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ANALYTICAL AND NUMERICAL
DISCUSSION FOR THE PHASE-LAG
VOLTERRA-FREDHOLM INTEGRAL

EQUATION WITH SINGULAR KERNEL

Mohammed Abdel–Aty1,† and Mohammed Abdou2

Abstract In this paper, we studied the existence and unique solution of the
Volterra-Fredholm integral equation of the second kind (V-FIESK). The gen-
eral singular kernel is considered to be in position with the Fredholm integral
term. Singular kernel will tend to a logarithmic function under exceptional
conditions and new discussions. The Volterra-Fredholm integral equation with
the logarithmic form will be solved using Legendre polynomials, where the
kernel of Volterra integral term is a positive continuous function in time. A
system of infinite linear algebraic equations is obtained by solving the prob-
lem in series, where the convergence of this system is discussed. Finally, The
error is calculated using Maple software after the numerical results have been
acquired.
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theorem, phase-lag term, logarithmic function, Legendre polynomials.
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1. Introduction

There are currently one and dual phases, and phase-lag plays an important role in
our scientific and applied fields of science. The third phase has been defined with
the development of modern applied science, and each phase has different significance
and applications. The rapid transient heat transfer processes associated with micro-
reactions have recently started to be significantly impacted by the three-phase-lag
mode. Through the phase of time delay in heat transfer processes through bodies,
it establishes the length of time necessary for various micro-reactions to happen,
including reactions resulting in metals like the interaction of the phonon and the
electron and the resulting reactions in insulating crystals like phonon scattering, as
well as activating the movement of molecules at very low temperatures. For more
information, see [5, 13]. The mathematical model of many evolutionary problems
in mathematical physics, optimal control systems, biology, engineering, quantum
mechanics, chemistry, and other fields is the Volterra-Fredholm integral equations
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with phase-lag term. For example, the dual phase-lag model of heat transfer uses
integral equations.

According to [1, 6, 23, 24, 28], there are various types of integral equations that
can be used as mathematical tools to represent the models of knowledge that are
present in a variety of applied sciences fields. Volterra-Friedholm integral equations
appear in many applications that have an impact on basic science, and because
it can be difficult to find an exact solution in many cases, researchers have been
interested in developing numerical methods to approximate the solution of these
equations. Such these methods, we refer to [1,2,4,11,12,17,20,27,30]. The method
presented in the article has high accuracy in approximating the solution of these
equations because the solution is represented by a linear combination of polynomials
with the help of non-orthogonal or orthogonal basis functions, for example in the
case [9, 10,32].

Volterra-Fredholm integral equations frequently appear in mathematical physics
and chemistry problems, including kinetic theories of gases, theories of radiative
transfer, queuing theories, kinetic theories of gases, theories of neutron transport,
traffic theories, and many other applications. Previous works have examined exist-
ing solutions and numerical approaches to solve these kinds of integral equations,
see [15,16,25].

Volterra-Fredholm integral equation with a singular form is discussed in this
work, according to certain conditions. Using Picard’s approach, it is shown that the
integral equation’s solution exists and is unique. In space L2[−1, 1] × C[0, T ], 0 ≤
T < 1, the solution is expressed in the form of a series of Legendre polynomials,
where an infinite system of linear algebraic equations is obtained. Numerical exam-
ples are presented in addition to a discussion of the convergence of this system.

There are seven sections in this article. The existence and unique solution of Eq.
(2.1) are proved and discussed in section 3. We discussed a theory in section 4 that
explains why the bad kernel has a logarithmic form. While, in section 5, we provide
some integral and algebraic formulas for the Legendre polynomials, and also the
Legendre polynomials approach is used to find the solution of the singular integral
equation. Section 6 contains the computation of estimated errors and numerical
results. Final remarks are deduced in section 7.

