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A STUDY ON STABILITY, BIFURCATION
ANALYSIS AND CHAOS CONTROL OF A

DISCRETE-TIME PREY-PREDATOR SYSTEM
INVOLVING ALLEE EFFECT

Özlem AK GÜMÜŞ1,†

Abstract This paper examines the stability and bifurcation of a discrete-
time prey-predator system that is modified by the Allee effect on the prey
population. The system undergoes flip and Neimark-Sacker bifurcations in a
small neighborhood of the unique positive fixed point depending on the densi-
ties of prey-predator. The OGY method and hybrid control method are used
to control the chaotic behavior that results from Neimark-Sacker bifurcation.
In addition, numerical simulations are performed to illustrate the theoretical
results. To keep the ecosystem stable, it is crucial to research how populations
of prey and predator interact. The Allee effect is a significant evolutionary
force that alters population size by affecting both prey and predator behavior.
It would be more realistic to look into population behavior in light of this
effect, which results from population density (number of individuals per unit
area). The increase in the density of predator in the model with the Allee effect
pushes the prey to extinction. When the density of predator is suppressed,
the stability continues for a certain time before undergoing bifurcation.
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1. Introduction

In population dynamics, mathematical models are usually formulated using contin-
uous models that are created with differential equations and discrete-time models
that are created with difference equations. There has been numerous research stud-
ies in the literature on the stability and bifurcation analysis of the discrete-time
models (see [16, 21, 22, 27, 30–32, 45, 46, 52, 62] and references therein). Because
models created with difference equations are effective in examining nonlinear pop-
ulations with non-overlapping generations [2, 43, 44, 47]. Discrete-time models also
exhibit rich dynamic behavior, and enable efficient calculations and numerical sim-
ulations [11,22,40,54]. The dynamic results obtained from the analysis of discrete-
time systems used in solving real-world problems can lead to great advances in
ecology, biology, physics, economics and engineering [2, 5, 23,47,59].
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The interaction between predators and their prey has always been an important
issue in mathematical models of ecological processes. Therefore, studies on the
well-known Lotka-Volterra prey-predator models continue to play a remarkable role.
Especially, studies on discrete-time prey-predator systems have become the focus
of great interest in recent years. Most of these consist of research on the existence
and stability of fixed points, complex and chaotic behaviors that require bifurcation
analysis [3,7,10,17,24,28–30,37,50]. In prey-predator populations, the growth rate
of the prey species may be less or more than that of the predator species, or they
may be equal. This varies according to the potential characteristics of the prey and
the predator [60]. The prey has the ability to survive without the predator. To
maintain the balanced functioning between the populations, it is important to have
information about the population of the prey-predator with an appropriate growth
rate of prey that allows it to sustain its life. Therefore, examining the behavior of the
population by considering the changes in the survival rate of the prey is an important
study subject. Food, disease, migration, immigration, parasites, harvesting, and
Allee factor can have a stabilizing effect on populations as well as cause fluctuations
that bring instability. The factors regulating fluctuations have been studied by
ecologists for a long time. Allee factor can dramatically change the number of a
population from one time period to the next. It is noteworthy to see this change by
incorporating the Allee effect into a prey-predator model. The positive relationship
between population density and per capita growth rate at low density is defined
as Allee effect. In single species populations, this effect is a factor that reduces
reproduction (more specifically, individual fitness) and survival of individuals in
small populations, and often saturates and disappears as the population increases
(see [1,8,45]). Inbreeding depressions, difficulty finding mates, social dysfunction in
small populations, food exploitation, environment conditioning, predator avoidance,
and defense mechanisms against predators are among the various causes of this.
Numerous native species, including plants [26], insects [38], marine invertebrates
[56], birds and mammals [9] and others have shown empirical evidence of Allee
effects. Both theoretical and applied ecologists [18,53,61] have paid great attention
to the Allee effect. It is feasible to suggest more realistic approaches when taking this
effect into account. Examination of population behavior considering these effects
that change the intrinsic growth rate of prey allows us to obtain remarkable results.

In prey-predator models, besides the biological reasons that affect the intrinsic
growth rate of the prey population, the biological reasons that affect the number
of preys consumed by the predator per unit time are also important. It is not
always possible to reach sufficient prey. As observed in nature, a prey community
attacked by a predator can use interaction range distance, age and even physical
structure, as well as cooperative interactions to escape the predator. In this case,
with the assumption of the Allee effect, the number of preys consumed by the
predator may vary depending on such effects. Many researchers have analyzed
population behavior in discrete-time prey-predator models, taking into account the
Allee factor effect, which modifies the intrinsic growth rate of the prey population
(see [6, 14, 49, 65] and the references therein). While research on the effect of the
Allee factor that takes into account the number of prey consumed is relatively
rare, the lack of emphasis on additional model assumptions that prevent negative
population levels is often a disadvantage in terms of biological significance [33, 34].
In this study, we introduce a discrete-time prey-predator system with the Allee
effect that takes into account density of the prey consumed by the predator under
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additional model assumption. Difference modeling approaches derived directly from
assumptions to avoid the existence of negative solutions; and even the approaches
considered to determine all the global dynamics of the model are presented as
different alternatives on prey-predator model studies, see for example, [57, 58].

In such models, the growth rate of the predator population generally depends
on the growth rate of the prey population. We can see that the prey population
is a limiting effect on the population dynamics, because the predator population
decreases with the decreased prey population. Therefore, small numerical changes
in the prey population cause large changes in the dynamics of models. To see the
effect of the Allee factor affecting the amount of prey consumed, taking the growth
rate of prey as a bifurcation parameter allows us to better understand the dynamic
processes involved and make practical predictions.

In this paper, we consider the following discrete-time prey-predator system de-
scribing interaction between two populations of non-overlapping generations sub-
jected to the Allee effect:

xn+1 = axn(1− xn)− bxnyn
(

xn
xn + c

)
, (1.1)

yn+1 = dxnyn

where xn and yn denote the densities of prey and predator in year (generation) n,
respectively and the parameters a, b, c, d are all positive parameters with 0 < c < 1.
In this model, bxn represents the density of prey individuals consumed per unit area
and per unit time by an individual predator without the Allee effect and dxnyn is
the predator response. We can summarize the model parameters in the following
table:

Parameter Meaning

a Intrinsic growth rate of the prey population

b Predation rate

c Allee constant

d The growth rate of the predator limited by the density of prey

In [11], the authors present the dynamics of discrete-time prey-predator model
(1.1) without the Allee effect. The model has rich dynamic behaviors including
Neimark- Sacker and flip (period-doubling) bifurcation as well as semi-periodic,
stable, chaotic, hyperchaotic attractors with different parameter values. The present
study aims to analyze the stability and bifurcation of the system (1.1) incorporating
the Allee effect and to observe the dynamics of the system. We refer to studies
[2, 12,20,40] for some basic concepts that we have used throughout the paper.

