

l12 = m(x∗+p)(dBT +ϵ1+2ey∗+x∗)−(nBT +ϵ2)y
∗[2(dBT +ϵ1+ey

∗+x∗)+ey∗],

l13 = 2my∗, l14 = m(dBT + ϵ1 + 2ey∗ + 2x∗ + p)− 2y∗(nBT + ϵ2),

l15 = 2me(x∗ + p)− 2(nBT + ϵ2)(dBT + ϵ1 + ey∗ + x∗)− 4y∗e(nBT + ϵ2),

l16 = 2m, l17 = 2(me− nBT − ϵ2).

Let{
x = X,

y = h10 + h11X + h12Y + h13X
2 + h14XY + h15X

3 + h16X
2Y + P (X,Y ),

(4.5)
then the system (4.4) becomes

dx
dt = y,

dy
dt = L10 + L11x+ L12y + L13x

2 + L14xy + L15y
2 + L16x

3 + L17x
2y

+Q1(x, y, ϵ1, ϵ2),

(4.6)

where Q1(x, y, ϵ1, ϵ2) are terms of at least fourth order in x and y, its coefficients
depend smoothly on ϵ1 and ϵ2, and

L10 =
h210l15
h12

− h10l12,

L11 =
2h10h11h12l15+h

2
10h12l17−h10h12h14l12+h210h14l15

h212
−h10l14+h12l11−h11l12,

L12 =
−2h10h12l15 − h10h12h14 + h11h

2
12

h212
+ l12,

L13 =
h211h12l15 − h11h12h14l12

h212
− h10l16 + h12l13 + h14l11 + h16 − h11l14

+
2h10h11h12l17 − h10h12h14l14 + 2h10h11h14l15 + h210h14l17

h212
,

L14 =
−2h10h12l17−2h10h14l15−2h10h12h16−2h11h12l15−h11h12h14+h12h14l12

h212
+ 2h13 + l14,

L15 =
h14 + l15
h12

,

L16 =
2h10h11h14l17 − h10h12h14l16 + h211h12l17 + h211h14l15

h212
+ h14l13 − h11l16,

L17 =
−2h11h12l17+h12h14l14−2h11h14l15−2h11h12h16−2h10h14l17

h212
+3h15+l16.
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Next, introduce a new time variable τ such that dt = (1 − L15x)dτ , and use t
to denote τ after the transformation, so equation (4.6) can be written as

dx
dt = (1− L15x)y,

dy
dt = (1− L15x)(L10 + L11x+ L12y + L13x

2 + L14xy + L15y
2 + L16x

3

+ L17x
2y +Q1(x, y, ϵ1, ϵ2)).

(4.7)

Let X = x and Y = (1− L15x)y, so equation (4.7) can be rewritten as
dX
dt = Y,

dY
dt = L20 + L21X + L22Y + L23X

2 + L24XY +Q2(X,Y, ϵ1, ϵ2),
(4.8)

where Q2(X,Y, ϵ1, ϵ2) are terms of at least third order in X and Y , its coefficients
depend smoothly on ϵ1 and ϵ2, and

L20 =L10, L21 = L11 − 2L10L15, L22 = L12,

L23 =L13 − 2L11L15 + L10L
2
15, L24 = L14 − L12L15.

Due to the complexity of the expression for L23, it is not possible to directly
determine its symbol. Therefore, in this article, we assume L23 < 0 and discuss it
under this assumption.

If L23 < 0, then we introduce new variable x = X, y = Y√
−L23

and τ =
√
−L23t,

and use t to denote τ after the transformation, so equation (4.8) can be transformed
into 

dx
dt = y,

dy
dt = I10 + I11x+ I12y − x2 + I14xy +Q3(x, y, ϵ1, ϵ2),

(4.9)

where Q3(x, y, ϵ1, ϵ2) are terms of at least third order in x and y, its coefficients
depend smoothly on ϵ1 and ϵ2, and

I10 =− L20

L23
, I11 = −L21

L23
, I12 =

L22√
−L23

, I14 =
L24√
−L23

.

Next, let X = x− I11
2 and Y = y, the above equation (4.9) is transformed into

dX
dt = Y,

dY
dt = I20 + I22Y −X2 + I24XY +Q4(X,Y, ϵ1, ϵ2),

(4.10)

where Q4(X,Y, ϵ1, ϵ2) are terms of at least third order in X and Y , its coefficients
depend smoothly on ϵ1 and ϵ2, and

I20 =I10 +
I211
4
, I22 = I12 +

I11I14
2

, I24 = I14.
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When L24 ̸= 0 holds, we have I24 = I14 = L24√
−L23