2. Volterra-Fredholm integral equations with phase-
lag

Assume the Volterra-Fredholm integral equation with phase-lag term of the second
kind

γΨ(u, t+ δt) = g(u, t) +

∫ t

0

J(t, τ)Ψ(u, τ)dτ +

∫ 1

−1
ξ

(∣∣∣∣v − uλ
∣∣∣∣)Ψ(v, t)dv,

g(u, t) =
π

α1 + α2
[σ(t) + η(t)x− θ1(x)− θ2(x)],

[|u| ≤ 1, t ∈ [0, T ], λ ∈ (0,∞), γ ∈ (0,∞), 0 < δt << 1],

(2.1)

we have

ξ

(∣∣∣∣v − uλ
∣∣∣∣) =

∫ ∞
0

(
L(w)

w

)
cos(

v − u
λ

w)dw,
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L(w) =
w + q

1 + w
; q ≥ 1. (2.2)

Under the conditions∫ 1

−1
Ψ(u, t)du = P (t),

∫ 1

−1
uΨ(u, t)du = M(t), (2.3)

ψ(u, t) is unknown function in the space L2[−1, 1] × C[0, T ], 0 ≤ T < 1, where δt
is the phase-lag constant. The domain of integration with regard to the position
is [−1, 1] and the time t ∈ [0, T ]. The known function g(u, t) is continuous in the
space L2[−1, 1]×C[0, T ], 0 ≤ t ≤ T , and the kernel J(t, τ) is continuous in C[0, T ].
Additionally, the kernel in position ξ

(∣∣v−u
λ

∣∣) is discontinuous.
Taylor expansion is used when the second derivative in Eq. (2.1) is neglected,

we obtain

γ

[
Ψ(u, t) + δt

∂Ψ(u, t)

∂t

]
= g(u, t)+

∫ t

0

J(t, τ)Ψ(u, τ)dτ+

∫ 1

−1
ξ

(∣∣∣∣v − uλ
∣∣∣∣)Ψ(v, t)dv,

(2.4)
with initial condition

Ψ(u, 0) = f(u). (2.5)

Integro-differential equation is the name given of equation (2.4) with initial condi-
tion (2.5). Integro-differential equations (IDEs) are a type of functional equations
that have associated derivatives and integrals of an unknown function, as shown
in [26,31]. These equations bear the names of the famous mathematicians who first
explored them, including Volterra and Fredholm. The most numerous kinds are
Volterra and Fredholm equations.

Integrating Eq. (2.4) and using initial condition (2.5), we obtain

Ψ(u, t) =f(u) +
1

γδt

∫ t

0

g(u, z)dz − 1

δt

∫ t

0

Ψ(u, z)dz

+
1

γδt

∫ t

0

∫ z

0

J(z, τ)Ψ(u, τ)dτdz

+
1

γδt

∫ t

0

∫ 1

−1
ξ

(∣∣∣∣v − uλ
∣∣∣∣)Ψ(v, z)dvdz,

(2.6)

interchanging the order of integration over the triangular domain in the τz-plane
reveals that the equation (2.6) becomes,

Ψ(u, t) =f(u) +
1

γδt

∫ t

0

g(u, τ)dτ +
1

γδt

∫ t

0

[G(t, τ)− γ]Ψ(u, τ)dτ

+
1

γδt

∫ t

0

∫ 1

−1
ξ

(∣∣∣∣v − uλ
∣∣∣∣)Ψ(v, τ)dvdτ.

(2.7)

Where,

G(t, τ) =

∫ t

τ

J(z, τ)dz.

Equation (2.7) is named Volterra-Fredholm integral equation with phase-lag term
in time.
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3. The existence and uniqueness of solution of the
Volterra-Fredholm integral equation (2.7)

We establish the following assumptions to study the existence and uniqueness of
the solution of Eq. (2.7):

(i) G(t, τ) ∈ C([0, T ]) and satisfies ‖G(t, τ)‖ ≤ A, s.tA is a constant, ∀ t, τ ∈ [0, T ].

(ii) f(u) is continuous function and satisfies ‖f(u)‖ ≤ B, s.tB is a constant.

(iii) The Bad kernel ξ
(∣∣ v−u

λ

∣∣) satisfies the condition{∫ 1

−1

∫ 1

−1

∣∣∣∣ξ(∣∣∣∣v − uλ
∣∣∣∣)∣∣∣∣2 dudv

} 1
2

= H,

where H is a finite constant.

(iv) In space L2[−1, 1] × C[0, T ], 0 ≤ T < 1, g(u, τ) is given continuous function
with its partial derivatives with respect to the position and time, its norm is
defined as,

‖g(u, τ)‖ = max
0<τ≤T

∫ τ

0

(∫ 1

−1
g2(u, z)du

) 1
2

dz = Q, Q is a constant.

Theorem 3.1. Let the conditions (i-iv) be satisfied. If the condition[
2H +A− γ

γδt

]
< 1 (3.1)

is satisfied, then the equation (2.7) has a unique solution ψ(u, t) in the space
L2[−1, 1]× C[0, T ].

