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Abstract In this paper, a class of second-order Hamiltonian systems is stud-
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1. Introduction and main results

Since Rabinowitz published his pioneer paper [15] in 1978, more and more mathe-
maticians have paid more attention to the periodic solutions for the first-order or
second-order Hamiltonian systems. There has been a lot of literature on the study
of periodic solutions for Hamiltonian systems, such as [5, 7, 9, 10, 16, 18–23] and
the references therein. In [15], Rabinowitz considered the following second-order
Hamiltonian systems

ü+ V ′(u) = 0, u ∈ RN . (1.1)

He studied the existence of periodic solutions of system (1.1) under the superquadratic
condition, i.e., (AR): there exist µ > 2 and L > 0 such that 0 < µF (t, u) ≤
(OF (t, u), u) for t ∈ [0, T ] and |u| ≥ L. (AR) plays an important role in showing
that Palais-Smale sequence is bounded. Such condition was first introduced by Am-
brosetti and Rabinowitz [1]. So it is useful in solving superlinear problems such as
elliptic equations, dirac equations and wave equations. Tang and Wu [17] studied
the existence of periodic solutions of system (1.1) with subquadratic and convex
potentials, which unified and generalized the results in [14,16,18,26]. In [11], Long
proved the existence of period solution for system (1.1) without any convexity as-
sumptions, which is one of the some papers [4, 6, 11–13, 24] on the assumptions of
nonconvexity. Inspired by [11], Li [8] obtained the existence of two minimal periodic
solutions of system (1.1) by using a generalized version of the Weierstrass theorem
and a new space decomposition in 2021. To our best knowledge, this is the first re-
sult of the existence of multiple minimal periodic solutions for Hamiltonian systems
with subquadratic potentials. However, under the assumptions of superquadratic
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potentials and subquadratic potentials for system (1.1), the existence of periodic
solutions with more properties has not been obtained.

Motivated by the above mentioned work, we study the following second-order
Hamiltonian systems with a parameter

ü+ λV ′(u) = 0, (1.2)

where λ is a parameter, V ∈ C1(RN , R), V (0) = 0 and V (u) =
∫ u

0
V ′(s)ds.

Next, we assume the following conditions, in which condition (V2) is the su-
perquadratic assumption for the nonlinear term and condition (V3) is the sub-
quadratic assumption for the nonlinear term.
(V1) V (−u) = V (u) for any u ∈ RN ;
(V2) 0 < µV (u) ≤ V ′(u)u for u ≥ M , where µ and M are two positive constants
and µ > 2;
(V3) there is a constant 1 < β < 2 such that V (u) ≤ A|u|β + p(t), where
p(t) ∈ L1[0, T ].

The new insights presented in the paper are as follows. Firstly, system (1.2) is
a generalization of system (1.1). If λ = 1, system (1.2) reduces to system (1.1).
Secondly, superquadratic and subquadratic assumptions are imposed on nonlinear
term, respectively. In the two cases, the existence of six periodic solutions and nine
periodic solutions is obtained. Finally, comparing with [8], we also consider the
existence of two odd T/2-antiperiodic nonconstant solutions with period T .

Our main results are as follows.

Theorem 1.1. Assume that conditions (V1), (V2) hold and there exists a posi-

tive constant r1 such that (V4)
∫ T

0
V (sin 2π

T t)dt >
π2

r1
max|u|<c1 V (u), where c1 =√

(24+π2)Tr1
24π2 . Then for each λ ∈

(
π2

T
∫ T
0
V (sin 2π

T t)dt
, r1
T max|u|<c1 V (u)

)
, system (1.2)

has at least two odd T/2-antiperiodic nonconstant solutions with period T .

Corollary 1.1. Assume that conditions (V1), (V2) hold and there exists a posi-

tive constant r2 such that (V5)
∫ T

0
V (sin 4π

T t)dt ≥
4π2

r2
max|u|<c2 V (u), where c2 =√

Tr2
24 . Then for each λ ∈

(
4π2

T
∫ T
0
V (sin 4π

T t)dt
, r2
T max|u|<c2 V (u)

)
, system (1.2) has at

least two odd nonconstant periodic solutions with period T/2.

