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THE SHSS PRECONDITIONER FOR SADDLE
POINT PROBLEMS

Cuixia Li1 and Shiliang Wu1,2,†

Abstract In this paper, building on the previous published work by Li and
Wu [Appl. Math, Lett., 2015, 44, 26–29], we extend the single-step HSS
(SHSS) method for saddle point problems. Based on the idea of SHSS method,
the SHSS preconditioner for solving saddle point problems is introduced. We
discuss the spectral properties of the preconditioned matrix in detail. By
some numerical experiments, we demonstrate the effectiveness of the SHSS
preconditioner.
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1. Introduction

To efficiently solve the following non-Hermitian positive definite linear systems

Ax = b, (1.1)

where b is a given vector, and A is a given matrix with non-Hermitian and positive
definite (its the Hermitian part, H = 1

2 (A + A∗), is positive definite), in [11], Li
and Wu presented a single-step HSS (SHSS) iteration method for solving the non-
Hermitian positive definite linear systems (1.1), which was described below

(αI +H)x(k+1) = (αI − S)x(k) + b, k = 0, 1, . . . , (1.2)

where H = 1
2 (A + A∗), and S = 1

2 (A − A∗) is the skew-Hermitian part of A, and
α > 0. Whereafter, the SHSS iteration method was employed to solve the complex
symmetric linear systems [18,19,21]. Clearly, comparing the following HSS iteration
method in [2] (αI +H)x(k+

1
2 ) = (αI − S)x(k) + b,

(αI + S)x(k+1) = (αI −H)x(k+
1
2 ) + b,

k = 0, 1, . . . , (1.3)

the SHSS iteration method (1.2) has certain advantages. Concretely, the SHSS
iteration method (1.2) successfully avoids a shifted skew-Hermitian linear subsystem
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with coefficient matrix αI +S. As is known, the coefficient matrix αI +S of linear
systems in (1.3) is skew-Hermitian, usually, its solution is difficult to gain [3].

In this paper, we will extend the SHSS iteration method for the following classical
saddle point problems

A

x
y

 ≡
 A BT

−B 0

x
y

 =

 b
q

 ≡ f, (1.4)

where B ∈ Rm×n with rank(B) = m < n and A ∈ Rn×n is symmetric positive
definite. In this way, matrix A is nonsingular. This implies that the saddle point
problems (1.4) has a unique solution. As is known, the saddle point problems
(1.4) occurs in many different applications of engineering and scientific computing,
see [4–10, 12–15, 22]. When the SHSS iteration method is used to solve the sad-
dle point problems (1.4), in theory, we present the convergence conditions of the
SHSS iteration method. In particular, we propose the SHSS preconditioner with
Krylov method (such as GMRES) for the saddle point problems (1.4). Numerical
experiments are shown to demonstrate the effectiveness of the SHSS preconditioner.

2. The SHSS preconditioner

Based on the HSS iteration method in [2], matrix A can be constructed as

A = (αI +H)− (αI − S) =

αI +A 0

0 αI

−
αI −BT
B αI

 , (2.1)

where α > 0 and I denotes the corresponding dimension identity matrix. From the
matrix splitting (2.1), naturally, the SHSS iteration method is constructed to solve
the saddle point problems (1.4) and is described below.

The SHSS iteration method: Assume that the initial vectors x(0) ∈ Rm and
y(0) ∈ Rn are arbitrarily given, for k = 0, 1, 2, ..., until the sequence of iterations
{x(k), y(k)}+∞k=0 is convergent, calculateαI +A 0

0 αI

x(k+1)

y(k+1)

 =

αI −BT
B αI

x(k)
y(k)

+

 b
q

 , (2.2)

where α > 0.
Since matrix A is symmetric positive definite, the iteration matrix Mα of the

SHSS method is

Mα =

αI +A 0

0 αI

−1 αI −BT
B αI

 . (2.3)

Clearly, the SHSS iteration method is convergent if and only if ρ(Mα) < 1, where
ρ(Mα) denotes the spectral radius of matrix Mα.