Proof. We use the successive approximation method, often known as Picard’s
method, to prove the existence and uniqueness of the solution of equation (2.7).

The following form is the solution that approaches close to the exact solution of
the equation (2.7):

Ψk(u, t) = f(u) +
1

γδt

∫ t

0

g(u, τ)dτ +
1

γδt

∫ t

0

[G(t, τ)− γ]Ψk−1(u, τ)dτ

+
1

γδt

∫ t

0

∫ 1

−1
ξ

(∣∣∣∣v − uλ
∣∣∣∣)Ψk−1(v, τ)dvdτ,

ψ0(u, t) = f(u) +
1

γδt

∫ t

0

g(u, τ)dτ.

(3.2)

Since all of the functions ψk(u, t) are continuous, ψk(u, t) can be expressed as the
sum of successive differences:

ψk(u, t) = ψ0(u, t) +

k∑
j=1

(ψj(u, t)− ψj−1(u, t)).

It follows that the convergence of the sequence ψk(u, t) is equivalent to the conver-

gence of the finite series
∑k
j=1(ψj(u, t)− ψj−1(u, t)), the solution will be

ψ(u, t) = lim
k→∞

ψk(u, t),
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i.e. if the finite series
∑k
j=1(ψj(u, t) − ψj−1(u, t)) converges, then the sequence

ψk(u, t) will converge to ψ(u, t). For this reason, the following lemmas are currently
proven:

Lemma 3.1. A sequence {ψk(u, t)} is uniformly convergent to a continuous solu-
tion function {ψ(u, t)}.

Proof. In order to prove the uniform convergence of {ψk(u, t)}, we take into
consideration the related series

∞∑
k=1

(ψk(u, t)− ψk−1(u, t)).

From Eq. (3.2), for k = 1, we get

ψ1(u, t)− ψ0(u, t) =
1

γδt

∫ t

0

[G(t, τ)− γ]Ψ0(u, τ)dτ

+
1

γδt

∫ t

0

∫ 1

−1
ξ

(∣∣∣∣v − uλ
∣∣∣∣)Ψ0(v, τ)dvdτ,

using conditions (i–iv), we obtain

‖ψ1(u, t)− ψ0(u, t)‖ ≤ 1

γδt

∥∥∥∥∫ t

0

[A− γ]Ψ0(u, τ)dτ

∥∥∥∥+
H

γδt

∥∥∥∥∫ t

0

∫ 1

−1
Ψ0(v, τ)dvdτ

∥∥∥∥
≤ 1

γδt
[A− γ](B +

Q

γδt
) +

2H

γδt
(B +

Q

γδt
)

≤
(
B +

Q

γδt

)[
2H +A− γ

γδt

]
.

(3.3)

By using this method repeatedly, we are able to obtain the following general estimate
for the terms of the series:

‖ψk(x, t)− ψk−1(x, t)‖ ≤ ηk
(
B +

Q

γδt

)
; η =

[
2H +A− γ

γδt

]
; k = 1, 2, 3, . . . .

Since
[
2H+A−γ

γδt

]
< 1, then the uniform convergence of

∞∑
k=1

(ψk(u, t)− ψk−1(u, t)),

is proved and so the sequence {ψk(u, t)} is uniformly convergent.

ψ(u, t) = lim
k→∞

(f(u) +
1

γδt

∫ t

0

g(u, τ)dτ +
1

γδt

∫ t

0

[G(t, τ)− γ]Ψk(u, τ)dτ

+
1

γδt

∫ t

0

∫ 1

−1
ξ

(∣∣∣∣v − uλ
∣∣∣∣)Ψk(v, τ)dvdτ)

=f(u) +
1

γδt

∫ t

0

g(u, τ)dτ +
1

γδt

∫ t

0

[G(t, τ)− γ]Ψ(u, τ)dτ
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+
1

γδt

∫ t

0

∫ 1

−1
ξ

(∣∣∣∣v − uλ
∣∣∣∣)Ψ(v, τ)dvdτ.

Thus, the existence of a solution of equation (2.7) is proved.

Lemma 3.2. The function ψ(u, t) represents a unique solution of integral equation
(2.7).