Corollary 1.2. Assume that conditions (V1), (V2) hold and there exists a posi-

tive constant r3 such that (V6)
∫ T

0
V (cos 2π

T t)dt ≥
π2

r3
max|u|<c3 V (u), where c3 =√

(24+π2)Tr3
24π2 . Then for each λ ∈

(
π2

T
∫ T
0
V (cos 2π

T t)dt
, r3
T max|u|<c3 V (u)

)
, system (1.2)

has at least two even T/2-antiperiodic nonzero solutions with period T .

Remark 1.1. Assume that conditions (V1), (V2), (V4), (V5) and (V6) hold. Then

for each λ ∈
(

max{ π2

T
∫ T
0
V (sin 2π

T t)dt
, 4π2

T
∫ T
0
V (sin 4π

T t)dt
, π2

T
∫ T
0
V (cos 2π

T t)dt
},

min{ r1
T max|u|<c1 V (u) ,

r2
T max|u|<c2 V (u) ,

r3
T max|u|<c3 V (u)}

)
, system (1.2) has at least six

periodic solutions.

Theorem 1.2. Assume that there is a positive constant r4 and a function v ∈
X with Φ(v) > 2k1, where k1 =

√
(24+π2)Tr4

24π2 . Suppose that conditions (V1) ,

(V3) and (V7)
∫ T

0
V (sin 2π

T t)dt >
3π2

2r4
max|u|<k1

V (u) hold. Then, for each λ ∈
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3π2

2T
∫ T
0
V (sin 2π

T t)dt
, r4
T max|u|<k1

V (u)

)
, the system (1.2) has at least three odd T/2-

antiperiodic solutions with period T .

Corollary 1.3. Assume that there is a positive constant r5 and a function v ∈ X
with Φ(v) > 2k2, where k2 =

√
Tr5
24 . In addition, suppose that the conditions (V1),

(V3) and (V8)
∫ T

0
V (sin 4π

T t)dt >
6π2

r5
max|u|<k2

V (u) hold. Then, for each λ ∈(
6π2

T
∫ T
0
V (sin 4π

T t)dt
, r5
T max|u|<k2

V (u)

)
, the system (1.2) has at least three odd periodic

solutions with period T/2.

Corollary 1.4. Assume that there is a positive constant r6 and a function v ∈ X
with Φ(v) > 2k3, where k3 =

√
(24+π2)Tr6

24π2 . In addition, suppose that the conditions

(V1), (V3) and (V9)
∫ T

0
V (cos 2π

T t)dt >
3π2

2r6
max|u|<k3

V (u) hold. Then, for each

λ ∈
(

3π2

2T
∫ T
0
V (cos 2π

T t)dt
, r6
T max|u|<k3

V (u)

)
, the system (1.2) has at least three even

T/2-antiperiodic solutions with period T .

Remark 1.2. Assume that conditions (V1), (V3), (V7), (V8) and (V9) hold. Then

for each λ ∈
(

max{ 3π2

2T
∫ T
0
V (sin 2π

T t)dt
, 6π2

T
∫ T
0
V (sin 4π

T t)dt
, 3π2

2T
∫ T
0
V (cos 2π

T t)dt
},

min{ r4
T max|u|<k1

V (u) ,
r5

T max|u|<k2
V (u) ,

r6
T max|u|<k3

V (u)}
)
, system (1.2) has at least

nine periodic solutions.

2. Preliminaries

In this section, we recall some essential definitions and several lemmas.
Let us consider the space X = H1

T = W 1,2(ST , R
N ) with the norm ‖u‖ =(∫ T

0
|u|2 + |u̇|2dt

) 1
2

, where ST = R/(TZ), T > 0, Z is the integer. It is well known

that X is a reflexive Banach space. We can split X into X = XT

⊕
YT , where

XT = {u ∈ H1
T

∣∣u(−t) = −u(t)} and YT = {u ∈ H1
T

∣∣u(−t) = u(t)}. XT and YT are
closed subspaces of X and Y , then they are reflexive Banach spaces. Moreover, we
define

