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Abstract In this paper, we investigate the second kind of Volterra integral
equations with weakly sinular highly oscillatory Bessel kernels by using two col-
location methods: direct high-order interpolationorder (DO) and direct Her-
mite interpolation (DH). Based on hypergeometric and Gamma functions, we
obtain a method for solving the modified moments

∫ 1

0
xα(1 − x)βJv(ωx)dx.

Compared with the Filon-type (QF
N ) method, piecewise constant collocation

(QL,0
N ) method and linear collocation (QL,1

N ) method, we verified the efficiency
of the method through error analysis and numerical examples.

Keywords Bessel transform, weakly singular kernel, highly oscillatory ker-
nel, modified collocation methods.
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1. Introduction

In this paper, we consider the following integral equation with weakly singular
highly oscillatory Bessel kernel

u(x)−
∫ x

0

tα(x− t)βJm(ω(x− t))u(t)dt = f(x), x ∈ [0, t], α, β > −1, (1.1)

where f(x) is the known smooth function, ω is the frequency, and u(x) is the
unknown function. The second kind of volterra integral equations with weakly sin-
gular highly oscillatory kernels occur prominently in many fields such as quantum
mechanics, optics, astronomy, seismology image processing, elec-tromagnetic scat-
tering. In 1995 Berrone [1] proposed a model for heat conduction in the study of
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materials subjected to state change at specific temperatures

u(x) = f(x) +

∫ x

0

(x− t)−αk(x, t)u(t)dt.

For the study of the numerical solution of a scalar retarded potential integral equa-
tion posed on an infinite flat surface,∫

L

u(x′, t− |x′ − x|)
|x′ − x|

dx′ = a(x, t), (x, t) ∈ L× (0, T ),

where u is the unknown function, if L = R2, u and a satisfy u ≡ 0, a ≡ 0 for any
t ≤ 0. Davis and Ducan [6] using the Fourier transform technology, the equations
can be transformed into a class of first kind Volterra integral equations with Bessel
kernel,

2π

∫ t

0

J0(ωs)û(ω, t− s)ds = â(ω, t), t ∈ I := [0, T ], T <∞,

where J0(·) denotes the Bessel function of the first-kind and of order zero.
There are always difficulties in solving the integral Eq. (1.1), as shown by the

fact that the Bessel function has parameter ω. It is obvious that the Bessel function
becomes highly oscillatory when ω � 1. While solving Eq. (1.1), the calculation
of the integral problem on the Bessel function is crucial. However, the classical
quadrature rules, such as Newton-Cotes rule, Clenshaw-Curtis rule or Gauss rule,
are failed to calculate this kind of integral, because the cost increases steeply with
ω. Furthermore, Eq. (1.1) also contains parameters α and β, that is, the kernel
function in Eq. (1.1) contains not only highly oscillatory, but also different kinds
of singular points, which makes the solution of Eq. (1.1) into a very challenging
problem. Consequently, it is very important to us for finding an efficient method
for solving Eq. (1.1).

In the last decades, there are lots of methods to solve highly oscillatory prob-
lems, such as Collocation methods [2,18], Filon-Clenshaw-Curtis quadrature [9,23],
Levin method [15], fast multipole methods [26], Clenshaw-Curtis algorithms [13],
Clenshaw–Curtis–Filon-type methods [22], BBFM-collocation [19] and so on. There
are some methods for solving the special case in Eq. (1.1) with respect to α, β. If
α = β = 0, then Eq. (1.1) becomes

u(x)−
∫ x

0

Jm(ω(x− t))u(t)dt = f(x), x ∈ [0, t]. (1.2)

As for Eq. (1.2), Fang, He and Xiang [7] proposed two kinds of hermite-type
method, that is, dierct Hermite collocation method and piecewise Hermite collo-
cation method. Fang, Ma and Xiang [8] proposed the Filon method. The given
error analysis and numerical experiments show that these methods can effectively
compute the highly oscillatory Bessel problem. Base on benefiteal from some ideas
of Refs [7,8] taht provides us with experience in dealing with unknown functions in
solving highly oscillatory problems. Moreover, Ma, Xiang and Kang [16] give the
rate of convergence for the Filon method.

