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SUCCESSIVE ITERATIONS FOR POSITIVE
EXTREMAL SOLUTIONS OF BOUNDARY
VALUE PROBLEMS ON THE HALF-LINE
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Abstract The authors study the existence of positive extremal solutions to
the differential equation

−u′′ + λu = a (t) f(t, u(t)), t ∈ I,

subject to the boundary conditions

u (0) = u (∞) = 0,

where I = (0,∞), f : R+ × R+ → R+ is continuous, a : I → R+, and λ > 0
is a parameter. Their results are obtained by using the monotone iterative
method and are illustrated with an example.
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1. Introduction

In 1837, Liouville introduced a fundamental approximation scheme in fixed point
theory known as the fixed point iterative method. It was further developed by
several mathematicians including Picard [22] in 1890. A number of mathematicians
have used this method over the years, for example, see [12,17,20,21,24,25].

In this work, we give sufficient conditions for the existence of a maximal and
minimal positive solution to the second order boundary value problem posed on the
half-line −u′′ + λu = a (t) f(t, u(t)), t ∈ I,

u (0) = u (∞) = 0,
(1.1)

where I = (0,∞), f : R+ × R+ → R+ is continuous, a : I → R+, λ > 0 is a
parameter, and there exists t0 ∈ I such that f(t0, 0) 6= 0.
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Investigations of second order boundary value problems on the half-line have
been conducted in a number of settings. For example, there have been studies
of problems in which the equation under consideration is linear [5], nonlinear [3,
10, 24, 25], singular [2], contains the derivative of the unknown function [19, 23],
contains a parameter [19], involves the Laplacian [9, 14, 15], be of the Kirchhoff
type [13], or there may be impulse conditions involved [1,6,15,17]. In addition, the
boundary conditions themselves may be of the Dirichlet type [9], the multi-point
type [14, 18, 20], contain a functional [23], or the problem may be at resonance
[14–16, 18]. The techniques used to prove the results have involved variational
methods [7, 9, 11], critical point theory [4], or fixed point methods.

In our paper we choose to use a successive approximation approach to prove
the existence of maximal and minimal positive solutions to problem (1.1). After
presenting some preliminary concepts in the next section of the paper, our main
result, its proof, and an example appear in Section 3.

2. Preliminaries

Let G(t, s) the Green’s function associated to our problem (1.1) which is given by

G(t, s) =
1

2
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Notice that for t 6= s, we have

G̃(t, s) =
∂G(t, s)

∂t
=

1

2

e
−
√
λs
(
e
√
λt + e−

√
λt
)
, t < s,

−e−
√
λt
(
e
√
λs − e−

√
λs
)
, s < t.

We will need the following lemmas.

Lemma 2.1. ( [10, Lemma 5.1]) We have

G(t, s) ≤ 1

2
√
λ
, |G̃(t, s)| < 1,

and
G(t, s)e−µt ≤ G(s, s)e−

√
λs for t, s ∈ I and all µ ≥

√
λ.

Lemma 2.2. For all t1, t2 ≥ 0 and all s ∈ I, we have

|G(t2, s)−G(t1, s)| ≤ |t2 − t1|.

Proof. This follows easily from the Mean Value Theorem.
For our construction, we let

E =

{
u ∈ C([0,+∞),R) : sup

t∈R+

|u(t)| <∞
}

with the norm ‖u‖ = supt∈R+ |u(t)|.
We next have a lemma that gives an integral representation for solutions of our

original problem.
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Lemma 2.3. If a function u ∈ E is a solution of the integral equation u(t) =∫ +∞
0

G(t, s)g(s)ds then u ∈ E is a solution of the boundary value problem{
−u′′ + λu = g(t), t ∈ I,
u(0) = u(∞) = 0,

where g ∈ L1(0,+∞).

Proof. Notice that here we need that the function g satisfies g ∈ L1(0,+∞) to

assure that the integral
∫ +∞
0

G(t, s)g(s)ds is defined. From Lemma 2.1 we have
that ∫ +∞

0

G(t, s)g(s)ds ≤ 1

2
√
λ

∫ +∞

0

g(s)ds < +∞.

We also have
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∫ t
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and so
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Clearly, we have −u′′(t) + λu(t) = g(t).