X1
T = {u ∈ XT

∣∣u(t) = −u(t− T/2)} and X2
T = {u ∈ XT

∣∣u(t) = u(t− T/2)},
Y 1
T = {u ∈ YT

∣∣u(t) = −u(t− T/2)} and Y 2
T = {u ∈ YT

∣∣u(t) = u(t− T/2)},

where XT = X1
T

⊕
X2
T and YT = Y 1

T

⊕
Y 2
T . Obviously, for x1 ∈ X1

T , x2 ∈ X2
T , y1 ∈

Y 1
T and y2 ∈ Y 2

T , we have the following Fourier expansions

x1 =

+∞∑
k=0

b2k+1 sin((2k + 1)ωt) and x2 =

+∞∑
k=1

b2k sin(2kωt),

y1 =

+∞∑
k=0

a2k+1 cos((2k + 1)ωt) and y2 =

+∞∑
k=0

a2k cos(2kωt),

where ω = 2π
T . In these spaces X1

T , X
2
T and Y 1

T , we define the norms as follows

‖u‖X1
T

= ‖u‖X2
T

= ‖u‖Y 1
T

=
( ∫ T

0
|u̇|2dt

) 1
2 , and these norms are equivalent to the
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normal norm ‖u‖. In addition, take ‖u‖Y 2
T

=
( ∫ T

0
|u|2 + |u̇|2dt

) 1
2 = ‖u‖. We define

energy functional Iλ : X → RN by

Iλ(u) =
1

2

∫ T

0

|u̇|2dt− λ
∫ T

0

V (u(t))dt. (2.1)

And Iλ(u) can also be represented as Iλ(u) = Φ(u)− λΨ(u), where the functionals
Φ(u),Ψ(u) : X → RN are defined as follows

Φ(u) =
1

2

∫ T

0

|u̇|2dt (2.2)

and

Ψ(u) =

∫ T

0

V (u(t))dt. (2.3)

Obviously, Iλ(u) is a Gâteaux differentiable functional and its Gâteaux derivation
is continuous in u. So its Fréchet derivative at the point u is

〈I ′λ(u), v〉 =

∫ T

0

(u̇(t), v̇(t))dt− λ
∫ T

0

V ′(u(t))v(t)dt. (2.4)

Definition 2.1. A function u ∈ X is said to be a weak solution of system (1.2) , if
u satisfies 〈I ′λ(u), v〉 = 0 for all v ∈ X.

Definition 2.2. A funtion u is said to be a classical solution of system (1.2), if
u ∈ C2(R,R) satisfies equations in system (1.2).

The following two lemmas are the latest Two-Critical-Point-Theorem [2] and
Three-Critical-Point-Theorem [3], which are used to prove Theorem 1.1 and Theo-
rem 1.2.

Lemma 2.1 ( [2]). Let X be a reflexive real Banach space and let Φ,Ψ : X → R
be two functionals of class C1 such that infX Φ = Φ(0) = Ψ(0) = 0. Assume that
there exist r ∈ R and ũ ∈ X with 0 < Φ(ũ) < r, such that

supu∈Φ−1(−∞,r) Ψ(u)

r
<

Ψ(ũ)

Φ(ũ)
, (2.5)

and for each λ ∈ ∧ =
(Φ(ũ)

Ψ(ũ) ,
r

supu∈Φ−1(−∞,r) Ψ(u)

)
, the functional Iλ = Φ−λΨ satisfies

the Palais-Smale Condition ((PS)-condition) and it is unbounded from below. Then,
for each λ ∈ ∧, the functional Iλ(x) admits at least two nonzero critical points
uλ,1, uλ,2 such that I(uλ,1) < 0 < I(uλ,2).

Lemma 2.2 ( [3]). Let X be a reflexive real Banach space and let Φ : X → R be a
coercive and continuous Gâteaux differentiable functional whose Gâteaux derivative
admits a continuous inverse on X∗. In addition, let Ψ : X → R be a continuous
Gâteaux differentiable functional whose derivative is compact with infX Φ = Φ(0) =
Ψ(0) = 0. Assume that there exists a positive constant r and an element v ∈ X
with 2r < Φ(v), such that

(a1)
supu∈Φ−1(−∞,r) Ψ(u)

r < 2Ψ(v)
3Φ(v) ;
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(a2) for all λ ∈
( 3Φ(v)

2Ψ(v) ,
r

supu∈Φ−1(−∞,r) Ψ(u)

)
, the functional Φ− λΨ is coercive.