Proof. To prove the uniqueness of Eq. (2.7), let Φ(u, t) be a different continuous
solution of Eq. (2.7). We obtain

Φ(u, t) =f(u) +
1

γδt

∫ t

0

g(u, τ)dτ +
1

γδt

∫ t

0

[G(t, τ)− γ]Φ(u, τ)dτ

+
1

γδt

∫ t

0

∫ 1

−1
ξ

(∣∣∣∣v − uλ
∣∣∣∣)Φ(v, τ)dvdτ,

and

Ψ(u, t)− Φ(u, t) =
1

γδt

∫ t

0

[G(t, τ)− γ][Ψ(u, τ)− Φ(u, τ)]dτ

+
1

γδt

∫ t

0

∫ 1

−1
ξ

(∣∣∣∣v − uλ
∣∣∣∣) [Ψ(v, τ)− Φ(v, τ)]dvdτ.

Using conditions (i–iv) and the properties of the norm, we get

‖Ψ(u, t)− Φ(u, t)‖ ≤ 1

γδt

∫ t

0

[A− γ]‖Ψ(u, τ)− Φ(u, τ)‖dτ

+
H

γδt

∫ t

0

∫ 1

−1
‖Ψ(v, τ)− Φ(v, τ)‖dvdτ

≤
[

2H +A− γ
γδt

]
‖Ψ(u, t)− Φ(u, t)‖.

But

‖Ψ(u, t)− Φ(u, t)‖ ≤ η‖Ψ(u, t)− Φ(u, t)‖; η =

[
2H +A− γ

γδt

]
. (3.4)

The equation (3.4) can be written as,

(1− η)‖Ψ(u, t)− Φ(u, t)‖ ≤ 0,

since η < 1, so that Ψ(u, t) = Φ(u, t), that is the solution is a unique. Which ends
the proof.

4. The kernel of the Fredholm integral term

Theorem 4.1. The bad kernel of equation (2.2) takes the logarithmic form.

Proof. For w ∈ (0,∞), the function L(w) is continuous and positive. The asymp-
totic equalities can therefore be satisfied:

L(w) =q − (q − 1)w +O(w2), w → 0, (4.1)
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L(w) =1 +
q − 1

w
+O(w−2), w →∞, q ≥ 1. (4.2)

Most of the previous authors have, when w → 0, i.e. L(w) = q, solved the Fred-
holm integral equations of the second and first kinds in the continuum mechanics
problems.

Here, we consider the case when w →∞. i.e. L(w) = 1, and then for the second
and first approximations of L(w) after applying the two well-known relations∫ ∞

0

cos( v−uλ w)

w
dw = − ln |v − u|+ d; d = ln

4λ

π
; λ ∈ (0,∞),∫ ∞

0

cos(
v − u
λ

w)dw = δ(v − u); δ(v − u) is the Dirac function.

(4.3)

We can arrive

ξ

(∣∣∣∣v − uλ
∣∣∣∣) = − ln |v − u|+ d. (4.4)

Substituting (4.4) into (2.7), we get

Ψ(u, t) =f(u) +
1

γδt

∫ t

0

g(u, τ)dτ +
1

γδt

∫ t

0

[G(t, τ)− γ]Ψ(u, τ)dτ

+
1

γδt

∫ t

0

∫ 1

−1
(− ln |v − u|+ d)Ψ(v, τ)dvdτ.

(4.5)

5. The solution algorithm of the Volterra-Fredholm
integral equation (2.7)

5.1. Quadratic numerical method

The importance of Quadratic numerical approach comes from its numerous appli-
cations in mathematical physics problems, wherever the eigenfunctions and eigen-
values of the integral equations are often discussed and studied. Additionally, this
approach has numerous applications in the applied sciences, especially in the theory
of elasticity, mixed problems in the field of mechanics, and contact problems.

Here, we often apply this numerical technique to convert the Volterra-Fredholm
integral equation (2.7) to a linear Fredholm integral equations of second type. We
divide [0, T ], 0 ≤ T < 1, as 0 = t0 < t1 < ... < tm < ... < tL = T, where
t = tm, m = 0, 1, ..., L, to get

Ψ(u, tm) =f(u) +
1

γδt

∫ tm

0

g(u, τ)dτ +
1

γδt

∫ tm

0

[G(tm, τ)− γ]Ψ(u, τ)dτ

+
1

γδt

∫ tm

0

∫ 1

−1
(− ln |v − u|+ d)Ψ(v, τ)dvdτ.