The paper is arranged as follows: Section 2 investigates the existence and local
asymptotic stability of fixed points of the system (1.1) in R2

+, with graphs show-
ing system behavior. Section 3 discusses the theory and dynamics of the system
(1.1) which undergoes a Neimark-Sacker and flip bifurcation by choosing a as a
bifurcation parameter. The chaos emerging with Neimark-Sacker is controlled by
the OGY and hybrid methods. Section 4 includes numerical simulations exhibiting
the dynamical properties of the system (1.1) by means of trajectories, bifurcation
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diagrams and phase portraits. The last section provides the results and various
dynamics of the system (1.1).

2. The existence and local stability of fixed points
of the system (1.1)

This section provides the existence and the local stability analysis of fixed points of
the system (1.1) in the closed first quadrant R2

+. The magnitude of the eigenvalues
of the Jacobian matrix determines the local stability conditions of the fixed points
of discrete-time systems.

To keep the solutions in the closed first quadrant, we can make the following
evaluation:

Let

fn+1(xn, yn) = axn(1− xn)− bxnyn
(

xn
xn + c

)
,

gn+1(xn, yn) = dxnyn

such that x0 > 0 and y0 > 0. From x0 > 0 and y0 > 0, it is clear that gn+1(xn, yn) ≥
0 for n = 0, 1, 2, .... The set of ordered pairs (xn, yn) that makes fn+1(xn, yn) ≥ 0
can be obtained as

Ω =

{
(xn, yn) : 0 ≤ yn ≤

a(1− xn)(xn + c)

bxn
, xn < 1

}
.

From an ecological point of view, for (xn, yn) ∈ Ω, if (fn+1(xn, yn), gn+1(xn, yn))
/∈ Ω, then it means that the population collapses.

2.1. The existence of fixed points of the system (1.1)

When we examine the existence of all available fixed points of the prey-predator
system (1.1), we obtain the following Lemma.

Lemma 2.1. For the system (1.1), the following cases hold:
(i.a1) The system (1.1) has a single trivial (extinction) fixed point E0 = (0, 0)

for all positive parameters;
(i.a2) If a > 1, then the system (1.1) has two fixed points. These are an

extinction E0 = (0, 0) and an exclusion fixed point E1 = (a−1a , 0);

(i.a3) If a > d
d−1 such that d > 1, then the system (1.1) has a unique positive

coexistence fixed point E2 = ( 1
d ,

(−a−d+ad)(1+cd)
bd ).

2.2. The local stability of the extinction and exclusion fixed
points of the system (1.1)

We examine the locally asymptotic stability of the fixed points E0 = (0, 0) and
E1 = (a−1a , 0) by using the eigenvalues of the Jacobian matrix. Firstly, the Jacobian
matrix of system (1.1) is

JE0
=

a 0

0 0

 (2.1)
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evaluated at (0, 0). Therefore, we obtain λ1 = a and λ2 = 0.
Hence, the following Lemma for the condition of locally asymptotic stability of

the extinction fixed point E0 is clearly obtained.

Lemma 2.2. If a < 1, then the extinction fixed point E0 is a sink point for all
b, c, d ∈ R+. Furthermore, the fixed point E0 can not be a source point since λ2 =
0 < 1.

Let us consider an example where a < 1 in the system (1.1). Throughout the
study, the parameter values b and d are taken from [11] as b = 0.2, d = 3.5.

Example 2.1. Let us consider the following population model to exhibit the ap-
pearance of trajectories and phase portrait of system (1.1). For a = 0.9 and c = 0.5,
the system has the following form:

xn+1 = 0.9xn(1− xn)− 0.2xnyn

(
xn

xn + 0.5

)
, (2.2)

yt+1 = 3.5xnyn

where the initial conditions x0 = 0.5 and y0 = 0.2.

(a) (b)

Figure 1. (a) The trajectories of prey and predator densities in the system (2.2) when a = 0.9, b = 0.2,
c = 0.5 and d = 3.5. (b) The phase portrait of the system (2.2) when a = 0.9, b = 0.2, c = 0.5 and
d = 3.5.

From Lemma 2.2, the fixed point (0, 0) is locally asymptotically stable.
Secondly, for E1 = (a−1a , 0), the Jacobian matrix of system (1.1) is

JE1
=

2− a − (−1+a)2b
a(−1+a+ac)

0 (a−1)d
a

 . (2.3)

Therefore, the eigenvalues are λ1 = 2− a, λ2 = (a−1)d
a .

The following Lemma presents the conditions of locally asymptotic stability of
the exclusion fixed point E1.

Lemma 2.3. The fixed point E1 is locally asymptotically stable if any of the fol-
lowing cases is provided:

(i.b1) 1 < a < 3 and d < 3
2 , d 6= 1

(i.b2) 1 < a < d
d−1 and d > 3

2
for all b, c ∈ R+.
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Let us give an example to confirm the results obtained in Lemma 2.3.

Example 2.2. We consider the following population model to exhibit the appear-
ance of trajectories and phase portrait of system (1.1). For a = 1.39 and c = 0.5,
the system has the following form:

xn+1 = 1.39xn(1− xn)− 0.2xnyn

(
xn

xn + 0.5

)
, (2.4)

yt+1 = 3.5xnyn

where the initial conditions x0 = 0.5 and y0 = 0.2. The fixed point (0.280576, 0)
of this system that validates the condition (i.b2) with the selected values a = 1.39
and c = 0.5 is locally asymptotically stable. For this, the trajectories and phase
portrait of prey and predator densities are exhibited in Figure 2 (a)-(b).

Furthermore, if we select the parameter a = 3.6, b = 0.2, c = 0.5 and d = 1.4,
then system (1.1) can be written as

xn+1 = 3.6xn(1− xn)− 0.2xnyn

(
xn

xn + 0.5

)
, (2.5)

yt+1 = 1.4xnyn.

In this case, the fixed point is not locally asymptotically stable since the conditions
given in (i.b1) and (i.b2) are not provided. For this, the trajectories and phase
portrait of prey and predator densities are exhibited in Figure 2 (c)-(d). For, a >
d
d−1 , d >

3
2 , the fixed point E1 disappears and the fixed point E2 appears.

2.3. The local stability of the positive coexistence fixed point

We investigate the locally asymptotically stability of the coexistence fixed points as
follows:

E2 = (x, y) = (
1

d
,

(−a− d+ ad)(1 + cd)

bd
). (2.6)

The Jacobian matrix of system (1.1) is

JE2 =

 −a−d−2cd2+acd2d+cd2
−b

d+cd2

[a(−1+d)−d][1+cd]
b 1


evaluated at E2, and the characteristic polynomial of the Jacobian matrix is

F (λ) = λ2 + [
a− 2d− 3cd2 + acd2

d+ cd2
]λ+ [

cd2 + a(−2 + d− cd)

d+ cd2
].