If α = 0, β 6= 0, then Eq. (1.1) becomes

u(x)−
∫ x

0

(x− t)βJm(ω(x− t))u(t)dt = f(x), x ∈ [0, t]. (1.3)
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More details are presented in Ref. [4]. There are some methods to solve the equa-
tion (1.3). Xiang and Hermann [21] proposed three methods, that is, direct Filon
method, piecewise constant method and linear collocation method. The correspond-
ing convergence rates and the numerical experimental results of these three methods
show that the numerical solutions become more accurate as the ω increases. Ma and
Kang [14] gaven a frequency-explicit convergence analysis of these three methods in
Ref. [21]. In addition, Xiang and He [24] gave the discontinuous Galerkin methods,
which cost the same operations independent of large values of ω, and numerical
experiments demonstrate the effectiveness of the method.

For the solution of Eq. (1.1), it is crucial to calculate
∫ x

0
tα(x − t)βJm(ω(x −

t))f(t)dt. Therefore, we are going to discuss highly oscillatory Bessel transforms

I[f ] =

∫ x

0

tα(x− t)βJm(ω(x− t))f(t)dt, m ≥ 1. (1.4)

As regards (1.4), Xu and Xiang [25] gave the Clenshaw-Curtis-Filon method that
based on the Fast Fourier Transform (FFT), and gave the recurrence relation of the
modified moments and the effective method to evaluate the modified moments by
recurrence relation. Xiang [20] gave some lemmas for weakly singular with Bessel
highly oscillatory integrals. Furthermore, Kang, Xiang, Xu and Wang [12] gave the
effective quadrature rules for the singularly oscillatory Bessel transforms and the
error analysis. Based on some ideas in Ref. [12,20,25] we get the idea and experience
for solving equation (1.1).

However, there is few literature available for solving Eq. (1.1), which makes
the problem of solving this kind of equation extremely challenging. Therefore, we
are interested in studying Eq. (1.1) and giving two methods to solve this kind of
equations efficiently.

This paper are composed of the following parts: In Sect. 2, we show that the
direct order interpolation (DO) for solving Eq. (1.1). In Sect. 3, we introduce
the direct Hermite interpolation (DH) method to solve Eq. (1.1). Then, we show
that the convergence analysis of these two methods in Sect. 4. In Sect. 5, we give
some numerical experiments to compare with Filon-type (QFN ) method, piecewise

constant collocation (QL,0N ) method and linear collocation (QL,1N ) method in the
Ref. [21], which for proving effectiveness of our methods.

2. Direct high-order interpolation (DO)

We suppose that k(x, t) is a continuous function on D = {(x, t) : 0 ≤ x, t ≤ T}, and
C(I) denotes the space of all continuous functions on I = [0, T ]. Then the linear
Volterra integral equation operator Vαu(x) : C(I)→ C(I) is expressed as

Vαu(x) :=

∫ x

0

Hα(x, t)u(t)dt, x = [0, T ], u(x) ∈ C(I),

where Hα(x, t) = k(x,t)
(x−t)α , 0 < α < 1.

Let {xj}Nj=0 be the collocation point, satisfying 0 =x0≤x1≤x2≤ · · ·≤xN = 1.
By linear interpolation at the points x = 0 and x = xj , we have

ud(x) = d1(x)u(0) + d2(x)u(xj), (2.1)
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where d1(x) = (1 + 2x
xj

)(
x−xj
xj

)2, d2(x) = (1 + 2
x−xj
−xj )( xxj )2.