To study the convergence condition of the SHSS iteration method (2.2), let λ be
an eigenvalue of matrix Mα in (2.3) and [x, y]T be the corresponding eigenvector,
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then we can obtain αI −BT
B αI

x
y

 = λ

αI +A 0

0 αI

x
y

 ,
i.e.,

αx−BT y = λ(αI +A)x, (2.4)

Bx+ αy = αλy. (2.5)

Lemma 2.1. Let λ be an eigenvalue of the matrix Mα. Then λ 6= 1.

Proof. Assume that λ = 1, from (2.4) and (2.5) we have{
Ax+BT y = 0,

−Bx = 0.
(2.6)

Then y = 0 and x = 0 because matrix A is nonsingular. This contradicts with
[x, y]T 6= 0. Hence λ 6= 1.

Lemma 2.2. If λ is an eigenvalue of Mα and [x, y]T is the corresponding eigen-
vector, then x 6= 0. Moreover, if y = 0, then 0 < λ < 1.

Proof. Assume that x = 0, from (2.4) we have BT y = 0. Based on rank(B) = m,
we get y = 0. Clearly, this is contradictory with [x, y]T 6= 0. This implies that
x 6= 0.

When y = 0, from (2.4) we have

λαx+ λAx = αx. (2.7)

For both sides of Eq. (2.7) by multiplying x∗, we can get

λ =
αx∗x

αx∗x+ x∗Ax
=

α

α+ x∗Ax
x∗x

.

Since x∗Ax
x∗x > 0. Thus, 0 < λ < 1.

To obtain our main result, the following lemma is required.

Lemma 2.3 ( [16]). Let x2 − bx+ d = 0, where b, d ∈ R, and λ denote the root of
this equation. Then |λ| < 1 if and only if |d| < 1 and |b| < 1 + d.

Based on Lemma 2.3, the following result is obtained.

Theorem 2.1. Let

a = x∗Ax, x∗BTBx = b, ‖x‖2 = 1.

If b < αa, then

ρ(Mα) < 1,

from which the SHSS iteration method (2.2) converges to the unique solution of the
saddle point problem (1.4).
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Proof. From Lemma 2.1, together with (2.5), we have

y =
Bx

α(λ− 1)
. (2.8)

Substituting (2.8) into (2.4) leads to

(λ− 1)αx+ λAx+
BTBx

α(λ− 1)
= 0. (2.9)

Here, without loss of generality, we take ‖x‖2 = 1. For both sides of Eq. (2.9) by
multiplying x∗, we can obtain

α2(λ− 1)2 + αλ(λ− 1)x∗Ax+ x∗BTBx = 0,

or,
α2(λ− 1)2 + α(λ2 − λ)a+ b = 0, (2.10)

where a = x∗Ax > 0 and b = x∗BTBx ≥ 0. Further, from (2.10), we have

λ2 − 2α2 + αa

α2 + αa
λ+

α2 + b

α2 + αa
= 0. (2.11)

Based on Lemma 2.3, |λ| < 1 if and only if∣∣∣ α2 + b

α2 + αa

∣∣∣ < 1 (2.12)

and ∣∣∣2α2 + αa

α2 + αa

∣∣∣ < 1 +
α2 + b

α2 + αa
. (2.13)

When b > 0, it is easy to confirm that (2.12) and (2.13) is valid for b < αa. When
b = 0, there exist a nonzero vector x such that Bx = 0. Based on (2.5), we get
y = 0. So, based on Lemma 2.2 we obtain 0 < λ < 1. Hence, ρ(Mα) < 1.

In fact, if λmin is the smallest eigenvalue of matrix A and σmax is the largest
singular-value of matrix B, then we have

x∗BTBx

x∗Ax
≤ σ2

max

λmin
. (2.14)

Based on Eq. (2.14), we have the following corollary.

Corollary 2.1. Let λmin be the smallest eigenvalue of matrix A and σmax be the

largest singular-value of matrix B. If
σ2
max

λmin
< α, then

ρ(Mα) < 1,

from which the SHSS iteration method (2.2) converges to the unique solution of the
saddle point problems (1.4).

Further, let y = A
1
2x and ‖y‖2 = 1. Then

x∗BTBx

x∗Ax
= y∗A−

1
2BTBA−

1
2 y = y∗(BA−

1
2 )TBA−

1
2 y.