̸= 0. Make the following
transformation, let x = −I224X, y = I324Y and τ = − 1

I24
t, so system (4.10) can be

transformed into 
dx
dt = y,

dy
dt = ϱ1 + ϱ2y + x2 + xy +Q5(x, y, ϵ1, ϵ2),

(4.11)

where Q5(x, y, ϵ1, ϵ2) are terms of at least third order in x and y, its coefficients
depend smoothly on ϵ1 and ϵ2, and

ϱ1 =− I20I
4
24, ϱ2 = −I22I24. (4.12)

According to reference [10, 20], we know that if
∣∣∣∣∂(ϱ1, ϱ2)∂(ϵ1, ϵ2)

∣∣∣∣
ϵ1=ϵ2=0

̸= 0, then

it can be inferred that parameter transformation (4.12) is a homeomorphism in a
small domain (0, 0). Therefore, when (ϵ1, ϵ2) is in a small neighborhood of the (0, 0),
system (4.3) will undergo Bogdanov-Takens bifurcation.

5. Numerical simulations
In this section, we will give some numerical simulations to verify the findings of this
paper. We give the bifurcation diagram, phase diagram, and time series diagram of
model (2.2) under different parameter conditions. For the bifurcation diagram, the
equilibrium is stable (unstable) on the solid (dotted) line.

Figure 2 (a) shows the transcritical bifurcation diagram in A3(0,
mp
n ). According

to Figure 2 (a), we know that under conditions e = 0.07,m = 0.2, n = 0.6, p = 0.4,
the positive equilibrium bifurcates from A3(0,

mp
n ) for d = 0.124. (b) is the phase

diagram corresponding to (a) under the above conditions when d = 0.05, at this
time, A3 is a stable node and E∗

1 is a saddle point. (c) is the phase diagram
corresponding to (a) at d = 0.15, in this case, A3 is a saddle point and E∗

1 is a
stable node. The stability of these two equilibria changes, and with decreasing d,
the positive equilibrium E∗

1 becomes unstable and A3 becomes stable, at this time,
the whole system tends to the boundary equilibrium A3, the prey gradually goes
extinct, and the system also tends to the positive equilibrium E∗

2 , the prey and the
predator reach the equilibrium state of coexistence.

Figure 3 shows the Hopf bifurcation diagram around E∗(0.10978, 0.6797) about
d under conditions e = 0.2,m = 0.02, n = 0.015, p = 0.4. The Hopf bifurcation is
supercritical for the first coefficient σ < 0, when the Hopf bifurcation curve crosses
the vertical line d ≈ 0.517801 to the right, system (2.2) changes from a stable
limit cycle containing an unstable equilibrium to a stable equilibrium. Figure 3 (b),
(c), (e) and (f) show the phase diagram and corresponding time diagram of Hopf
bifurcation when d = 0.53. (c) amplified phase portrait of (b), (d) corresponding
phase diagram of the system when d = 0.51. In Figure 3 (b) and (c), the system
(2.2) has a positive equilibrium E∗

2 , E∗
2 is an unstable focus and a stable limit cycle

surrounds E∗
2 , for any initial value, the solution will tend to the limit cycle, that is,

the predator and prey will oscillate periodically. In Figure 3 (d), the system (2.2)
is stable and tends to the positive equilibrium E∗

2 .
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Figure 2. (a) the transcritical bifurcation diagram around A3(0,
mp
n ) with parameters e = 0.07,m =

0.2, n = 0.6, p = 0.4, (b) the phase diagram corresponding to (a) at d = 0.05, (c) the phase diagram
corresponding to (a) at d = 0.15.

The phase diagram of the Bogdanov-Takens bifurcation of codimension 2 with
m = 0.2, p = 0.3, e = 0.12 is shown in Figure 4. Figure 4 (a) shows that under the
parameter conditions dBT = 0.08975, e = 0.12,m = 0.2, nBT = 0.3899, p = 0.3, the
system (4.3) has no positive equilibrium when (ϵ1, ϵ2) = (−0.00775, 0.0001). We
can see that for almost all initial value densities, the system tends to the boundary
equilibrium A3, at which time the prey species will tend to extinction. (b) have an
unstable focus and saddle point when (ϵ1, ϵ2) = (0.00002, 0.0112). (c) have an un-
stable limit cycle when (ϵ1, ϵ2) = (0.0008, 0.0112). (d) have an unstable homoclinic
cycle surrounding stable hyperbolic focus when (ϵ1, ϵ2) = (0.00325, 0.0112) and (e)
have a stable focus when (ϵ1, ϵ2) = (0.00525, 0.0112).