Since Eq. (1.1) holds at any collocation point, we get

u(xj)−
∫ xj

0

tα(xj − t)βJm(xj − t)u(t)dt = f(xj). (2.2)

By transforming the variables τ = xj − t, we obtain

u(xj)−
∫ xj

0

(xj − τ)ατβJm(ωτ)u(xj − τ)dτ = f(xj). (2.3)

Approximating u(xj) with uj , and substituting Eq. (2.1) into Eq. (2.3), so the
collocation equation is obtained

uj −
∫ xj

0

(xj − τ)ατβJm(ωτ)(d1(x)u(0) + d2(x)uj)dτ = f(xj). (2.4)

In particular, when xj = 0, we have u(0) = f(0).
Solving Eq. (2.4), we conclude that

uj =
f(xj) + f(0)[ 2

x3
j
I(α+ 3, β,m, ω)− 3

x2
j
I(α+ 2, β,m, ω) + I(α, β,m, ω)]

1− 3
x2
j
I(α+ 2, β,m, ω) + 2

x3
j
I(α+ 3, β,m, ω)

.

(2.5)
Based on some ideas of Ref ( [10], p681), we arrive at

I(α, β,m, ω) =

∫ b

0

xα(b− x)βJm(ωx)dx

= bα+β+1

∫ 1

0

tα(1− t)βJm(bωt)dt

= bα+β+1M(α, β,m, bω),

(2.6)

and

M(α, β,m, ω)

=

∫ 1

0

xα(1− x)βJm(ωx)dx

=
Γ(β + 1)Γ(α+m+ 1)

2mω−mΓ(m+ 1)Γ(α+ β +m+ 2)

× 2F3(
α+m+ 1

2
,
α+m+ 2

2
;m+ 1,

α+ β +m+ 2

2
,
α+ β +m+ 3

2
;
−ω2

4
),

Γ(x) is the Gamma function, defined as follows:

Γ(x) =

∫ ∞
0

tx−1e−tdt,

and 2F3(α1, α2;β1, β2, β3;x) is the hypergeometric function that can be efficiently
computed for smaller |x| by truncating the power series with the appropriate number
of terms ( [17], p404),

2F3(α1, α2;β1, β2, β3;x) =

∞∑
n=0

(α1)n(α2)n
(β1)n(β2)n(β3)n

xn

n!
.
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For larger |x|, there exists an asymptotic expansion [11],

2F3(α1, α2;β1, β2, β3;−x)

=
Γ(β1)Γ(β2)Γ(β3)

Γ(α1)Γ(α2)

{
Γ(α1)Γ(α2 − α1)

Γ(β1 − α1)Γ(β2 − α1)Γ(β3 − α1)
[1 +O(

1

x
)]

+
Γ(α2)Γ(α1 − α2)

Γ(β1 − α2)Γ(β2 − α2)Γ(β3 − α2)
[1 +O(

1

x
)]

+
(−x)χ√

π
[cos(πχ+ 2

√
−x)(1 +O(

1

x
))

+
sin(πχ+ 2

√
−x)

8
√
−x

((3α1 + 3α2 + β1 + β2 + β3 − 2)(4χ− 1)

+8β1β2 + 8β1β3 + 8β2β3 − 8α1α2 −
3

2
)[1 +O(

1

x
)]]

}
,

where χ = 1
2 (α1 + α2 − β1 − β2 − β3 + 1

2 ). When ω →∞, we have∣∣∣∣ 2F3(
α+m+ 1

2
,
α+m+ 2

2
;m+ 1,

α+ β +m+ 2

2
,
α+ β +m+ 3

2
;
−ω2

4
)

∣∣∣∣
≤C[

Γ(α+m+1
2 )

Γ(m−α+1
2 )Γ(β+1

2 )Γ(β+2
2 )

(
ω

2
)−(α+m+1)

+
Γ(α+m+2

2 )

Γ(m2 )Γ(β2 )Γ(β+1
2 )

(
ω

2
)−(α+m+2) + (

ω

2
)−(β+m+ 3

2 )].