Then, for each λ ∈
( 3Φ(v)

2Ψ(v) ,
r

supu∈Φ−1(−∞,r) Ψ(u)

)
, the functional Φ − λΨ has at least

three distinct critical points.

For the next two lemmas, we can refer to [8, Lemma 2.2] and [4, Lemma 1.2].

Lemma 2.3 ( [4, 8]). Suppose that condition (V1) holds. Then we have Iλ ∈
C1(XT , R), and u ∈ XT is a critical point of Iλ restricted to XT if and only if
it is a C2-solution of system (1.2) (The result still holds if we replace XT with YT .)

Lemma 2.4 ( [4, 8]). Suppose that (V1) holds. Then one has
(i) x∗ ∈ X1

T (X2
T ) is a critical point of Iλ restricted to X1

T (X2
T ) if and only if it is a

critical point of Iλ in XT , that is, x∗ is an odd C2-solution of system (1.2).
(ii) y∗ ∈ Y 1

T (Y 2
T ) is a critical point of Iλ restricted to Y 1

T (Y 2
T ) if and only if it is a

critical point of Iλ in YT , that is, y∗ is an odd C2-solution of system (1.2).

Next, in order to obtain the main conclusions, it is necessary to prove the fol-
lowing lemmas.

Lemma 2.5. If u ∈ X1
T (or u ∈ Y 1

T ), then
∫ T

0
|u(t)|2dt ≤ T 2

4π2

∫ T
0
|u̇(t)|2dt and

‖u‖2∞ ≤ T
2π2 (1 + π2

24 )
∫ T

0
|u̇(t)|2dt. In addition, if u ∈ X̃2

T = {u ∈ X2
T :
∫ T

0
u(t)dt =

0}, we have
∫ T

0
|u(t)|2dt ≤ T 2

16π2

∫ T
0
|u̇(t)|2dt and ‖u‖2∞ ≤ T

48

∫ T
0
|u̇(t)|2dt.

Proof. If u ∈ X1
T , we have

u(t) =

+∞∑
k=0

b2k+1 sin((2k + 1)ωt). (2.6)

The Parseval equality implies that∫ T

0

|u(t)|2dt =
T

2

+∞∑
k=0

|b2k+1|2. (2.7)

Since

u̇(t) =

+∞∑
k=0

(2k + 1)ω · b2k+1 cos((2k + 1)ωt) =

+∞∑
k=0

2(2k + 1)π

T
b2k+1 cos((2k + 1)ωt),

(2.8)

by (2.6)-(2.8), we have∫ T

0

|u̇(t)|2dt =

+∞∑
k=0

2(2k + 1)2π2

T
|b2k+1|2 ≥

4π2

T 2

+∞∑
k=0

T

2
|b2k+1|2 =

4π2

T 2

∫ T

0

|u(t)|2dt.

(2.9)

By Cauchy-Schwarz inequality, we obtain

|u(t)|2 ≤

(
+∞∑
k=0

|b2k+1|

)2

=

( +∞∑
k=0

T

2(2k + 1)2π2

)( +∞∑
k=0

2(2k + 1)2π2

T
|b2k+1|2

)
,

(2.10)
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where

+∞∑
k=0

T

2(2k + 1)2π2
=

T

2π2

+∞∑
k=0

1

(2k + 1)2
=

T

2π2

(
1 +

+∞∑
k=1

1

(2k + 1)2

)

≤ T

2π2

(
1 +

+∞∑
k=1

1

4k2

)
=

T

2π2

(
1 +

π2

4× 6

)
=

T

2π2

(
1 +

π2

24

)
.

(2.11)

Put (2.9) and (2.11) into (2.10), we get

|u(t)|2 ≤ T

2π2

(
1 +

π2

24

)∫ T

0

|u̇(t)|2dt.