6. Conclusions
In this paper, we studied the dynamic behavior of a modified Leslie-Gower predator-
prey model with Beddington-DeAngelis functional response. We discuss the posi-
tivity, dissipation, and permanence of the solutions of the model and analyze the
existence and stability of the equilibria under different parameter conditions. We
observe that for any parameter value, the system will not collapse because the ori-
gin is always unstable. The stability of the positive equilibrium is discussed by the
Routh Hurwitz criteria. We take the prey density d with the semi-saturated attack
rate and the maximum per capita reduction rate n of the predator as bifurcation
parameters, and discuss the codimension one bifurcation and the codimension two
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Figure 3. (a) Hopf bifurcation around E∗(0.10978, 0.6797) under conditions e = 0.2,m = 0.02, n =
0.015, p = 0.4. (b) (c) (e) (f) the phase diagram of the limit cycle and the corresponding time diagram
of Hopf bifurcation when d = 0.53. (d) the phase diagram of the system when d = 0.51.

bifurcation experienced by the system (2.1) under different parameter conditions.
Under the conditions of different parameters, the model shows transcritical bifur-
cation, Hopf bifurcation and Bogdanov-Takens bifurcation. These bifurcations are
very important in ecology. transcritical bifurcation transforms the extinction equi-
librium of prey into unstable equilibrium, and the unstable coexistence equilibrium
into stable equilibrium. The local existence of limit cycles under different condi-
tions is observed by Hopf bifurcation, and the stability of limit cycles is verified by
numerical simulation. We also observed that the size of the limit cycle changes with
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Figure 4. Phase diagram near Bogdanov-Takens bifurcation point when dBT = 0.08975, e = 0.12,m =
0.2, nBT = 0.3899, p = 0.3. (a) no positive equilibria when (ϵ1, ϵ2) = (−0.00775, 0.0001), (b) there is
an unstable focus when (ϵ1, ϵ2) = (0.00002, 0.0112), (c) there is an unstable limit cycle when (ϵ1, ϵ2) =
(0.0008, 0.0112), (d) there is an unstable homoclinic cycle when (ϵ1, ϵ2) = (0.00325, 0.0112), (e) have a
stable focus when (ϵ1, ϵ2) = (0.00525, 0.0112).

the change of the bifurcation parameters, and the stability of the positive equilib-
rium also changes. We verify the bifurcation of the system by numerical simulation,
which effectively reflects the dynamic behavior of the system.

In recent years, on the basis of some ordinary differential equations, more and
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more researchers have introduced diffusion and delay to the basic model and car-
ried out a lot of studies. The literature [15] proposes a predator-prey model with
herd behavior and prey-taxis, analyzes the stability and bifurcation of the positive
equilibrium of the model, and the results show that the prey-predator can gener-
ate spatial patterns. In [13], a density predator-prey model with Crowley-Martin
functional response and two time delays is investigated, the authors analyze the
stability and bifurcation of the equilibria and discuss the direction of Hopf bifur-
cation and the stability of bifurcation period solutions by means of the methods of
normal form and center manifold theorem. Inspired by the above two articles, we
find that further improvements can be made to the model, and it is worthwhile to
investigate further the dynamic properties.

Appendix. i1 and i2 in the proof of Theorem 3.6

i2 =(−m3e3ξ6 +m3e3ξ4p−m3e3ξ5p− 2e3m3ξ5)(1− ξ)6(ξ + p)2

− 3m4ξ4p(1− 2ξ)2(ξ + p)(2ξ + p)− 6m4e2ξ5(ξ + p)2(1− ξ)4(2ξ + p)

+ (5m4e2ξ4 + 4m4e2ξ3p− 5m4e2ξ4p)(ξ + p)2(1− ξ)4(2ξ + p)

+ (3m3e2ξ6 − 3m3e2ξ5)(ξ + p)2(1− ξ)4(1− 2ξ)

+ (−3m3e2ξ4p+ 3m3e2ξ5p+ 2m4ξ5e)(ξ + p)2(1− ξ)4(1− 2ξ)

+ (−9m5eξ4 + 7m5eξ3 − 7m5eξ3p+ 3m5eξ2p)(ξ + p)2(1− ξ)2(2ξ + p)2

+ (12m4eξ5 − 8m4eξ3p)(ξ + p)2(2ξ + p)(1− 2ξ)(1− ξ)2

+ (10m4eξ4p− 10m4eξ4 +m3ξ2)(ξ + p)2(2ξ + p)(1− 2ξ)(1− ξ)2

+ (−3m3eξ6 + 3m3eξ5)(1− 2ξ)2(ξ + p)2(1− ξ)2

+ (3em3ξ4p− 3m3eξ5p− 4m4eξ5p−m4ξ5)(1− 2ξ)2(ξ + p)2(1− ξ)2

+ (2m5epξ2 + 4m5ξ4 + 3m6ξ4 − 2m6ξ3 + 2pm6ξ3 − pm6ξ2)(2ξ + p)2(ξ + p)2

+ (−4m6ξ3 + 2m6pξ − 3m6ξ2p)(2ξ + p)3(ξ + p)2)

+ (5m5ξ4 − 9m5ξ3 − 5m5ξ2p+ 7m5ξ3p)(ξ + p)2(2ξ + p)2(1− 2ξ)