Here the operation of (α)j obeys (α)j = α(α+1)(α+2) · · · (α+j−1), j ≥ 1, (j ∈ N).

3. Direct Hermite interpolation (DH)

In this section, we will provide a detailed procedure for solving equation (1.1) using
the direct Hermite-type interpolation method. Before that, we need to prove the
differentiability of the solution to equation (1.1).

Lemma 3.1 ( [2,21]). Assume that the functions f=f(x) and Kα= tαJm(ω(x−t))
are cuntinuous on their respective domains [0, 1] and D = {0 ≤ t ≤ x ≤ 1} . Then
the equation (1.1) possesses a unique continuous solution u = u(x).

Lemma 3.2 ( [2, 21]). Suppose Kα = tαJm(ω(x− t)) ∈ C[0, 1] and −1 < β <
0, the solution u(x) of equation (1.1) is uniformly bounded for ω ≥ 0, that is,

sup
ω∈[0,∞)

max
x∈[0,1]

|u(x)| <∞.

Theorem 3.1. Let f ∈ Cq[0, 1](q ≥ 1), (x−τ)α ∈ Cq[0, 1](α > 0), Jm(ωτ) ∈ C[0, 1]
and −1 < β < 0, then the solution u(x) of equation (1.1) satisfies u(x) ∈ C1[0, 1].

Proof. The solution of the integral equation (1.1) is given by

u(x) = f(x) +

∫ x

0

Rβ(x, t)Jm(ω(x− t))tαf(t)dt,

where Rβ(x, t) = (x−t)−β
∑∞
n=1

(Γ(β))(2n)

Γ(nβ) (x−t)(n−1)(1−β) := (x−t)−βQ(x, t, β) [3].
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By setting τ = x− t, then the solution u(x) can be written as

u(x) = f(x) +

∫ x

0

Rβ(τ)Jm(ωτ)(x− τ)αf(x− τ)dτ. (3.1)

Differentiating both sides of equation (3.1) with respect to variable x, we obtain

u′(x) =f ′(x) + α

∫ x

0

Rβ(τ)Jm(ωτ)(x− τ)α−1f(x− τ)dτ

+

∫ x

0

Rβ(τ)Jm(ωτ)(x− τ)αf ′(x− τ)dτ, x ∈ [0, 1].

(3.2)

Then the theorem is proved.
If the interpolation condition satisfies H(xj) = f(xj), H

′(xj) = f ′(xj), then it
is called Hermite interpolation. Choosing two points x = 0 and x = xj and Hermite
interpolation, we have

uh(x) = h1(x)u(0) + h2(x)u(xj) + h3(x)u′(0) + h4(x)u′(xj), (3.3)

where

h1(x) = (1 +
2x

xj
)(
x− xj
xj

)2, h3(x) = x(
x− xj
−xj

)2,

h2(x) = (1 + 2
x− xj
−xj

)(
x

xj
)2, h4(x) = (x− xj)(

x

xj
)2,

denote the basic polynomial with respect to x = 0 and x = xj .
Combining with Theorem 3.1, and applying Hermite interpolation, we consider

the case α > 0 in equation (1.1). Differentiating both sides of Eq. (1.1) with respect
to variable x, one has

u′(x)− α
∫ x

0

(x− τ)α−1τβJm(ωτ)u(x− τ)dτ

−
∫ x

0

(x− τ)ατβJm(ωτ)u′(x− τ)dτ = f ′(x).

(3.4)

The Eq. (3.4) holds at every collocation point, then we get

u′(xj)− α
∫ xj

0

(xj − τ)α−1τβJm(ωτ)u(xj − τ)dτ

−
∫ xj

0

(xj − τ)ατβJm(ωτ)u′(xj − τ)dτ = f ′(xj).