If u ∈ X2
T , and

∫ T
0
u(t)dt = 0

u(t) =

+∞∑
k=1

b2k sin(2kωt). (2.12)

By Parseval equality, we have∫ T

0

|u(t)|2dt =
T

2

+∞∑
k=1

|b2k|2. (2.13)

Since

u̇(t) =

+∞∑
k=1

2kωb2k cos(2kωt) =

+∞∑
k=1

4kπ

T
b2k cos(2kωt), (2.14)

we have∫ T

0

|u̇(t)|2dt =

+∞∑
k=1

8k2π2

T
|b2k|2 ≥

16π2

T 2

+∞∑
k=1

T

2
|b2k|2 =

16π2

T 2

∫ T

0

|u(t)|2dt. (2.15)

According to Cauchy-Schwarz inequality and combining (2.12) with (2.15), we ob-
tain

|u(t)|2 ≤

(
+∞∑
k=1

|b2k|

)2

≤
( +∞∑
k=1

T

8k2π2

)( +∞∑
k=1

8k2π2

T
|b2k|2

)

=

(
T

8π2

+∞∑
k=1

1

k2

)( +∞∑
k=1

8k2π2

T
|b2k|2

)
≤ T

48

∫ T

0

|u̇(t)|2dt.

If u ∈ Y 1
T , we get

u(t) =

+∞∑
k=0

a2k+1 cos((2k + 1)ωt). (2.16)

According to Parseval equality, it is obvious that∫ T

0

|u(t)|2dt =
T

2

+∞∑
k=0

|a2k+1|2. (2.17)
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According to

u̇(t) = −
+∞∑
k=0

(2k + 1)ω · a2k+1 sin((2k + 1)ωt)

= −
+∞∑
k=0

2(2k + 1)π

T
a2k+1 sin((2k + 1)ωt),

(2.18)

we have∫ T

0

|u̇(t)|2dt =

+∞∑
k=0

2(2k + 1)2π2

T
|a2k+1|2 ≥

4π2

T 2

+∞∑
k=0

T

2
|a2k+1|2 =

4π2

T 2

∫ T

0

|u(t)|2dt.

(2.19)

By Cauchy-Schwarz inequality, (2.11) and (2.19), we get

|u(t)|2 ≤

(
+∞∑
k=0

|a2k+1|

)2

=

( +∞∑
k=0

T

2(2k + 1)2π2

)( +∞∑
k=0

2(2k + 1)2π2

T
|a2k+1|2

)

≤ T

2π2

(
1 +

π2

24

)∫ T

0

|u̇(t)|2dt. (2.20)

Lemma 2.6. The spaces X1
T , X̃

2
T and Y 1

T are compactly embedded to C[0, T ], i.e.,

X1
T ↪→↪→ C[0, T ], X̃2

T ↪→↪→ C[0, T ]and Y 1
T ↪→↪→ C[0, T ].

Proof. In order to prove that space X1
T is compactly embedded to C[0, T ], it

is sufficient to prove that space X1
T is continuously embedded to space X since

X ↪→↪→ C[0, T ]. From Lemma 2.5, one has

‖u‖2 = ‖u̇‖2L2 + ‖u‖2L2 ≤ ‖u̇‖2L2 +
T 2

4π2
‖u̇‖2L2 =

T 2 + 4π2

4π2
‖u̇‖2L2 =

T 2 + 4π2

4π2
‖u‖2X1

T

for u ∈ X1
T , which means space X1

T is continuously embedded to space X. Therefore

space X1
T is compactly embedded to C[0, T ]. In the same way , we have X̃2

T ↪→↪→
C[0, T ] and Y 1

T ↪→↪→ C[0, T ].

Lemma 2.7. The spaces X1
T , X̃

2
T and Y 1

T are reflexive real Banach spaces.

Proof. It is enough to show that X1
T is a closed subspace of XT . Let {un} ⊂ X1

T

and un → u0 as n → ∞. Next we show u0 ∈ X1
T . Since {un} ⊂ X1

T and un → u0

as n→∞, then un(t) = −un(t− T
2 ) and ‖un − u0‖X1

T
→ 0 as n→∞. By Lemma

2.5 , ‖un − u0‖∞ → 0 as n→∞, which means un(t)→ u0(t) as n→∞, t ∈ [0, T ].

So u0(t) = −u0(t − T
2 ). That is , u0 ∈ X1

T . Similarly, the spaces X̃2
T and Y 1

T are
reflexive real Banach spaces.

Lemma 2.8. If (V2) holds and λ > 0, then the functional Iλ is unbound from below

on X1
T (or X̃2

T ,Y 1
T ), and it satisfies the (PS)-condition on X1

T (or X̃2
T ,Y 1

T ).