Therefore, we have the following result as well.
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Corollary 2.2. Let σ̄max be the largest singular-value of matrix BA−
1
2 . If σ̄max <

α, then

ρ(Mα) < 1,

from which the SHSS iteration method (2.2) converges to the unique solution of the
saddle point problems (1.4).

Clearly, the SHSS iteration method (2.2) for the saddle point problems (1.4)
is convergent when Theorem 2.1, Corollaries 2.1 or 2.2 are satisfied. Whereas, in
general, the convergence of this stationary iteration method is too slow such that it
is not competitive. For this reason, based on the matrix splitting (2.1), the splitting
matrix PH = αI+H can be used as a preconditioner matrix for the matrix A. This
is to say, we can make use of the Krylov subspace method with the preconditioner
PH = αI + H to solve the saddle point problems (1.4). In general, the spectral
distribution of the preconditioned matrix effects the convergence behavior of the
preconditioned Krylov subspace methods. Therefore, we here need to establish the
spectral distribution of the preconditioned matrix P−1H A.

With regard to the spectral distribution of P−1H A, the following theorem is
obtained.

Theorem 2.2. Let the condition of Theorem 2.1 be satisfied. Then the absolute
value of all the eigenvalues of P−1H A is less than one.

Proof. Assume that λ is the eigenvalue of P−1H A and [x, y]T is the corresponding
eigenvector. Then we have A BT

−B 0

x
y

 = λ

αI +A 0

0 αI

x
y

 ,
or equivalently,

Ax+BT y = λ(αI +A)x, (2.15)

−Bx = αλy. (2.16)

Note that λ 6= 0. Then from (2.16) we have

y =
−Bx
αλ

. (2.17)

Substituting (2.17) into (2.15) leads to

Ax− BTBx

αλ
= λ(αI +A)x. (2.18)

Here, without loss of generality, we take ‖x‖2 = 1. For both sides of Eq. (2.18) by
multiplying x∗, we can obtain

λ2 − αa

α2 + αa
λ+

b

α2 + αa
= 0, (2.19)

where a = x∗Ax > 0 and b = x∗BTBx ≥ 0. Based on Theorem 2.1, it is easy to
see that |λ| < 1.
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3. Numerical experiments

In this section, we report some numerical experiments to demonstrate the perfor-
mance of the preconditioner PH . To illustrate the advantage of the preconditioner
PH , in our numerical computations, we compare the preconditioner PH with the
well-known HSS preconditioner in [2]. Here, PHSS denotes the HSS preconditioner
and is form

PHSS =
1

2α
(αI +H)(αI + S) =

1

2α

αI +A 0

0 αI

 αI BT

−B αI

 .
In test example, we employ the restarted GMRES(#) for the corresponding saddle
point-type systems (1.4), where f is adjusted such that its solution is (1, 1, . . . , 1)T .

In our numerical experiments, the initial guess is the zero vector, all iterations
are stopped when the numbers of iteration steps surpass 500 or the current iterates
satisfy

‖f −Ax(k)‖2 ≤ 10−6‖f‖2.

All the computations are done with MATLAB R2016b. In the following tables, ‘IT’
denotes the numbers of iteration steps, ‘CPU’ denotes the CPU times in second
and ‘Res’ denotes the relative residual. Additionally, α∗ denotes the optimal exper-
imental parameter, i.e., under the optimal experimental parameter α∗, our testing
preconditioners have the mini numbers of iteration steps and the mini relative resid-
ual; ‘−’ fails to converge in 500 iterations and seconds.

Table 1. CPU and IT for PH and PHSS with p = 60.

α 0.1 0.5 1 1.5

PH IT 30 28 28 26

CPU 0.5664 0.5342 0.5375 0.4829

Res 6.65e-7 8.25e-7 2.92e-7 9.77e-7

PHSS IT 22 48 54 56

CPU 2.3186 4.6283 5.1663 5.3502

Res 9.83e-7 9.46e-7 8.39e-7 9.29e-7

Table 2. CPU and IT for PH and PHSS with p = 60 and α∗.

α∗ IT CPU Res

PH 3.3 26 0.4485 8.85e-7

PHSS 1e-04 2 0.4468 2.18e-7

Example 3.1. [16] Consider the saddle point problems (1.4), in which

A =

 I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

 ∈ R2p2×2p2 , B =

 I ⊗ F

F ⊗ I

 ∈ R2p2×p2 ,
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Table 3. CPU and IT for PH and PHSS with p = 80.