Then we have the following Lemma by using the characteristic polynomial of
the Jacobian matrix, i.e. JE2

(see [40]).

Lemma 2.4. A. Suppose that d
d−1 < a < 3d+5cd2

3−d+cd+cd2 . Then the positive coexis-
tence fixed point E2 is locally asymptotically stable, if any of the following cases is
provided:

(i.b3) 3
2 < d ≤ 9

4 and c < 1;

(i.b4) 9
4 < d ≤ 3 and ad−2a−d

ad < c < 1(ad−2a−dad < −9+4d
5d );

(i.b5) d > 3 and −9+4d
5d < c < 1.
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(a) (b)

(c) (d)

Figure 2. (a) The trajectories of prey and predator densities in the system (2.4) when a = 1.39, b = 0.2,
c = 0.5 and d = 3.5. (b) The phase portrait of system (2.4) when a = 1.39, b = 0.2, c = 0.5 and d = 3.5.
(c) The trajectories of prey and predator densities in the system (2.5) when a = 3.6, b = 0.2, c = 0.5
and d = 1.4. (d) The phase portrait of system (2.5) when a = 3.6, b = 0.2, c = 0.5 and d = 1.4.

B. Suppose that d
d−1 < a < −d

2−d+cd . Then the coexistence fixed point E2 is
locally asymptotically stable, if the following case is provided:

(i.b6) d > 3 and c ≤ −3+dd+d2 .

Let us give an example to confirm the results obtained in Lemma 2.4.

Example 2.3. Let us consider the following population model to exhibit the ap-
pearance of trajectories and phase portrait of system (1.1). For a = 2.33 and
c = 0.031, the system has the following form:

xn+1 = 2.33xn(1− xn)− 0.2xnyn

(
xn

xn + 0.031

)
, (2.7)

yt+1 = 3.5xnyn

where the initial conditions x0 = 0.5 and y0 = 3.1. The fixed point (0.285714, 3.6818)
of the system that validates the condition B-(i.b6) with the selected values d = 3.5
and c = 0.031 (c ≤ 0.031746) is locally asymptotically stable such that 1.4 < a <
2.51527. For this, Figure 3(a)-(b) shows the trajectories and phase portrait of prey
and predator densities.

Futhermore, if the parameter a = 2.53, b = 0.2, c = 0.033 and d = 3.5 are
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selected, then system (1.1) can be written as

xn+1 = 2.53xn(1− xn)− 0.2xnyn

(
xn

xn + 0.033

)
, (2.8)

yt+1 = 3.5xnyn

where the initial conditions x0 = 0.5 and y0 = 4.1. In this case, the fixed point
(0.285714, 4.50184) of the system is unstable. For this situation, the trajectories
and phase portrait of prey and predator densities are exhibited in Figure 3(c)-(d).

(a) (b)

(c) (d)

Figure 3. (a)The trajectories of prey and predator densities in the system (2.7) when a = 2.33, b = 0.2,
c = 0.031 and d = 3.5. (b) The phase portrait of system (2.7) when a = 2.33, b = 0.2, c = 0.031 and
d = 3.5. (c) The trajectories of prey and predator densities in the system (2.8) when a = 2.53, b = 0.2,
c = 0.033 and d = 3.5. (d) The phase portrait of system (2.8) when a = 2.53, b = 0.2, c = 0.033 and
d = 3.5.
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3. Bifurcation analysis and chaos control

This section discusses that positive coexistence fixed point E2 of system (1.1) under-
goes flip and Neimark-Sacker bifurcation in the interior of R2

+ by using bifurcation
theory [39,63]. a is taken as bifurcation parameter to get the conditions of the flip
and Neimark–Sacker bifurcations.

3.1. Flip bifurcation

First, the flip (period-doubling) bifurcation of the system (1.1) is investigated as
the intrinsic growth rate of prey changes. The conditions that cause flip bifurcation
occurring at the positive coexistence fixed point E2 are determined. If

a = aF =
d(3 + 5cd)

3 + d(−1 + c+ cd)

then λ1 = −1 and λ2 = 6−[3+c(−4+d)]d
3+d(−1+c+cd) with

|λ2| 6= 1. (3.1)

These conditions can be presented by the following set

FBE2 =

{
a, b, c, d ∈ R+ : a = aF =

d(3 + 5cd)

3 + d(−1 + c+ cd)
, |λ2| 6= 1

}
.

Using the transformation u = x − 1
d , v = y − (−a−d+ad)(1+cd)

bd , the fixed point
E2 is shifted to the origin. Therefore, we obtainu

v

→ JE2

u

v

+

F1(u, v)

F2(u, v)

 (3.2)

where

F1(u, v) =
c2d3 − a(1 + 2cd+ c2d3)

(1 + cd)2
u2 − b(1 + 2cd)

(1 + cd)2
uv (3.3)

+
c2d3[a(d− 1)− d]

(1 + cd)3
u3 − bc2d2

(1 + cd)3
u2v +O(‖U‖4), (3.4)

F2(u, v) = duv +O(‖U‖4) (3.5)

such that U = (u, v)T . From there, the system (1.1) can be written as

(Un+1)→ JE2
(Un) +

1

2
B(un, un) +

1

6
C(un, un, un) +O(‖un‖4), (3.6)

with the multilinear vector functions of u, v, w ∈ R2 :

B(u, v) =

B1(u, v)

B2(u, v)
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and

C(u, v, w) =

C1(u, v, w)

C2(u, v, w)

 .

These vectors are expressed by

B1(u, v) =

2∑
j,k=1

∂2F1

∂ξj∂ξk
|ξ=0 ujvk =

2[c2d3 − a(1 + 2cd+ c2d3)]

(1 + cd)2
u1v1

−b(1 + 2cd)

(1 + cd)2
(u2v1 + u1v2),

B2(u, v) =

2∑
j,k=1

∂2F2

∂ξj∂ξk
|ξ=0 ujvk = d(u2v1 + u1v2),

C1(u, v, w) =

2∑
j,k=1

∂3F1

∂ξj∂ξkξl
|ξ=0 ujvkwl =

6c2d3[a(d− 1)− d]

(1 + cd)3
u1v1w1

− 2bc2d3

(1 + cd)3
(u1v1w2 + u1v2w1),

C2(u, v, w) =

2∑
j,k=1

∂3F2

∂ξj∂ξkξl
|ξ=0 ujvkwl = 0

and a = aF . Let q, p ∈ R2 be eigenvectors of JE2
(aF ) and transposed matrix JTE2

(aF )

respectively for λ1(aF ) = −1. Then, we have A(aF )q = −q and AT (aF )p = −p.
These eigenvectors calculated using Mathematica software are

q ∼
(
−b(3− d+ cd+ cd2)

(1 + cd)2(−3d+ 2d2)
, 1

)T
and

p ∼
(
−1,

−b
2d+ 2cd2

)T
.