(5.1)

For the Volterra integral terms, we have the following using the quadrature formula
[14]: ∫ tm

0

∫ 1

−1
(− ln |v − u|+ d)Ψ(v, τ)dvdτ



3210 M. Abdel–Aty & M. Abdou

=

m∑
n=0

µn

∫ 1

−1
(− ln |v − u|+ d)Ψ(v, tn)dv +O(~℘1+1

m ),

∫ tm

0

[G(tm, τ)− γ]Ψ(u, τ)dτ =

m∑
n=0

νn[G(tm, tn)− γ]Ψ(u, tn) +O(~℘2+1
m ),

∫ tm

0

g(u, τ)dτ =

m∑
n=0

ωng(u, tn) +O(~℘3+1
m ),

(~℘1+1
m → 0, ~℘2+1

m → 0, ~℘3+1
m → 0; ℘1 > 0, ℘2 > 0, ℘3 > 0, (5.2)

where, = denotes the step size of the partition,

~m = max
0≤n≤m

=n and =n = tn+1 − tn.

In [19], more details regarding the quadrature coefficients and characteristic points
are presented.

Equation (5.2) is applied in equation (5.1), yielding

Ψ(u, tm) =f(u) +
1

γδt

m∑
n=0

ωng(u, tn) +
1

γδt

m∑
n=0

νn[G(tm, tn)− γ]Ψ(u, tn)

+
1

γδt

m∑
n=0

µn

∫ 1

−1
(− ln |v − u|+ d)Ψ(v, tn)dv.

(5.3)

Utilizing the notations shown below:

g(u, tn) = gn(u), Ψ(u, tm) = Ψm(u), G(tm, tn) = Gm,n.

In the following format, we can write (5.3):

Ψm(u) =f(u) +
1

γδt

m∑
n=0

ωngn(u) +
1

γδt

m∑
n=0

νn[Gm,n − γ]Ψn(u)

+
1

γδt

m∑
n=0

µn

∫ 1

−1
(− ln |v − u|+ d)Ψn(v)dv.

(5.4)

Equation (5.4) can be rewritten as follows:

ℵmΨm(u) =f(u) +
1

γδt

m∑
n=0

ωngn(u) +
1

γδt

m−1∑
n=0

νn[Gm,n − γ]Ψn(u)

+
1

γδt

m∑
n=0

µn

∫ 1

−1
(− ln |v − u|+ d)Ψn(v)dv,

(5.5)

where ℵm = [1− (νm/γδt)(Gm,m − γ)].
Also the boundary condition (2.3) becomes∫ 1

−1
Ψm(u)du = Pm,

∫ 1

−1
uΨm(u)du = Mm. (5.6)

According to equation (5.5), Ψm(u) represents the number of finite unknown
functions, with values of m = 0, 1, ..., L, which correspond to 0 = t0 < t1 < ... <
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tm < ... < tL = T . In this case, equation (5.5) describes a finite system of Fredholm
integral equations of the second type with a logarithmic form in position, whereas,
for ℵm = 0, we get the first type of a finite system of Fredholm integral equations.

There are various approaches to getting the solution of the system (5.5), for ℵm 6=
0. For example, by using a variation of Nyström method [14] and the collocation
method [21]. Also, Galerkin method is used in [8] to solve the system (5.5). If we
obtain, firstly, the value of Ψ0(u), and let m = 0 in (5.5), we obtain

ℵ0Ψ0(u) = f(u) +
1

γδt
ω0g0(u) +

1

γδt
µ0

∫ 1

−1
(− ln |v − u|+ d)Ψ0(v)dv,

ℵ0 = [1− (ν0/γδt)(G0,0 − γ)].

(5.7)

After finding the solution of equation (5.7), we may apply mathematical induction
to find the general solution of (5.5).

Using the famous relation, found in [29], it is possible to get the Fredholm
integral equation with Carleman kernel from Eq. (5.7)

ln |v − u| = U(u, v)|v − u|−ϑ; ϑ ∈]0, 1[ , (5.8)

where U(u, v) = |v − u|ϑ ln |v − u| ∈ C[−1, 1] for all (−1 ≤ u, v ≤ 1). The work
of Artiunian, who established that the first approximation of the nonlinear integral
equation in the theory of plasticity represents a Fredholm integral equation of the
second type with the Carleman form, provided the reason for the importance of the
Carleman kernel. For further information, see [7].

Differentiating the integral equation (5.7) with respect to u, we arrive at

ℵ0
dΨ0(u)

du
=

df(u)

du
+

1

γδt
ω0

dg0(u)

du
+

1

γδt
µ0

∫ 1

−1

Ψ0(v)dv

v − u
, (5.9)

here
∫ 1

−1 represents integration in the sense of Cauchy principal value, the unknown
function Ψ0(u) with its derivatives are continuous in L2[−1, 1], u ∈ [−1, 1].