Proof. Firstly, we discuss whether Iλ is unbound from below. By (V2), one knows
there exist two constants α, β > 0 such that V (u) ≥ α|u|µ − β, where µ > 2. For
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some u0 ∈ X1
T /{0}, l ∈ R, we obtain

Iλ(lu0) =
1

2

∫ T

0

|lu̇0|2dt− λ
∫ T

0

V (lu0)dt.

≤ l2

2
‖u̇0‖2L2 − λlµ

∫ T

0

α|u0|µdt+ λβT → −∞.

Thus, the energy functional Iλ is unbound from below.
Secondly, we prove that Iλ satisfies the (PS)-condition. Let {un} ⊂ X1

T be a
sequence such that |Iλ(un)| < M and 〈I ′λ(un), un〉 → 0 as n → ∞. For n large
enough, by (V2), we evaluate

M +
1

µ
‖un‖X1

T
≥ Iλ(un)− 1

µ
〈I ′λ(un), un〉

=(
1

2
− 1

µ
)‖un‖2X1

T
− λ(

∫ T

0

V (un)dt− 1

µ

∫ T

0

V ′(un)undt)

≥(
1

2
− 1

µ
)‖un‖2X1

T
,

where µ > 2. Thus {un} is bounded in X1
T . Since X1

T is a reflexive Banach
space, the fact that {un} is bounded in X1

T means that one has weakly convergent
subsequence {unm} such that unm ⇀ u in X1

T . Moreover, one has

〈I ′λ(unm)− I ′λ(u), unm − u〉 → 0

=‖unm − u‖2X1
T
− λ

∫ T

0

(V ′(unm)− V ′(u))(unm(t)− u(t))dt.

By Lemma 2.6, one has (X1
T , ‖ · ‖) ↪→↪→ C([0, T ]), which means∫ T

0

(V ′(unm)− V ′(u))(unm(t)− u(t))dt→ 0

as m → ∞ and ‖unm − u‖2
X1
T
→ 0 as m → +∞. Therefore Iλ satisfies (PS)-

condition. Using the same proof method, if u ∈ X̃2
T or u ∈ Y 1

T , then one knows that
the functional Iλ is unbound from below and satisfies the (PS)-condition.

Lemma 2.9. Φ is coercive on X1
T (or X̃2

T ,Y 1
T ) and Φ′ has a continuous inverse on

(X1
T )∗(or(X̃2

T )∗,(Y 1
T )∗).

Proof. By (2.2), it is obvious that Φ is coercive. Moreover, from [ [25], Theorem
26], Φ′ will have a continuous inverse on (X1

T )∗ if Φ′ is coercive and continuous

monotone. Firstly, we know 〈Φ′(u), u〉 =
∫ T

0
|u̇(t)|2dt = ‖u‖2

X1
T

, which yields that

Φ′ is coercive. Secondly, in consideration of

〈Φ′(u)− Φ′(v), u− v〉 = ‖u(t)− v(t)‖2X1
T
,

we get Φ′ is continuous monotone. Hence, Lemma 2.9 holds.

Lemma 2.10. Ψ′ : X1
T → (X1

T )∗ is compact with infu∈X1
T

Φ(u) = Φ(0) = Ψ(0) = 0.
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Proof. Firstly, since V (0) = 0, it is clear that infu∈X1
T

Φ = Φ(0) = Ψ(0) = 0.

Secondly, let {un} ⊂ X1
T be a sequence such that un ⇀ u as n → ∞. Since

X1
T ↪→↪→ C[0, T ], we know {un} is uniformly convergent to u in C[0, T ] as n→∞.

According to the fact that V (u) ∈ C1(RN , R), we get limn→∞ V ′(un) = V ′(u),
which obtains

lim
n→∞

sup
v∈X1

T

< Ψ′(un)−Ψ′(u), v >

‖v‖X1
T

= lim
n→∞

sup
v∈X1

T

∫ T
0

(V ′(un)− V ′(u), v)dt

‖v‖X1
T

= 0.

Therefore Ψ′ is strongly continuous in X1
T . By [ [25], Proposition 26.2], Ψ′ is

compact. Similarly Ψ′ is compact in spaces X̃2
T and Y 1

T . In addition, we have
inf

u∈X̃2
T

Φ(u) = Φ(0) = Ψ(0) = 0 and infu∈Y 1
T

Φ(u) = Φ(0) = Ψ(0) = 0.