We use standard scalar product in R2 in order to normalize p with respect to q,
such that 〈p, q〉 = p1q1 + p2q2. Therefore, we can obtain

p ∼
(
−2d(−3 + 2d)(1 + cd)2

b[9 + (−4 + 5c)d]
,
−(−3 + 2d)(1 + cd)

9 + (−4 + 5c)d

)T
.

It is clear that 〈p, q〉 = 1. To determine the direction of the flip bifurcation, we
need to get the sign of the coefficient c(aF ) as follows:

c (aF ) =
1

6
〈p, C(q, q, q)〉 − 1

2
〈p,B(q, (A− I)−1B(q, q)〉. (3.7)

The following theorem gives the result on flip bifurcation regarding the coefficient
of the critical normal form.

Theorem 3.1. If (3.1) becomes valid, c (aF ) 6= 0, and the parameter a changes
its value around aF , then the system (1.1) undergoes a flip bifurcation at positive
coexistence fixed point E2. Furthermore, if c (aF ) > 0 (c (aF ) < 0), then the period
2 orbits that bifurcate from E2 are stable (unstable).
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3.2. Neimark-Sacker bifurcation

This section provides the direction and the existence of Neimark–Sacker bifurcation
for the system (1.1). In addition, if the system (1.1) provides eigenvalue assignment,
transversality and nonresonance conditions, then the Neimark–Sacker bifurcation
occurs at a bifurcation point. To work Neimark–Sacker bifurcation in the system
(1.1), we define the parameters providing non-hyperbolic conditions as follows:

NSBE2 = {a, b, c, d ∈ R+ : a1 < a < a2 and a = aNS}

where

a1 =
3 + (2− 9c+ 4cd− 2c2d)

(c+ c2d2)
+
−2 + 2c(3 + (−3 + c)d)

c(1 + cd2)2

−2

√
d3(1 + cd)3(−2 + d+ c(1 + (−3 + d)d))

(1 + cd2)4
,

a2 =
3 + (2− 9c+ 4cd− 2c2d)

(c+ c2d2)
+
−2 + 2c(3 + (−3 + c)d)

c(1 + cd2)2

+2

√
d3(1 + cd)3(−2 + d+ c(1 + (−3 + d)d))

(1 + cd2)4
,

and

aNS =
d

d(1− c)− 2
, d(1− c) > 2.

For a = aNS , the eigenvalues of the matrix JE2 associated with the linearization
in the map (3.2) are conjugate complex numbers whose modules are one. These
eigenvalues are

λ, λ |a=aNS
=

5 + (−2 + 3c)d± i
√

(−9 + (4− 5c)d)(1 + cd)

(4 + 2(−1 + c)d)

with
|λ(aNS)| = 1.

For a ∈ NSBE2
, we get

∂ |λi(a)|
∂a

|a=aNS
6= 0 , i = 1, 2. (3.8)

Also, if
trJ(aNS) |a=aNS

6= 0,−1, (3.9)

then, we reach
λk(aNS) 6= 1 , k = 1, 2, 3, 4. (3.10)

Let q, p ∈ C2 be two eigenvectors that correspond to the eigenvalues λ of the
matrix J(NSBE2

) and the eigenvalues λ of the matrix J(NSBE2
)T , respectively.

If these eigenvectors are calculated with Mathematica program, then we get

q ∼

(
−b
√

1 + cd− bi
√
−9 + (4− 5c)d

2d(1 + cd)
3
2

, 1

)T
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and

p ∼

(
1,
b
√

1 + cd+ bi
√
−9 + (4− 5c)d

2d(1 + cd)
3
2

)
.

By using the scalar product in C2 : 〈p, q〉 = p1q1 + p2q2, we get the following vector
in order to normalize p according to q

p ∼

(
−id(1 + cd)

3
2

b
√
−9 + (4− 5c)d

,
−1

2
− i

√
1 + cd

2
√
−9 + (4− 5c)d

)

where 〈p, q〉 = 1. ∀ U ∈ R2 can be uniquely represented as

U = zq + zq (3.11)

for some z ∈ C. Here, z is the conjugate of that complex number z, and z = 〈p,
U〉. For all sufficiently small |a| about aNS , we can transform the system (1.1) as
follows:

z → λ(a)z + g(z, z, a), (3.12)

where λ(a) = (1 + ω(a))eiθ(a) with ω(aNS) = 0 and g(z, z, a) is a complex valued
smooth function of z and z. Taylor expression of g with respect to g(z, z) is

g(z, z, a) =
∑
k+l≥2

1

k!l!
gkl(a)zkzl, (3.13)

and the Taylor coefficients gkl calculated through multilinear vector functions are
expressed by the following formulas:

g20(aNS) =〈p,B(q, q)〉,
g11(aNS) =〈p,B(q, q)〉,
g02(aNS) =〈p,B(q, q)〉,
g21(aNS) =〈p, C(q, q, q)〉.

For the system (3.2) that exhibits the Neimark-Sacker bifurcation, the coefficient
ϕ(aNS) determining the direction of the appearance of the invariant curve can be
calculated as:

ϕ(aNS) =Re(
e−iθ(aNS)g

21

2
)−Re

(
(1− 2eiθ(aNS))e−2iθ(aNS)

2(1− eiθ(aNS))
g20g11

)
(3.14)

− 1

2
|g11|2 −

1

4
|g02|2

where eiθ(aNS) = λ(aNS). Consequently, we have the following theorem on Neimark-
Sacker bifurcation:

Theorem 3.2. If (3.9) holds, ϕ(b1) 6= 0 and the parameter a changes its value in
small vicinity of NSBE2 , then the system (1.1) passes through a Neimark-Sacker
bifurcation at the only fixed point E2. Furthermore, if ϕ(aNS) < 0 (ϕ(aNS) >
0), then there exists a unique attracting (repelling) invariant closed curve which
bifurcates from E2.
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3.3. Chaos control