(3.5)

Approximating u(xj) by udj , and form Eq. (3.3), Eq. (2.3) and Eq. (3.5), we have

u′dj − α
∫ xj

0

(xj − τ)α−1τβJm(ωτ)uh(xj − τ)dτ

−
∫ xj

0

(xj − τ)ατβJm(ωτ)u′h(xj − τ)dτ = f ′(xj).

(3.6)

udj −
∫ xj

0

(xj − τ)ατβJm(ωτ)uh(xj − τ)dτ = f(xj). (3.7)
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It follows from Eq. (3.3), Eq. (3.6) and Eq. (3.7) that

u′dj + α

∫ xj

0

(xj − τ)α−1τβJm(ωτ)(h1(xj − τ)u(0) + h2(xj − τ)uj

+ h3(xj − τ)u′(0) + h4(xj − τ)u′j)dτ

−
∫ xj

0

(xj − τ)ατβ−1Jm(ωτ)(h′1(xj − τ)u(0)

+ h′2(xj − τ)uj + h′3(xj − τ)u′(0) + h′4(xj − τ)u′j)dτ

=f ′(xj), (3.8)

and

udj −
∫ xj

0

(xj − τ)ατβJm(ωτ)(h1(xj − τ)u(0) + h2(xj − τ)uj

+ h3(xj − τ)u′(0) + h4(xj − τ)u′j)dτ = f(xj). (3.9)

From Eq. (3.8) and Eq. (3.9), we get

udj =
f(xj) + (1/x2

jI(α+3, β,m, ω)−2/xjI(α+2, β,m, ω)+I(α+1, β,m, ω))u′(0)

1− (3/x2
jI(α+2, β,m, ω)−2/x3

jI(α+3, β,m, ω))

+
(1/x2

jI(α+ 3, β,m, ω)− 1/xjI(α+ 2, β,m, ω))u′j
1− (3/x2

jI(α+ 2, β,m, ω)− 2/x3
jI(α+ 3, β,m, ω))

+
(2/x3

jI(α+ 3, β,m, ω)− 3/x2
jI(α+ 2, β,m, ω) + I(α, β,m, ω))u(0)

1− (3/x2
jI(α+ 2, β,m, ω)− 2/x3

jI(α+ 3, β,m, ω))
, (3.10)

u′dj =
f ′(xj) + α(3/x2

jI(α+ 1, β,m, ω)− 2/x3
jI(α+ 2, β,m, ω))udj

1−A−B

+
(6/x2

jI(α+ 1, β,m, ω)− 6/x3
jI(α+ 2, β,m, ω))udj

1 +A−B

+
α(1/x2

jI(α+ 2, β,m, ω)− 2/xjI(α+ 1, β,m, ω) + I(α, β,m, ω))u′(0)

1−A−B

+
α(2/x3

jI(α+ 2, β,m, ω)− 3/x2
jI(α+ 1, β,m, ω) + I(α− 1, β,m, ω))u(0)

1−A−B

+
(3/x2

jI(α+ 2, β,m, ω)− 4/xjI(α+ 1, β,m, ω) + I(α, β,m, ω))u′(0)

1 +A−B

+
(6/x3

jI(α+ 2, β,m, ω)− 6/x2
jI(α+ 1, β,m, ω)u(0)

1 +A−B
, (3.11)

where

A = α(1/x2
jI(α+ 2, β,m, ω)− 1/xjI(α+ 1, β,m, ω)),

B = (3/x2
jI(α+ 2, β,m, ω)− 2/xjI(α+ 1, β,m, ω)).