5.2. Legendre polynomials

Now, in order to obtain the solution of problem (5.9), we suppose the unknown
function Ψ0(u) in the Legendre polynomials form:

Ψ0(u) =

∞∑
k=0

C0
kPk(u), (5.10)

where Pk(u) is a Legendre polynomial that satisfies the orthogonal relation, see [22]
and C0

k are constants

∫ 1

−1
Pk(u)Ps(u)du =

0; s 6= k,

2
2k+1 ; s = k.

(5.11)

The polynomial series (5.10) exhibits the following behavior at the two end points
of contact, u = ±1

Ψ0(1) =

∞∑
k=0

C0
k , Ψ0(−1) =

∞∑
k=0

(−1)kC0
k .
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Also, we say that, if Ψ0(u) ∈ L2[−1, 1], then the polynomial series (5.10) belongs
to L2[−1, 1] (see [22]).

Differentiating (5.10) with respect to u, we obtain

Ψ′0(u) =

∞∑
k=0

C0
kP

1
k (u).(1− x2)−

1
2 , (5.12)

where P `k(u), k, ` ≥ 0, are the first type of the associated Legendre polynomials
that satisfy the following relation that satisfy the following relation (see [ [18], p.
808]):

∫ 1

−1
P `k(u)P `s (u)du =

0; s 6= k,

2(k+`)!
(k−`)!(2k+1) ; s = k.

(5.13)

The known term of (5.9) can be formed as follows in view of (5.10)

f ′(u) =

∞∑
k=0

fkP
1
k (u).(1− x2)−

1
2 , g′0(u) =

∞∑
k=0

g0kP
1
k (u).(1− x2)−

1
2 , (5.14)

where Eq. (5.13) can be used to calculate the constant coefficients fk, g
0
k, k ≥ 0. The

polynomial series (5.14) belongs to L2[−1, 1] if the known functions f ′(u), g′0(u) ∈
L2[−1, 1] (see [22]). Applying the following famous relation (see [ [18], p. 835])

Qk(u) =
1

2

∫ 1

−1

Pk(v)

u− v
dv, (5.15)

by using (5.10), the integral term of (5.9) becomes∫ 1

−1

Ψ0(v)

u− v
dv = 2

∞∑
k=0

C0
kQk(u), (5.16)

where Q`k(u), `, k ≥ 0, are the second type of the associated Legendre polynomials
that satisfy the following relation, (see [ [18], p. 808])∫ 1

−1
Q`k(u)P `s (u)du = (−1)`

1− (−1)(k+s)(k + `)!

(s− k)(s+ k + 1)(k − `)!
; ` ≥ 0. (5.17)

Using equations (5.12), (5.14) and (5.16) in form (5.9), we obtain

ℵ0
∞∑
k=0

C0
kP

1
k (u) =

∞∑
k=0

(fk +
ω0

γδt
g0k)P 1

k (u)− 2µ0

√
1− x2
γδt

∞∑
k=0

C0
kQk(u). (5.18)

Using the following famous integral relation, after multiplying both sides of (5.18)
by the term P 1

s (u)du, then integrating the result from −1 to 1, (see [ [18], p. 807])

∫ 1

−1

√
1− x2Qk(u)P 1

s (u)du =

0; (k = s± 1),

−2s(s+1)[1+(−1)k+s]
(s−k−1)(s−k+1)(s+k)(s+k+2) ; (k 6= s± 1),

(5.19)
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the formula (5.18) becomes

ℵ0C0
s =fs +

ω0

γδt
g0s +

2µ0

γδt

∞∑
k=0

(2s+ 1)[1 + (−1)k+s]C0
k

(s− k − 1)(s− k + 1)(s+ k)(s+ k + 2)
,

(C0
0 =

P0

2
, C0

1 =
3

2
M0, s ≥ 2).

(5.20)

The following relation can be obtained by applying the same previous method and
mathematical induction:

ℵmCms =fm +
1

γδt

m∑
n=0

ωng
n
s +

1

γδt

m−1∑
n=0

νn[Gm,n − γ]Cnk

+
2

γδt

m∑
n=0

∞∑
k=0

µn
(2s+ 1)[1 + (−1)k+s]Cnk

(s− k − 1)(s− k + 1)(s+ k)(s+ k + 2)
,

(Cm0 =
Pm
2
, Cm1 =

3

2
Mm, m = 0, 1, 2, · · · , L),

(5.21)

where, we assume

Ψm(u) =

∞∑
k=0

Cmk Pk(u), g′m(u) =

∞∑
k=0

gmk P
1
k (u).(1− x2)−

1
2 . (5.22)

Lemma 5.1. The infinite series (2s+1)[1+(−1)k+s]
(s−k−1)(s−k+1)(s+k)(s+k+2) , is bounded for all val-

ues of s, k ≥ 1.