Finally, u(0) =
∫ +∞
0

G(0, s)g(s)ds =
∫ +∞
0

0ds = 0; and from the Lebesgue
Dominated Convergence Theorem,

u(∞) = lim
t→+∞

∫ +∞

0

G(t, s)g(s)ds =

∫ +∞

0

lim
t→+∞

G(t, s)g(s)ds = 0.
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Next, we define a cone P in E by

P =
{
u ∈ E : u(t) ≥ 0, t ∈ R+

}
.

On P , we define the operator T by

Tu(t) =

∫ +∞

0

a(s)G(t, s)f(s, u(s))ds.

The following compactness criteria is based on [8, p. 62].

Lemma 2.4. Let D ⊂ E be a bounded set. Then D is relatively compact in E if
the following conditions hold:

1. D is equicontinuous on any compact sub-interval of [0,+∞), i.e., for any
compact set K ⊂ [0,+∞), for any ε > 0 there exists δ > 0 such that for all
t1, t2 ∈ K, |t1 − t2| < δ implies |u(t2)− u(t1)| ≤ ε, for all u ∈ D;

2. D is equiconvergent at +∞, i.e., for every ε > 0 there exists T = T (ε) such
that, t ≥ T (ε) implies |u(t)− u(+∞)| ≤ ε for all t ≥ T (ε) and u ∈ D.

3. Main result

Our main existence result in this paper is contained in the following theorem.

Theorem 3.1. Assume that f : R+×R+ → R+ is a continuous function satisfying
the following conditions:

(H1) There exist nonnegative functions b, c ∈ C(R+,R+) and constant 1 > p ≥ 0,
such that

f(t, u) ≤ b(t) + c(t)|u|p for all (t, u) ∈ R+ × R+

with ∫ +∞

0

a(s)b(s)ds = β <∞,
∫ +∞

0

a(s)c(s)ds = δ <∞.

(H2) f is nondecreasing with respect to its second variable.

Then there exists a positive constant R such that in (0, R] the problem (1.1) has a
minimal positive solution u∗ and a maximal positive solution v∗ with

u0 ≡ 0, un+1 =

∫ +∞

0

G(t, s)a(s)f(s, un(s))ds,

and

v0 ≡ R, vn+1 =

∫ +∞

0

G(t, s)a(s)f(s, vn(s))ds,

and for which we have

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ u∗ ≤ · · · ≤ v∗ ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0. (3.1)
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Proof. To show that the operator T : E → E is relatively compact, let Ω be any
bounded subset of E. Then there exists a constant M > 0 such that, for any u ∈ Ω
with ‖u‖ ≤M , we have

‖Tu‖ = sup
t∈R+

|Tu(t)| ≤ 1

2
√
λ

[β + δMp].

This implies that T (Ω) is uniformly bounded.

To see that S = {Tu : u ∈ P ∩ Ω} is almost equicontinuous on I, that is, S is
equicontinuous on compact subsets of I, let K ⊂ I be compact and let t2, t1 ∈ K.
For all u ∈ P ∩ Ω, we have

|Tu(t1)− Tu(t2)| ≤
∫ +∞

0

|G(t1, s)−G(t2, s)|a(s) [b(s) + c(s)|u(s)|p] ds

≤ |t1 − t2| [β + δ‖u‖p]
≤ |t1 − t2| [β + δMp] ,

proving the equicontinuity of T (Ω) on K by Lemma 2.4.

To show that the functions {Tu : u ∈ P ∩ Ω} are equiconvergent at ∞, notice
that for all u ∈ Ω and t > 0, we have

|Tu(t)| ≤
∫ +∞

0

a(s)G(t, s) [b(s) + c(s)‖u‖p] ds

=

∫ +∞

0

a(s)G(t, s) [b(s) + c(s)Mp] ds.

Thus, the equiconvergence of T follows from the fact that lim
t→∞

G(t, s) = 0.

Next, we need to show that T is continuous, so let (un) ⊂ P ∩ Ω be such that
un → u as n→ +∞. Since f is continuous, we have that f(t, un(t))→ f(t, u(t)) as
n→ +∞ and

|a(s)G(t, s)f(s, un(s))| = a(s)G(t, s)f(s, un(s))

≤ a(s)G(t, s) [b(s) + c(s)‖u‖p]
≤ a(s)G(t, s) [b(s) + c(s)Mp]

≤ a(s)

2
√
λ

[b(s) + c(s)Mp].