Recently, the control of chaos in discrete-time systems has become the focal point for
many researchers. It is possible to optimize the system and avoid chaos with some
chaos strategies applied to the systems. These practical methods can be used in
many fields such as communication, physics laboratories, cardiology and turbulence,
as well as providing control of dynamical systems [42]. Various methods such as
state feedback method, pole placement technique, OGY method and hybrid control
method are useful for controlling chaos in discrete-time models (see [13–17, 19, 20,
25, 29, 30, 34, 36, 41, 48, 49, 51, 64]). The first feedback control strategy known as
the OGY method was proposed by Ott et al. [48], which can be used to control
not only fixed points but also periodic trajectories. The core of the OGY theory
relies on stabilizing one (or more) of many unstable periodic orbitals embedded in
a chaotic attractor by applying small perturbations. One of the system parameters
must be accessible to apply these perturbations. The instability is controlled by
the perturbation of this parameter, which serves as the input of the system. The
solution of a chaotic system is difficult to predict, which requires a way to control it.
The OGY algorithm, which is useful in discrete-time systems, has disadvantages in
that control can be limited to one of the buried trajectories and the time required
to obtain control can be very long and unpredictable. For discrete-time models,
which are discrete counterparts of continuous systems with an application of the
Euler approximation, the OGY technique may be particularly ineffective [13, 15].
Additional information on the mathematics of the OGY algorithm can be found
in [25,51]. A hybrid control strategy is an alternative method combining parameter
perturbation and state feedback. This is an effective method. Advantageously,
bifurcations in the discrete nonlinear dynamical system can be delayed or even
completely eliminated. Therefore, the system exhibits stable dynamic behavior over
a wide range of parameter values. With this method, besides stabilizing the desired
unstable periodic orbit embedded in a chaotic attractor, it is possible to control the
lower stable periodic orbital towards the highly stable periodic orbital. We refer
to the studies [19, 41, 64] for further details related to hybrid control method. In
addition, the studies [4,55] are referred to review the logic of deriving chaos control
techniques and the biological meanings of the parameters used in these techniques.

We endeavor to control the chaos via chaos controlling strategy based on OGY
method and hybrid control feedback methodology. We first apply the OGY control
strategy to move the trajectory towards the desired stabilizing orbit. Let us control
the chaos occurring in the system (1.1) by taking a as control parameter. Besides
this, a is restricted in some small interval |a− a0| < δ with δ > 0, and a0 denotes
the nominal value belonging to chaotic region. Assume that (x, y) be unstable fixed
point of system (1.1) in chaotic region produced by Neimark-Sacker bifurcation,
then the system (1.1) can be approximated in the neighborhood of the unstable
fixed point (x, y) by the following linear map:xn+1 − x

yn+1 − y

 ≈ A
xn − x
yn − y

+B[a− a0] (3.15)

where

A =

 ∂f(x,y,a0)
∂xn

∂f(x,y,a0)
∂yn

∂g(x,y,a0)
∂xn

∂g(x,y,a0)
∂yn

 =

 −a0+d−(−2+a0)cd2d(1+cd)
−b

d+cd2

(a0(−1+d)−d)(1+cd)
b 1
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and

B =

 ∂f(x,y,a0)
∂a

∂g(x,y,a0)
∂a

 =

 −1+dd2

0

 .
It is clear that the system (1.1) is controlled by the following matrix

C = [B : AB] =

 −1+dd2
(−1+d)(−a+d−(−2+a)cd2)

d3(1+cd)

0 a(−1+d)−d)(−1+d)(1+cd)
bd2

 (3.16)

such that the rank of C is 2.

Furthermore, we suppose that [a − a0] = −K

xn − x
yn − y

, where K = [k1 k2],

then the system (3.15) can be written asxn+1 − x

yn+1 − y

 ≈ [A−BK]

xn − x
yn − y

 . (3.17)

The corresponding controller system can be given by

xn+1 = [a0 − k1(xn − x)− k2(yn − y)]xn(1− xn)− bxnyn
(

xn
xn + c

)
, (3.18)

yt+1 = dxnyn.

In addition, the fixed point (x, y) is locally asymptotically stable if and only if
eigenvalues µ1 and µ2 of the matrix A − BK lie in an open unit disk. Therefore,
the Jacobian matrix A−BK of the controlled system (3.18) is found as

A−BK =

 d2(1+2cd)−(d+cd3)a0−(−1+d)(1+cd)k1
d2(1+cd) − bd+(−1+d)(1+cd)k2

d2(1+cd)

(1+cd)(−d+(−1+d)a0)
b 1

 . (3.19)

The characteristic equation of the Jacobian matrix A−BK can be given as

µ2 +
−d2(2 + 3cd) + (d+ cd3)a0 + (−1 + d)(1 + cd)k1

d2(1 + cd)
µ

+
−b(−1 + d)(1 + cd)k1 + d(bcd2 − (−1 + d)(1 + cd)2k2)

d2(b+ bcd)

+
a0(bd(−2 + d− cd) + (−1 + d)2(1 + cd)2k2)

d2(b+ bcd)
= 0.

Let µ1 and µ2 be the roots of characteristic equation of system (3.18), then we have

µ1 + µ2 =
−d2(2 + 3cd) + (d+ cd3)a0 + (−1 + d)(1 + cd)k1

d2(1 + cd)
, (3.20)

µ1µ2 =
−b(−1 + d)(1 + cd)k1 + d(bcd2 − (−1 + d)(1 + cd)2k2)

d2(b+ bcd)
(3.21)
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+
a0(bd(−2 + d− cd) + (−1 + d)2(1 + cd)2k2)

d2(b+ bcd)
. (3.22)

To determine the marginal stability lines, we examine with conditions µ1 = ±1
and µ1µ2 = 1. If µ1µ2 = 1, then from Equation (3.21), we get

l1 :=
−b(−1 + d)(1 + cd)k1 + d(−bd− (−1 + d)(1 + cd)2k2)

d2(b+ bcd)
(3.23)

+
a0(bd(−2 + d− cd) + (−1 + d)2(1 + cd)2k2)

d2(b+ bcd)
= 0.

Now, we suppose that µ1 = 1, then Equation (3.20) and Equation (3.21) imply

l2 :=
bd2(3 + 5cd)− bd(3 + d(−1 + c+ cd))a0 − 2b(−1 + d)(1 + cd)k1

d2(b+ bcd)
(3.24)

+
(−1 + d)(1 + cd)2(−d+ (−1 + d)a0)k2

d2(b+ bcd)
= 0.

If µ1 = −1, by using Equation (3.20) and Equation (3.21), we obtain

l3 := − (−d+ (−1 + d)a0)(bd+ (−1 + d)(1 + cd)k2)

bd2
= 0. (3.25)

The triangular region determined by the lines l1, l2 and l3 in k1k2 plane is the
region of the values that make the eigenvalues less than 1.