Combining Eq. (3.10) and Eq. (3.11) yields

udj =
a2s+ b2c

a2b1 + b2a1
, u′dj =

a1s− b1c
a1b2 + b1a2

,
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where

a1 = 1− 3/x2
jI(α+ 2, β,m, ω) + 2/x3

jI(α+ 3, β,m, ω),

a2 = 1/xjI(α+ 2, β,m, ω)− 1/x2
jI(α+ 3, β,m, ω),

b1 = −α(3/x2
jI(α+ 1, β,m, ω)− 2/x3

jI(α+ 2, β,m, ω))

− (6/x2
jI(α+ 1, β,m, ω)− 6/x3

jI(α+ 2, β,m, ω)),

b2 = 1− α(3/x2
jI(α+ 2, β,m, ω)− 2/xjI(α+ 1, β,m, ω))

− (3/x2
jI(α+ 2, β,m, ω)− 2/xjI(α+ 1, β,m, ω)),

c = f(xj)+(1/x2
jI(α+3, β,m, ω)−2/xjI(α+ 2, β,m, ω)+I(α+ 1, β,m, ω))u′(0)

+ (2/x3
jI(α+ 3, β,m, ω)− 3/x2

jI(α+ 2, β,m, ω) + I(α, β,m, ω))u(0),

s = f ′(xj) + α(1/x2
jI(α+ 2, β,m, ω)− 2/xjI(α+ 1, β,m, ω) + I(α, β,m, ω))u′(0)

+ (3/x2
jI(α+ 2, β,m, ω)− 4/xjI(α+ 1, β,m, ω) + I(α, β,m, ω))u′(0)

+ α(2/x3
jI(α+ 2, β,m, ω)− 3/x2

jI(α+ 1, β,m, ω) + I(α− 1, β,m, ω))u(0)

+ (6/x3
jI(α+ 2, β,m, ω)− 6/x2

jI(α+ 1, β,m, ω)u(0).

4. Error analysis

In this section, we are going to give an analysis of the convergence of our methods
for solving Eq. (1.1). to further analysis, we introduce the two lemmas that will be
used.

Lemma 4.1 ( [5,20]). Assuming that α+m > −1, β > −1, b > 0, for ω � 1, then
the following equation holds∫ b

0

tα(b− t)βJm(ωt)dt = O(ω−min{α+1,β+ 3
2}).

Lemma 4.2 ( [20]). Supposing that f ∈ Cv+1[0, 1], for ω � 1, then the following
equation holds ∫ 1

0

tα(1− t)βJm(ωt)f(t)dt = O(ω−min{α+1,β+ 3
2}).

We are now position to state the error analysis of our methods, direct order
interpolation (DO) method and direct Hermite interpolation (DH) method, and
show the convergence rate.

Theorem 4.1. The error estimate for solving Eq. (1.1) by using direct high-order
interpolation is

uj − u(xj) = O(ω−1−min{α+ 3
2 ,β+1}).

Proof. By the direct high-order interpolation method in section 2, we know that
Eq. (1.1) holds at any collocation point, giving

u(xj)−
∫ xj

0

tα(xj − t)βJm(ω(xj − t))u(t)dt = f(xj). (4.1)
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Let the variables τ = xj − t, then we get

u(xj)−
∫ xj

0

(xj − τ)ατβJm(ωτ)u(xj − τ)dτ = f(xj). (4.2)

Next, using uj to approximate u(xj), the following equation holds

uj −
∫ xj

0

(xj − τ)ατβJm(ωτ)uh(xj − τ)dτ = f(xj). (4.3)

It follows from Eq. (4.2) and Eq. (4.3) that

u(xj)− uj =

∫ xj

0

(xj − τ)ατβJm(ωτ)(u(xj − τ)− uh(xj − τ))dτ. (4.4)

Assume that the error at the interpolation point x = 0 is E(0) = 0. Then the error
equation can be expressed as follows

E(x) = u(x)− uh(x) = d2(x)E(xj) +R(x), (4.5)

where R(x) is the direct high-order interpolation residual term. Substituting Eq.
(4.5) into Eq. (4.4) yields

E(xj) =

∫ xj

0

(xj − τ)ατβJm(ωτ)E(xj − τ)dτ. (4.6)

Combining Eq. (4.5) with Eq. (4.6), we get

E(xj) =

∫ xj

0

(xj − τ)ατβJm(ωτ)(d2(xj − τ)E(xj) +R(xj − τ))dτ. (4.7)