3. Proof of main results

Proof of Theorem 1.1. By (2.2) and Lemma 2.5, we deduce that

Φ−1(−∞, r1) = {u ∈ X1
T

∣∣Φ(u) < r1} = {u ∈ X1
T

∣∣‖u̇‖2L2 < 2r1}

⊆ {u ∈ X1
T

∣∣‖u‖2∞ <
(24 + π2)Tr1

24π2
} = {u ∈ X1

T

∣∣‖u‖∞ < c1}.

Therefore

sup
u∈Φ−1(−∞,r1)

Ψ(u) < sup
‖u‖∞<c1

∫ T

0

V (u(t))dt < T max
|u|<c1

V (u).

Take ũ = sin( 2π
T t), we have

Φ(ũ) =
1

2

∫ T

0

| ˙̃u|2dt =
2π2

T 2

∫ T

0

(cos
2π

T
t)2dt =

π2

T
.

From (V4), we get

Ψ(ũ)

Φ(ũ)
=
T
∫ T

0
V (sin 2π

T t)dt

π2
>
T max|u|<c1 V (u)

r1
>

supu∈Φ−1(−∞,r1) Ψ(u)

r1
.

Hence, inequality (2.5) of Lemma 2.1 is verified. Combining Lemma 2.1, Lemma

2.8 and Lemma 2.10, for each λ1 ∈
(

π2

T
∫ T
0
V (sin 2π

T t)dt
, r1
T max|u|<c1 V (u)

)
, we obtain

that system (1.2) has two nonzero critical points uλ,1, uλ,2.

In addition, it is obvious that X1
T ∩RN = {0} by the definition of X1

T . So uλ,1
and uλ,2 are not constants. By Lemma 2.4 , we conclude that there are at least two
odd T/2-antiperiodic nonconstant solutions with period T of system (1.2).

Proof of Theorem 1.2. By (2.2) and Lemma 2.5, one has

Φ−1(−∞, r4) = {u ∈ X1
T

∣∣Φ(u) < r4} = {u ∈ X1
T

∣∣‖u̇‖2L2 < 2r4}

⊆ {u ∈ X1
T

∣∣‖u‖2∞ <
(24 + π2)Tr4

24π2
} = {u ∈ X1

T

∣∣‖u‖∞ < k1},
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which deduces that

sup
u∈Φ−1(−∞,r4)

Ψ(u) < T max
|u|<k1

V (u).

Let v = sin( 2π
T t). One has

Φ(v) =
1

2

∫ T

0

|v̇|2dt =
2π2

T 2

∫ T

0

(cos
2π

T
t)2dt =

π2

T
.

From (V7), it follows

2Ψ(v)

3Φ(v)
=

2T
∫ T

0
V (sin 2π

T t)dt

3π2
>
T max|u|<k1

V (u)

r4
>

supu∈Φ−1(−∞,r4) Ψ(u)

r4
.

Then, combining (2.1) and (V3), we have

Iλ(u) = Φ(u)− λΨ(u) =
1

2

∫ T

0

|u̇|2dt− λ
∫ T

0

V (u)dt

≥ 1

2

∫ T

0

|u̇|2dt− λ
∫ T

0

A|u|β + p(t)dt,

which means Iλ(u)→ +∞ as ‖u‖X → +∞. Thus, Φ− λΨ is coercive. In addition,
by Lemma 2.2, Lemma 2.4, Lemma 2.9 and Lemma 2.10, the system (1.2) has at
least three odd T/2-antiperiodic solutions with period T .

Remark 3.1. Similar to the proof of Theorem 1.1 and Theorem 1.2, we get Corol-
lary 1.1, Corollary 1.2, Corollary 1.3 and Corollary 1.4.