Proof. We consider that in order to prove the lemma

∞∑
s=1

∣∣∣∣ (2s+ 1)[1 + (−1)k+s]

(s− k − 1)(s− k + 1)(s+ k)(s+ k + 2)

∣∣∣∣ < Λ, (5.23)

where

Λ =
3

2
+ 4

∞∑
s=3

2s+ 1

(s− 2)s(s+ 1)(s+ 3)
.

The value of Λ can be defined as

Λ =
3

2
+ 4(Γ1 + Γ2),

where

Γ1 =

∞∑
s=0

1

(s+ 1)(s+ 4)(s+ 6)
= − 1

15
Θ(1) +

1

6
Θ(4)− 1

10
Θ(6),

Γ2 =

∞∑
s=0

1

(s+ 1)(s+ 3)(s+ 6)
= − 1

10
Θ(1) +

1

6
Θ(4)− 1

15
Θ(6).

Where Θ(s) is called the Euler function and Gredshtein tables [18] can be used to
determine its value for various values of s. In the end, we get Λ = 11/5. This proves
the lemma.
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Table 1. Absolute error of solution in some arbitrary points by using Legendre polynomials with L = 3
and 0 ≤ T ≤ 0.6

ui |Ψ(u, t0)−Ψ0(u)| |Ψ(u, t1)−Ψ1(u)| |Ψ(u, t2)−Ψ2(u)| |Ψ(u, t3)−Ψ3(u)|
0.8 9.50026×10−13 7.02314×10−8 2.66215×10−7 1.00198×10−6

0.6 9.20214×10−14 3.23021×10−9 6.30862×10−8 5.65481×10−7

0.4 7.40035×10−14 3.02155×10−9 5.30287×10−8 3.32002×10−7

0.2 7.00026×10−15 1.02139×10−9 3.02547×10−8 2.52014×10−7

0.0 0 1.00071×10−10 2.02154×10−9 3.58420×10−8

-0.2 5.44028×10−15 2.00215×10−9 2.02781×10−8 4.29813×10−7

-0.4 5.00211×10−14 4.3.251×10−9 4.63220×10−8 5.21170×10−7

-0.6 6.20302×10−14 7.62314×10−9 5.32358×10−8 6.45287×10−7

-0.8 7.21005×10−13 5.35269×10−8 1.50000×10−7 1.00214×10−6

6. Problems and numerical results

Example 6.1. In this section, we applied the method that was described in this
study for solve the integral equation (5.5).

We determine the constant Cmk of Eq. (5.21) to get the numerical solution of
integral equation (5.5). Then, using the main relation results, we can compute the
unknown function Ψm(u); −1 ≤ u ≤ 1, when k = 20, γ = 25, δt = 0.001, λ =
0.1, g(u, t) = ut, J(t, τ) = t2τ, f(u) = u, P0 = 1, M0 = 1.

If we divide the interval [0, T ], 0 ≤ T < 1, as 0 = t0 < t1 < t2 < t3 = T, where,
t = tm, m = 0, 1, 2, 3. Applying the presented numerical technique, where L = 3
and T = 0.6 in the interval [0, 0.6].

In Table 1, we showed the absolute error |Ψ(u, tm)−Ψm(u)|,m = 0, 1, 2, 3, from
the Legendre polynomials with L = 3 in the interval [0, 0.6].

In Figs. 1, 2, 3, and 4, we showed a comparison between the exact solution,
the approximate solution, and absolute error of solution by using the presented nu-
merical approach (Legendre polynomials ) with different values of tm, m = 0, 1, 2, 3
with L = 3.

Figure 1. Exact and approximate solution of Legendre polynomials for t0 = 0.
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Figure 2. Exact and approximate solution of Legendre polynomials for t1 = 0.2.

Figure 3. Exact and approximate solution of Legendre polynomials for t1 = 0.4.