From condition (H1), we see that∫ +∞

0

a(s)b(s)ds = β <∞,
∫ +∞

0

a(s)c(s)ds = δ <∞,

so we can apply the Lebesgue Dominated Convergence Theorem to obtain,

lim
n→+∞

∫ +∞

0

a(s)G(t, s)f(s, un(s))ds =

∫ +∞

0

a(s)G(t, s)f(s, u(s))ds,

so ‖Tun − Tu‖ → 0 as n→∞.
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Now, since 0 ≤ p < 1, choose R ≥ 1
2
√
λ

max
{

2β, (2δ)
1

1−p

}
and set B =

{u ∈ E : ‖u‖ ≤ R}. In order to show that T (B) ⊂ B, let u ∈ B. By Lemma
2.1, we have

sup
t∈R+

|Tu(t)| = sup
t∈R+

∫ +∞

0

a(s)G(t, s)f (s, u(s)) ds

≤
∫ +∞

0

a(s)G(t, s) [b(s) + c(s)|u|p] ds

≤ 1

2
√
λ

[β + δ‖u‖p]

≤ 1

2
√
λ

[β + δRp] ≤ R.

We then have ‖Tu‖ ≤ R, for all u ∈ B, and so T (B) ⊂ B as needed.
From the definition of the operator T and condition (H2), we see that T is

nondecreasing. Define a sequence (un) as follows:

u0 ≡ 0, un+1 = Tun for n = 0, 1, 2, . . . and for all t ∈ R+.

Since u0 ≡ 0 ∈ B and T : B → B, we have (un)n≥1 ⊂ T (B) ⊂ B. Notice that for

all t ∈ R+,
uj(t) = (Tuj−1)(t) ≥ uj−1(t) for j = 1, 2, . . .

By the complete continuity of the operator T, we have that (un)n≥1 has a convergent
subsequence (unk)k≥1, and there exists a u∗ ∈ B such that unk → u∗ as k → +∞.
This, together with (3.1), implies that limn→∞ un = u∗. Since T is continuous and
un+1 = Tun, we have Tu∗ = u∗, that is, u∗ is a fixed point of the operator T .

In a similar way, we define a sequence (vn) by

v0 ≡ R, vn+1 = Tvn for n = 0, 1, 2, . . . and for all t ∈ R+.

Since v0 ≡ R ∈ B and T : B → B, we have vj ∈ T (B) ⊂ B and

vj(t) = (Tvj−1)(t) ≤ uj−1 for j = 1, 2, . . .

Reasoning as above, we can prove the existence of v∗ ∈ B such that limn→+∞ vn =
v∗ and Tv∗ = v∗, that is, v∗ is a fixed point of T .

Next, we will prove that v∗ and u∗ are the maximal and minimal positive so-
lutions of (1.1), respectively, in [0, R]. Let w ∈ [0, R] be a solution of (1.1); then
u0 ≡ 0 ≤ w ≤ R ≡ v0, and so u1(t) = Tu0(t) ≤ w(t) ≤ Tv0(t) = v1(t) for
all t ∈ R+. By induction, we obtain un(t) ≤ w(t) ≤ vn(t) for all t ∈ I and
n = 0, 1, 2, . . . Passing to the limit, we see that

u0 ≤ u1 ≤ · · · ≤ u∗ ≤ w ≤ v∗ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0.

This completes the proof of the theorem.
We conclude this paper with an example of our main result.

Example 3.1. Consider the BVP{
−u′′ + λu = a (t) f(t, u(t)), t ∈ I,
u (0) = u (∞) = 0,

(3.2)
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where
f(t, u) = 1 + e−tu

1
2

and a(t) = e−t.
Clearly, f is nondecreasing with respect to its second variable. Thus, (H2) holds.

We also have
f(t, u) ≤ b(t) + c(t)|u|p,

where

b(t) = 1, c(t) = e−t, p =
1

2
.

Since

β =

∫ +∞

0

e−sds = 1 <∞ and δ =

∫ +∞

0

e−2sds =
1

2
<∞,

condition (H1) holds. Therefore, by Theorem 3.1, the problem (3.2) has maximal
and minimal positive solutions v∗ and u∗ for which (3.1) holds.
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