Secondly, we use hybrid control method to control the chaos in the system (1.1).
Let us suppose that system (1.1) undergoes Neimark-Sacker bifurcation at fixed
point (x, y), then the corresponding controlled system can be taken as follows:

xn+1 =γ[axn(1− xn)− bxnyn
(

xn
xn + c

)
] + (1− γ)xn, (3.26)

yn+1 =γdxnyn + (1− γ)yn

where γ is control parameter with 0 < γ < 1. The Jacobian matrix of controlled
system (3.26) is given by1 + (−1 + a− 2ax− bx(2c+x)y

(c+x)2 )γ −γbx2

c+x

γdy 1− γ + dxy

 .
When∣∣∣∣−2d+ aγ + cd2(−2 + (−1 + a)γ)

d(1 + cd)

∣∣∣∣
< 1 +

−aγ(1 + γ) + cd2(1 + γ − aγ + (−1 + a)γ2)− d(−1 + (1 + a(−1 + c))γ2))

d(1 + cd)

< 2

is provided then the positive equilibrium point (x, y) of the controlled system (3.26)
is locally asymptotically stable.
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4. Numerical simulations

This section provides some numerical simulations to demonstrate the existence of
flip and Neimark-Sacker bifurcation for the system (1.1). Theoretical analysis is
verified with suitable examples by taking some special cases for system (1.1). Nu-
merical simulations clearly manifest interesting complex dynamics behaviors. The
dynamic nature of the system (1.1) near the positive coexistence fixed point is
displayed under different sets of parameter values. Here, trajectories, bifurcation
diagrams and phase portraits are illustrated via SageMath programming [35] by
taking a as bifurcation parameter.

The following Example 4.1 and 4.2 illustrates the emergence of flip and Neimark-
Sacker bifurcation based on our theoretical results, respectively.

Example 4.1. By considering the parameter values b = 0.2, c = 0.5, d = 3.5, we
have the following system

xn+1 = 5.57627xn(1− xn)− 0.2xnyn

(
xn

xn + 0.5

)
, (4.1)

yt+1 = 3.5xnyn.

aF = 5.57627 is flip bifurcation point. The computation yields (x, y) =

(0.285714, 41.0169). The Jacobian matrix is J =

−2.49153 −0.0207792

143.559 1

. The

eigenvalues are λ1 = −1, and λ2 = −0.491525 such that |λ2| 6= 1. The flip bifurca-
tion diagram are displayed in Figure 4. The system (1.1) undergoes a flip bifurcation
at positive fixed point E2 when the parameter changes in a small neighborhood of
aF . This defines that the fixed point E2 is stable for a < 5.57627, loses its stability
around a = 5.57627 and there exists a period doubling phenomena for a > 5.57627.
Upon the necessary calculations, we obtain c (aF ) = 36.0037 > 0 (see Appendix
A for detailed steps on obtaining c (aF )). The period-2 orbits that bifurcate from
E2 are stable. Figure 4 shows flip bifurcation diagram of the system (4.1) with the
initial conditions x0 = 0.3 and y0 = 40.1.

Figure 4. Bifurcations diagram of the prey-predator system (4.1) with the parameter values a ∈
(5.3, 5.8), b = 0.2, d = 3.5, c = 0, 5.
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Example 4.2. Let us consider the following system for the parameter values b =
0.2, d = 3.5, c = 0.05,

xn+1 = 2.64151xn(1− xn)− 0.2xnyn

(
xn

xn + 0.05

)
, (4.2)

yt+1 = 3.5xnyn.

aNS = 2.64151 is Neimark-Sacker bifurcation point. The computation yields (x, y) =
(0.285714, 5.20991), and the Jacobian matrix evaluated at (x, y) is

J(x,y) =

 0.113208 −0.0486322

18.2347 1

 .

The eigenvalues are λ1,2 = 0.556604 ∓ 0.830778i such that |λ1,2| = 1. Here θ =
0.980504; and from (3.14), we get ϕ(aNS) = −0.843535 < 0. (see Appendix B for
detailed steps on obtaining ϕ(aNS)). Consequently, the Neimark-Sacker bifurcation
emerges at aNS = 2.64151. The following graphs give the bifurcation and phase
portraits of the system (4.2) with the initial conditions x0 = 0.3 and y0 = 5.1.
Figure 5(a) shows Neimark-Sacker bifurcation diagram of the system (4.2). The
phase portraits of the system (4.2) are presented Figure 5(b)-(d).

The phase portraits of bifurcation diagram in Figure 5(a) shown in Figure 5(b)-
(d) for different values of a demonstrate the process how smooth invariant curve
bifurcates from the stable fixed point. Furthermore, at the value a = 2.64151, the
positive fixed point (x, y) becomes unstable and closed invariant curve enclosing
the unique positive unstable fixed point (x, y) also is generated. Therefore, it is
confirmed that Neimark Sacker bifurcation emerges at a = 2.64151.

The following example 4.3-4.4 is used to control the chaotic behavior of the
system (1.1).

Example 4.3. Let us take the parameters b = 0.2, d = 3.5, c = 0.05, a = 2.64151
and the initial conditions x0 = 0.3 and y0 = 5.1. In this case, we know that the
system (1.1) undergoes Neimark-Sacker bifurcations.

Let us take a = 2.7 in order to control the system (1.1) with OGY control
method. Then corresponding controlled system is given as

xn+1 = [2.7− k1(xn − 0.285714)− k2(yn − 5.45536)]xn(1− xn) (4.3)

−0.2xnyn

(
xn

xn + 0.05

)
,

yt+1 = 3.5xnyn

for K = [k1 k2]. We have A =

0.0902736 −0.0486322

19.0938 1

 and B =

 0.204082

0

 and

C = [B : AB] =

0.204082 0.0184232

0 3.89668

 . Since the rank of C is 2, the system is

controllable. Therefore, the Jacobian matrix A−BK of the controlled system (4.3)

can be given as A − BK =

0.0902736− 0.204082k1 −0.0486322− 0.204082k2

19.0938 1

.
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(a) (b)

(c) (d)

Figure 5. (a) Bifurcations diagram of the prey-predator system (4.2) with the parameter values a ∈
(2, 4), b = 0.2, d = 3.5, c = 0, 05. (b) The phase portrait of system (4.2) when a = 2.5, b = 0.2, d = 3.5,
c = 0, 05. (c) The phase portrait of system (4.2) when a = 2.64151, b = 0.2, d = 3.5, c = 0, 05. (d) The
phase portrait of system (4.2) when a = 2.7, b = 0.2, d = 3.5, c = 0, 05.

The marginal lines l1, l2 and l3 in Equation (3.23)-(3.25) are obtained as

l1 = 0.018845− 0.204082k1 + 3.896685k2 = 0,

l2 = 3.10912− 0.408163k1 + 3.89668k2 = 0,

and

l3 = −0.928571− 3.89668k2 = 0.

The marginal lines l1, l2 and l3 determine the stable triangular region in the k1k2
plane. Figure 6 shows the region bounded by these lines of the controlled system
(4.3).