4. Main examples

Example 4.1. Consider the second order Hamiltonian systems (1.2), where V (u) =

u100. Let c1 = c2 = c3 = 1
100 , T = 2π and r1 = r3 =

12πc21
24+π2 , r2 =

12c22
π . There-

fore, We have π2

r max|u|<c1 V (u) = 24π+π3

12c21
max|u|<c1 V (u) < 24π+π3

12 ( 1
100 )98. If

v = sin 2π
T t ∈ X1

T , then
∫ 2π

0
(sin t)100dt > 24π+π3

12 ( 1
100 )98. Therefore for v ∈ X1

T ,
the condition (V4) of Theorem 1.1 is satisfied. According to Theorem 1.1, for each

λ1 ∈
(

π
2
∫ 2π
0

(sin t)100dt
, 6(100)98

24+π2

)
, system (1.2) has at least two odd T/2-antiperiodic

nonconstant solutions with period T . In addition, we take v = sin 2t in X̃2
T , then∫ 2π

0
(sin 2t)100dt > π3

12 ( 1
100 )98. Therefore for v ∈ X̃2

T , the condition (V5) of Theorem

1.1 is satisfied. According to Theorem 1.1, for each λ2 ∈
(

π
2
∫ 2π
0

(sin 2t)100dt
, 6(100)98

π2

)
,

system (1.2) has at least two odd nonconstant periodic solutions with period T/2.

If v = cos 2π
T t ∈ X

1
T , then

∫ 2π

0
(cos t)100dt > 24π+π3

12 ( 1
100 )98. Therefore for v ∈ Y 1

T ,
the condition (V6) of Theorem 1.1 is satisfied. According to Theorem 1.1, for each

λ3 ∈
(

π
2
∫ 2π
0

(cos t)100dt
, 6(100)98

24+π2

)
, system (1.2) has at least two even T/2-antiperiodic

nonzero solutions with period T . Therefore, for λ ∈
(

π
2
∫ 2π
0

(sin t)100dt
, 6(100)98

24+π2

)
, sys-

tem (1.2) has at least six periodic solutions.
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Example 4.2. Consider the second order Hamiltonian systems (1.2), where V (u) =

u4. Let k1 = k2 = k3 = 1
100 , T = 2π, r4 = r6 =

12πk2
1

24+π2 , r5 =
12k2

2

π , A = 2, β = 4
3 ,

p(t) = u4. Take v(t) = sin t(t ∈ (π4 + kπ, 3π
4 + kπ)) in X1

T , which means that

Φ(v) > 2k1 and V (u) ≤ A|u|β + p(t). If t ∈ (π4 + kπ, 3π
4 + kπ), we have v(t) >

√
2

2 .

Further we have
∫ 2π

0
V (sin t) > π

2 >
3π2

2r4
max|u|<k1

V (u), which means condition (V7)

of Theorem 1.2 is satisfied. Therefore for λ4 ∈
(

3π
4
∫ 2π
0

(sin t)4dt
, 6(100)2

24+π2

)
, the system

(1.2) has at least three odd T/2-antiperiodic solutions with period T . In addition,

we take v = sin 2t in X̃2
T , which means that Φ(v) > 2k2 and V (u) ≤ A|u|β + p(t).

If t ∈ (π8 + kπ, 3π
8 + kπ), we have v(t) >

√
2

2 . Further we have
∫ 2π

0
V (sin 2t) > π

2 >
6π2

r5
max|u|<k2

V (u), which means condition (V8) of Theorem 1.2 is satisfied. There-

fore for λ5 ∈
(

3π∫ 2π
0

(sin 2t)4dt
, 6(100)2

π2

)
, the system (1.2) has at least three odd periodic

solutions with period T/2. Take v = cos t(t ∈ (−π4 +kπ, π4 +kπ)) in Y 1
T , which means

that Φ(v) > 2k3 and V (u) ≤ A|u|β + p(t). If t ∈ (−π4 + kπ, π4 + kπ), we have v(t) >
√

2
2 . Further we have

∫ 2π

0
V (sin t) > π

2 > 3π2

2r6
max|u|<k3

V (u), which means condi-

tion (V9) of Theorem 1.2 is satisfied. Therefore for λ6 ∈
(

3π
4
∫ 2π
0

(cos t)4dt
, 6(100)2

24+π2

)
,

the system (1.2) has at least three even T/2-antiperiodic solutions with period T .

Therefore, for λ ∈
(

3π∫ 2π
0

(sin 2t)4dt
, 6(100)98

24+π2

)
, system (1.2) has at least nine periodic

solutions.
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