α 0.1 0.5 1 1.5

PH IT 32 30 28 28

CPU 1.4612 1.3509 1.2605 1.2381

Res 9.99e-7 4.24e-7 7.13e-7 5.31e-7

PHSS IT 21 52 56 58

CPU 5.1357 12.3287 13.3923 13.3558

Res 9.24e-7 9.77e-7 9.76e-7 9.81e-7

Table 4. CPU and IT for PH and PHSS with p = 80 and α∗.

α∗ IT CPU Res

PH 2.8 28 1.1992 4.85e-7

PHSS 1e-04 2 0.9136 1.65e-07

and

T =
1

h2
· tridiag(−1, 2,−1) ∈ Rp×p, F =

1

h
· tridiag(−1, 1, 0) ∈ Rp×p,

where ⊗ stands for the Kronecker product symbol and h = 1
p+1 stands for the

mesh-size.
For the sake of simply, in our computations, we take # as 30. The numerical

results on IT, CPU and Res of GMRES(30) with PH and PHSS are presented in
Tables 1, 2, 3 and 4. From Tables 1, 2, 3 and 4, the preconditioner PH needs less
CPU times than the preconditioner PHSS . This implies that the preconditioner PH
outperforms the preconditioner PHSS from the view of the computational efficiency
under certain conditions.

Example 3.2. [20] Consider the saddle point problems (1.4), in which

A =

 I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

 ∈ R2p2×2p2 , B =
(
B̄, b1, b2

)
∈ R2p2×(p2+2),

where

T =
ν

h2
· tridiag(−1, 2,−1) +

1

2h
· tridiag(−1, 0, 1) ∈ Rp×p,

B̄ =

 I ⊗ F

F ⊗ I

 ∈ R2p2×p2 ,

b1 = B̄

 e

0

 , b2 = B̄

 0

e

 , e = (1, 1, . . . , 1) ∈ Rp
2/2,

F =
1

h
· tridiag(−1, 1, 0) ∈ Rp×p, h =

1

p+ 1
,

where ⊗ stands for the Kronecker product symbol and h = 1
p+1 stands for the

mesh-size.
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Table 5. CPU and IT for PH and PHSS with p = 60.

α 0.01 0.05 0.1 0.5

PH IT 25 25 25 41

CPU 1.1764 1.2426 1.2553 1.9034

Res 8.37e-7 8.41e-7 8.70e-7 8.74e-7

PHSS IT 10 18 23 58

CPU 75.083 94.752 124.77 290.41

Res 8.36e-7 9.65e-7 9.65e-7 9.73e-7

Table 6. CPU and IT for PH and PHSS with p = 60 and α∗.

α∗ IT CPU Res

PH 1e-04 25 1.3532 8.36e-7

PHSS 1e-04 2 20.2368 2.41e-07

Table 7. CPU and IT for PH and PHSS with p = 80.

α 0.001 0.005 0.01 0.05

PH IT 25 25 25 25

CPU 2.4857 2.4917 2.5608 3.1111

Res 7.76 7.77 7.77 7.81

PHSS IT 4 7 9 −
CPU 174.68 257.09 270.78 −
Res 6.02 9.73 9.01 −

Table 8. CPU and IT for PH and PHSS with p = 80 and α∗.

α∗ IT CPU Res

PH 1e-04 25 2.4194 7.76e-7

PHSS 1e-04 2 99.8795 1.84e-07

In our computations, we take ν = 1 for Example 3.2. Similarly, we still take
# as 30. Tables 5, 6, 7 and 8 list some numerical results on IT, CPU and Res
of GMRES(30) with PH and PHSS . From Tables 5, 6, 7 and 8, these numerical
results still confirm that the preconditioner PH requires less CPU times than the
preconditioner PHSS . This further shows that the preconditioner PH outperforms
the preconditioner PHSS from the view of the computational efficiency under certain
conditions.

4. Conclusion

In this paper, a SHSS preconditioner has been introduced to solve the classical sad-
dle point problems. The convergence properties of the SHSS method are discussed
and the spectral properties of the preconditioned matrix are presented. Numerical
examples confirm the effectiveness of the SHSS preconditioner.
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