Example 4.4. To implement the hybrid control method, once again, we consider
the parameters b = 0.2, d = 3.5, c = 0.05, a = 2.64151 with the initial conditions
x0 = 0.3 and y0 = 5.1. For these parametric values, the controlled system is

xn+1 = γ[2.64151xn(1− xn)− 0.2xnyn

(
xn

xn + 0.05

)
] + (1− γ)xn, (4.4)



3184 Ö. AK Gümüş

Figure 6. Stability region of the controlled system (4.3) in k1k2 plane.

yn+1 = 3.5γxnyn + (1− γ)yn

and the system (4.4) has unique positive coexistence fixed point (x, y)
= (0.285714, 5.20991). In addition, the Jacobian matrix evaluated at
(0.285714, 5.20991) is 1− 0.861724γ −0.0486322γ

18.2347γ 1− 1.10−6γ

 (4.5)

and the characteristic equation of (4.5) is obtained as

λ2 − (2− 0.861724γ)λ+ 1− 0.861724γ + 0.886792γ2 = 0. (4.6)

Based on the Jury conditions, we conclude that if 0 < γ < 0.97173, then the roots
of (4.6) lie in a unit open disk. Therefore, the Neimark-Sacker bifurcation is fully
controlled for values γ in the obtained range. The unique positive coexistence fixed
point (x, y) = (0.285714, 5.20991) of (4.4) is locally asymptotically stable.

For γ = 0.97, Figure 7-(a)-(b) shows plots of the controlled system (4.4).

5. Conclusions

In this article, we discuss the analysis of the complex dynamic behavior of a discrete-
time prey-predator system (1.1). We investigate the existence of the fixed points of
the system (1.1) and the stability conditions of these points. We also show that the
system (1.1) exhibits flip and Neimark-Sacker bifurcation at the positive coexistence
fixed point. We apply OGY method and hybrid control feedback methodology to
prevent the chaos exhibited by the dynamic system (1.1).

We obtain that the system (1.1) has a trivial (extinction) fixed point E0, an
exclusion fixed point E1 and a coexistence fixed point E2. The asymptotic sta-
bility conditions of these fixed points are investigated by using the linearization
method. It can seen that there is a unique positive coexistence fixed point E2 =

( 1
d ,

(−a−d+ad)(1+cd)
bd ) of the system (1.1) with a > d

d−1 , d > 1. To examine flip
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(a) (b)

Figure 7. (a) The trajectories of the controlled system (4.4) when b = 0.2, d = 3.5, c = 0.05,
a = 2.64151 and γ = 0.97. (b) Phase portrait of the controlled system (4.4) when b = 0.2, d = 3.5,
c = 0.05, a = 2.64151 and γ = 0.97.

and Neimark-Sacker bifurcation, prey growth rate a is taken as bifurcation param-
eter. By using mathematical techniques of bifurcation theory, we show that the

system (1.1) undergoes flip bifurcation under the condition a = aF = d(3+5cd)
3+d(−1+c+cd) ,

and the system (1.1) undergoes Neimark-Sacker bifurcation under the condition
aNS = d

d(1−c)−2 . The dynamic properties of system (1.1) are presented by some

figures. By choosing a value as bifurcation parameter, the effects of Allee fac-
tor on prey were observed. Chaos caused by Neimark-Sacker bifurcation is suc-
cessfully controlled by OGY control method by considering the parameter values
a = 2.7, b = 0.2, d = 3.5, c = 0.05. The stabilization of the unstable fixed point of
the system (1.1) with b = 0.2, d = 3.5, c = 0.05, a = 2.64151 is provided by the
hybrid control method. The hybrid control strategy allows us to successfully the
stable behavior by suppressing the unstable fixed point.

Also, a flip bifurcation occurs when the intrinsic growth rate of the prey increases
despite the low initial condition of the prey. In response to high levels of predators,
the density of the prey population is greatly reduced, but not completely extinct.
In [11], the researchers numerically reach that for some parameter values, yn can be
lost and xn remains chaotic. An anti-control algorithm is implemented to prevent
extinction. In our study, with the addition of the Allee effect to the model, yn
continues its chaotic behavior and does not disappear. When the density of predator
is dominant, the density of prey continues to exist with a very small number (see
Figures 4 and 5). Neimark-Sacker bifurcation occurs with parameter values d = 3.5
and b = 0.2, a = 2.333... in the system without Allee effect. When the Allee effect
is added (with Allee constant c = 0.05), Neimark-Sacker bifurcation occurs at value
a = 2.64151. The Allee effect appears to delay Neimark-Sacker bifurcation. This
effect keeps the stability going for a while. Namely, the stability decreases as the
Allee effect decreases. In addition, the system undergoes flip bifurcation at the
point a = 47.1739 with parameter values d = 3.5 , b = 0.2 and c = 0.05. The chaos
control techniques were used to avoid the earlier Neimark-Sacker bifurcation.

As species become extinct, they are removed from the food chain. Animals
that eat endangered species must find new food sources to avoid starvation. This
can harm other plant or animal populations. In other words, each extinct species
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triggers the extinction of other species in the ecosystem. In particular, if a predator
population goes extinct, the population of its prey multiplies and can destabilize
local ecosystems. The result obtained is ecologically important since the Allee effect
supports the survival of the predator and contributes to the survival of the species
in a certain balance.

Furthermore, for some parameter values, figures (by using SageMath and Matlab
programming) exhibit the trajectories, bifurcation diagrams, phase portraits and
maximal Lyapunov exponent of the prey-predator system (1.1) in an enriched way:

Example 5.1. The prey-predator system (1.1) exhibits dynamical behaviors ac-
cording to different parameter values. The initial conditions are taken x0 = 0.5 and
y0 = 0.2 in these simulations.

(a) (b)

(c) (d)

(e) (f)

Figure 8. (a) The trajectories of prey-predator densities when a = 2.9, b = 0.2, c = 0.5 and d = 0.9.
(b) The phase portrait prey-predator system when a = 2.9, b = 0.2, c = 0.5 and d = 0.9. (c) The
trajectories of prey-predator densities when a = 3.1, b = 0.2, c = 0.5 and d = 0.9. (d) The phase
portrait prey-predator system when a = 3.1, b = 0.2, c = 0.5 and d = 0.9. (e) The trajectories of
prey-predator densities when a = 2.9, b = 0.2, c = 0.5 and d = 1.4. (f) The phase portrait prey-predator
system when a = 2.9, b = 0.2, c = 0.5 and d = 1.4.
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The phase portraits corresponding to the densities of prey-predator in (a), (c)
and (e) are given with (b), (d) and (f), in Figure 8 respectively.

From Lemma 2.3- (i.b1), the fixed point (0.655172, 0) is locally asymptotically
stable when a = 2.9, b = 0.2, c = 0.5 and d = 0.9. Also, Lemma 2.3- (i.b1)
is not provided when a = 3.1, b = 0.2, c = 0.5 and d = 0.9, the fixed point
(0.677419, 0) is not locally asymptotically stable. From Lemma 2.3-(i.b1), the fixed
point (0.655172, 0) is locally asymptotically stable when a = 2.9, b = 0.2, c = 0.5
and d = 1.4. For, 1 < a < 3 and d > 3

2 , we can see that the fixed point E1

disappears and the fixed point E2 appears.