+ (−6m4ξ5 + 5m4ξ4 + 4m4ξ3p− 2m4ξ4p)(1− 2ξ)2(ξ + p)2(2ξ + p)

+ (m3ξ6 −m3ξ5 −m3ξ4p− 2pm3ξ5)(1− 2ξ)3(ξ + p)2

+ (−6m5ξ5 + 4m5ξ4 − 4pm5ξ4 + 2m5ξ3p)(ξ + p)2(2ξ + p)(1− 2ξ)

+ (3m4ξ6e2 − 2m4e2ξ5 + 2pm4e2ξ5 − pm4e2ξ4 −m3eξ3)(ξ + p)2(1− ξ)4

+ (16m5eξ5 − 4m5eξ4 + 4m5eξ4p− 2m5eξ3p−m4ξ2)(ξ + p)2(1− ξ)2(2ξ + p)

+ (−6m4eξ6 + 4m4eξ5 + 2m4eξ4p+m3ξ3)(ξ + p)2(1− ξ)2(1− 2ξ)

+ 3m6ξ2(2ξ + p)3(ξ + p)2 + (2pe3m3ξ5 −m2e2ξ3)(1− ξ)6(ξ + p)2

+ (2m3ξ6 − 2m4ξ5 + 2pm4ξ5 −m4pξ4 + 3m4ξ6)(1− 2ξ)2(ξ + p)2

+ (−2emp2ξ − 3mpξ +mp2e−mp2 +m2ξ2 +m2pξ)

∗ [m2e2ξ4(ξ + p)(1− ξ)6 + 2m3eξ3(2ξ + p)(ξ + p)(1− ξ)4 − 2m2eξ5(1− ξ)4

+m4ξ2(2ξ + p)2(ξ + p)(1− ξ)2 − 2m3ξ3(2ξ + p)(1− 2ξ)(ξ + p)(1− ξ)2

+m2ξ4(1− ξ)2(ξ + p)(1− 2ξ)2 − 2m2eξ4p(1− 2ξ)(1− ξ)4 + 4m2eξ6(1− ξ)4]
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+ (−3emξ3 + 2emξ2 − 2mξ2 − 5empξ2 + 3empξ)

∗ [m2e2ξ4(ξ + p)(1− ξ)6 + 2m3eξ3(2ξ + p)(ξ + p)(1− ξ)4 − 2m2eξ5(1− ξ)4

+m4ξ2(2ξ + p)2(ξ + p)(1− ξ)2 − 2m3ξ3(2ξ + p)(1− 2ξ)(ξ + p)(1− ξ)2

+m2ξ4(1− ξ)2(ξ + p)(1− 2ξ)2 − 2m2eξ4p(1− 2ξ)(1− ξ)4 + 4m2eξ6(1− ξ)4]

+ 2m5ξ3(1− 2ξ)(2ξ + p)2(ξ + p)2 + 3m3ξ5p(1− 2ξ)3(ξ + p)3

+ 2pem3ξ5[meξ(1− ξ)6 +m2(2ξ + p)(1− ξ)4 −mξ(1− 2ξ)(1− ξ)4]

+ (em3ξ6+m3ep2ξ4)[meξ(1−ξ)6+m2(2ξ+p)(1−ξ)4−mξ(1−2ξ)(1−ξ)4].
i1 ={[eξ3 − (e− ep−m− 1)ξ2 + (mp− p(e− 1)ξ)]× [m2e2ξ2(1− ξ)4(ξ + p)

− 2m2eξ2(1− ξ)2(1− 2ξ)(ξ + p)− 2m3ξ(1− 2ξ)(ξ + p)(2ξ + p)

+m2ξ2(1− 2ξ)2(ξ + p) + 2m3eξ(1− ξ)2(2ξ + p)(ξ + p) +m4(2ξ + p)2(ξ + p)]

+ [2m3eξ3(ξ + p)2(1− ξ)2(1− 2ξ) +m4ξ2(2ξ + p)(ξ + p)2(1− 2ξ)

−m3ξ3(1− 2ξ)2(ξ + p)2 −m3e2ξ3(ξ + p)2(1− ξ)4

−m4eξ2(2ξ + p)(ξ + p)2(1− ξ)2 −m4eξ3(ξ + p)2(1− ξ)2

−m5ξ2(2ξ + p)(ξ + p)2 +m4ξ3(ξ + p)2(1− 2ξ)] + (m2eξ2 + 2m2epξ + em2p2)

× [meξ3(1− ξ)4 +m2ξ2(2ξ + p)(1− ξ)2 −mξ3(1− 2ξ)(1− ξ)2]}
× [meξ(ξ + p)(1− ξ)2 +m2(2ξ + p)(ξ + p)−mξ(1− 2ξ)(ξ + p)].
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