Figure 4. Exact and approximate solution of Legendre polynomials for t1 = 0.6.
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Table 2. Absolute error of solution in some arbitrary points by applying Legendre polynomials with
L = 3 and 0 ≤ T ≤ 0.6

ui |Ψ(u, t0)−Ψ0(u)| |Ψ(u, t1)−Ψ1(u)| |Ψ(u, t2)−Ψ2(u)| |Ψ(u, t3)−Ψ3(u)|
0.9 8.85697×10−13 9.85264×10−9 7.00369×10−8 1.90874×10−7

0.7 8.23588×10−14 2.25874×10−9 5.65287×10−8 1.23251×10−7

0.5 4.02175×10−14 7.00254×10−10 3.32980×10−8 6.21005×10−8

0.3 1.00214×10−15 1.00487×10−10 5.65312×10−9 3.56974×10−8

0.1 3.00251×10−16 3.92584×10−11 3.05879×10−10 5.00022×10−9

-0.1 1.00214×10−16 5.21479×10−11 3.65874×10−10 6.05877×10−9

-0.3 1.85241×10−15 1.56215×10−10 3.00033×10−9 5.32841×10−8

-0.5 2.00021×10−14 8.89521×10−10 2.02580×10−8 7.25682×10−8

-0.7 3.66587×10−14 6.25849×10−9 5.69856×10−8 1.00268×10−7

-0.9 3.69852×10−13 9.98654×10−9 7.30002×10−8 2.02858×10−7

Example 6.2. Consider the following Volterra-Fredholm integral equations with
phase-lag term:

20Ψ(u, t+ 0.0002) =(u2 + t2) +

∫ t

0

t2τ2Ψ(u, τ)dτ

+

∫ 1

−1

(
− ln |v − u|+ ln

4

π

)
Ψ(v, t)dv, (6.1)

the unknown function Ψm(u); −1 ≤ u ≤ 1, when k = 50, λ = 1, f(u) = u2, P0 =
1, M0 = 1.

If we divide the interval [0, T ], 0 ≤ T < 1, as 0 = t0 < t1 < t2 < t3 = T,
where, t = tm, m = 0, 1, 2, 3, the Volterra-Fredholm integral equations (6.1) have
the following form:

ℵmΨm(u) =f(u) +
1

20(0.0002)

m∑
n=0

ωn(u2 + t2n)

+
1

20(0.0002)

m−1∑
n=0

νn[
1

3
(t3mt

2
n − t5n)− 20]Ψn(u)

+
1

20(0.0002)

m∑
n=0

µn

∫ 1

−1

(
− ln |v − u|+ ln

4

π

)
Ψn(v)dv,

where ℵm = [1− (νm/20(0.0002))[ 13 (t5m − t5m)− 20]].

Using the Legendre polynomials with L = 3 and T = 0.6 in the interval [0, 0.6].

In Table 2, we used the Legendre polynomials with L = 3 in the interval [0, 0.6]
to present the absolute error |Ψ(u, tm)−Ψm(u)|,m = 0, 1, 2, 3.

In Figs. 5, 6, 7, and 8, we introduced a comparison between the exact solution,
the approximate solution, and absolute error of solution using the proposed numer-
ical approach (Legendre polynomials ) with various values of tm, m = 0, 1, 2, 3 with
L = 3.
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Figure 5. Exact and approximate solution of Legendre polynomials for t0 = 0.

Figure 6. Exact and approximate solution of Legendre polynomials for t1 = 0.2.

Figure 7. Exact and approximate solution of Legendre polynomials for t1 = 0.4.
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Figure 8. Exact and approximate solution of Legendre polynomials for t1 = 0.6.

7. Conclusion and remarks

The following can be concluded from the results and discussion in this article:
In the space L2[−1, 1]×C[0, T ], the equation (2.1) has a unique solution Ψ(u, t)

under some conditions. In many types of integral equations, it is usually difficult to
obtain exact solutions, so it is necessary to find approximate solutions. From the
Tables 1, 2, we note that the error takes maximum value at the ends when u = 1
and u = −1, while it is minimum at the middle when u = 0. If δt→ 0, we find that
the numerical solution converges to the exact solution.

This work can be used to construct an integral equation with Carleman form
by using Eq. (5.8). Currently, this work is considered a special case of the Fred-
holm integral equations of the second type with Carleman and logarithmic kernels.
Numerous spectral relations are established from the problem these relations have
various important applications in mathematical physics problems.
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