Example 5.2. The prey-predator system (1.1) exhibits dynamical behaviors ac-
cording to different parameter values and initial conditions (See Figure 9).

When a = 2.53, b = 0.2, c = 0.30 and d = 3.5, these parameter values satisfy
the case in A. (i.b5)- (2.51527 < a < 5.57627 and 0.285714 < c < 1). The fixed
point (0.285714, 8.27321) is locally asymptotically stable.

When a = 3.381, b = 0.2, c = 0.30 and d = 3, these parameter values satisfy
the case in A. (i.b4). The fixed point (0.333333, 11.913) is locally asymptotically
stable.

When a = 3.381, b = 0.2, c = 0.033 and d = 2.99, these parameter values do not
satisfy the case in A. (i.b4). The fixed point (0.334448, 6.86796) is unstable.

Furthermore, when a = 4, b = 0.2, c = 0.5 and d = 1.4, these parameter values
do not satisfy the case in A. (i.b3). The fixed point (0.714286, 1.21429) is unstable.

Example 5.3. Finally, let us take the parameters b = 0.0001; d = 9.5; c = 0.0001.
For the system (1.1) with these values, Figure 10(a)-(c) presents the Neimark-Sacker
bifurcation and the Lyapunov exponent graph supporting the chaotic behavior.
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Appendix

A. Calculation of the formula in (3.7) for exam-
ple 4.1

F1(u, v) = −9.80431u2 + 5.38114u3 − 0.119008uv − 0.10308u2v +O(‖U‖4),

F2(u, v) = 3.5uv +O(‖U‖4), (A.1)

B(q, q) =

 0.276464

−0.09751

 ,

C(q, q, q) =

 0.00909692

0

 ,

B1(u, v) = −19.6086u1v1 − 0.119008(u2v1 + u1v2),
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(a) (b)

(c) (d)

(e) (f)

Figure 9. (a) The trajectories of prey-predator densities with the initial conditions x0 = 0.5 and
y0 = 8.1 when a = 2.53, b = 0.2, c = 0.30 and d = 3.5. (b) The phase portrait prey-predator system
when a = 2.53, b = 0.2, c = 0.30 and d = 3.5. (c) The trajectories of prey and predator densities with
the initial conditions x0 = 0.5 and y0 = 11.1 when a = 3.381, b = 0.2, c = 0.30 and d = 3. (d) The
phase portrait prey-predator system when a = 3.381, b = 0.2, c = 0.30 and d = 3. (e) The trajectories
of prey and predator densities with the initial conditions x0 = 0.5 and y0 = 6.1 when a = 3.381, b = 0.2,
c = 0.033 and d = 2.99. (f) The phase portrait prey-predator system when a = 3.381, b = 0.2, c = 0.033
and d = 2.99.

B2(u, v) = 3.5(u2v1 + u1v2),

C1(u, v, w) = 32.2869u1v1w1 − 0.206161(u1v1w2 + u1v2w1),
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(a) (b)

(c)

Figure 10. Neimark-Sacker bifurcations of system (1.1) when a ∈ (1, 1.4); b = 0.0001; d = 9.5; c =
0.0001; with corresponding Maximal Lyapunov Exponent. (a) Bifurcation diagram of prey population
(b) Bifurcation diagram of predator population (c) Maximal Lyapunov Exponent.

C2(u, v, w) = 0

and p ∼ (−282.4,−2.933)T , q ∼ (−0.01393, 1)T .

B. Calculation of the formula in (3.14) for exam-
ple 4.2

Let q, p ∈ C2 be the complex eigenvectors corresponding to λ1,2, respectively, q ∼
(−0.0243 − 0.0455i, 1)T and p ∼ (1, 0.0243 + 0.0455i)T . We get the vector p ∼
(10.989i, −0.5 + 0.267i)T to normalize p according to q, such that 〈p, q〉 = 1. When
the coefficient of the form (3.14) are calculated, we get

g20(aNS) = −2.73583 + 1.66575i,

g11(aNS) = −2.62531 + 1.50654i,

g02(aNS) = −2.71034 + 1.34729i,

g21(aNS) = −0.0132148 + 0.04226i
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where

F1(u, v) = −2.71036u2 + 0.205079u3 − 0.195564uv − 0.0132148u2v +O(‖U‖4),

F2(u, v) = 3.5uv +O(‖U‖4), (B.1)

B(q, q) =

0.141228 + 0.264439i

−0.1701− 0.3185i

 ,

C(q, q, q) =

0.00113946 + 0.00386505i

0

 ,

C(q, q, q) =

0.00384589 + 0.00120255i

0

 ,

B1(u, v) = −5.42072u1v1 − 0.195564(u2v1 + u1v2),

B2(u, v) = 3.5(u2v1 + u1v2),

C1(u, v, w) = 1.23047u1v1w1 − 0.0264296(u1v1w2 + u1v2w1),

C2(u, v, w) = 0.
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[16] Q. Din, Ö. A. Gümüş and H. Khalil, Neimark-sacker bifurcation and chaotic
behaviour of a modified host–parasitoid model, Zeitschrift für Naturforschung
A, 2017, 72(1), 25–37.

[17] Q. Din and U. Saeed, Bifurcation analysis and chaos control in a host-parasitoid
model, Mathematical Methods in the Applied Sciences, 2017, 40(14), 5391–
5406.

[18] J. M. Drake, Allee effects and the risk of biological invasion, Risk Analysis: An
International Journal, 2004, 24(4), 795–802.

[19] E. Elabbasy, H. Agiza, H. El-Metwally and A. Elsadany, Bifurcation analysis,
chaos and control in the burgers mapping, Int. J. Nonlinear Sci., 2007, 4(3),
171–185.

[20] S. N. Elaydi, An Introduction to Difference Equations, Springer-Verlag, New
York, NY, USA, 1996.

[21] A. Elsadany, Q. Din and S. Salman, Qualitative properties and bifurcations of
discrete-time bazykin–berezovskaya predator–prey model, International Journal
of Biomathematics, 2020, 13(06), 2050040.

[22] A.-E. A. Elsadany, H. El-Metwally, E. Elabbasy and H. Agiza, Chaos and bi-
furcation of a nonlinear discrete prey-predator system, Computational Ecology
and Software, 2012, 2(3), 169.

[23] H. I. Freedman, Deterministic Mathematical Models in Population Ecology, 57,
Marcel Dekker Incorporated, 1980.

[24] A. George Maria Selvam, R. Dhineshbabu and Ö. A. Gümüş, Complex dy-
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[45] H. Merdan and Ö. A. Gümüş, Stability analysis of a general discrete-time
population model involving delay and allee effects, Applied Mathematics and
Computation, 2012, 219(4), 1821–1832.



A study on stability, bifurcation, chaos 3193
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