Thus, we know that the interpolation error at x = xj is presented as follows

E(xj) =

∫ xj
0

(xj − τ)ατβJm(ωτ)R(xj − τ)dτ

1−
∫ xj

0
(xj − τ)ατβJm(ωτ)d2(xj − τ)dτ

,
I1
I2
. (4.8)

In what follows, we show estimates for I1 and I2 in Eq. (4.8). Applying Lemma 4.1
and Lemma 4.2, we get that I2 = O(1) when ω →∞. According to the direct high
order interpolation residual term property, we have

R(x) = u(x)− uh(x) = C(x)x(xj − x),

where C(x) ∈ C[0, xj ]. Applying to Lemma 4.2, we get

I1 =

∫ xj

0

(xj − τ)α+1τβ+1Jm(ωτ)C(xj − τ)dτ = O(ω−1−min{α+ 3
2 ,β+1}).

Therefore, the error convergence rate can be obtained

E(xj) =
I1
I2

= O(ω−1−min{α+ 3
2 ,β+1}).
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Theorem 4.2. The error estimate obtained by solving Eq. (1.1) using the direct
hermite interpolation method is

uj − u(xj) = O(ω−2−min{α+ 3
2 ,β+1}).

Proof. When α > 0, by the direct Hermite interpolation method in section 3, we
know that

u(x)−
∫ x

0

(x− τ)ατβJm(ωτ)u(x− τ)dτ = f(x), (4.9)

u′(x)− α
∫ x

0

(x− τ)α−1τβ(Jm(ωτ)))u(x− τ)dτ

−
∫ x

0

(x− τ)ατβJm(ωτ)u′(x− τ)dτ = f ′(x).

(4.10)

Equations (4.9) and (4.10) hold at any collocation point, we have

u(xj)−
∫ xj

0

(xj − τ)ατβJm(ωτ)u(xj − τ)dτ = f(xj), (4.11)

u′(xj)− α
∫ xj

0

(xj − τ)α−1τβ(Jm(ωτ))u((xj − τ))dτ

−
∫ xj

0

(xj − τ)ατβ−1Jm(ωτ)u′((xj − τ))dτ = f ′(xj).

(4.12)

Approximate u(xj) by uj , and we have

uj −
∫ xj

0

(xj − τ)ατβJm(ωτ)uh(xj − τ)dτ = f(xj), (4.13)

u′j − α
∫ xj

0

(xj − τ)α−1τβ(Jm(ωτ))uh((xj − τ))dτ

−
∫ xj

0

(xj − τ)ατβJm(ωτ)u′h((xj − τ))dτ = f ′(xj).

(4.14)

It follows from Eq. (4.11) - Eq. (4.14) that

u(xj)− uj =

∫ xj

0

(xj − τ)ατβJm(ωτ)(u(xj − τ)− uh(xj − τ))dτ = f(xj), (4.15)

u′(xj)− u′j = α

∫ xj

0

(xj − τ)α−1τβ(Jm(ωτ))(u(xj − τ)− uh((xj − τ)))dτ

+

∫ xj

0

(xj − τ)ατβJm(ωτ)(u′(xj − τ)− u′h((xj − τ)))dτ. (4.16)

Based on Hermite interpolation, the error function is expressed as follows

E(x) = u(x)− uh(x) = h2(x)E(xj) + h4(x)E′(xj) +R(x), (4.17)

where R(x) is the residual term of Hermite interpolation. And the errors at the
collocation point x = 0 satisfy E(0) = E′(0) = 0. Substituting Eq. (4.17) into Eq.
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(4.15) and Eq. (4.16), respectively, we have

(1−
∫ xj

0

(xj − τ)ατβJm(ωτ)h2(xj − τ)dτ)E(xj)

−
∫ xj

0

(xj − τ)ατβJm(ωτ)h4(xj − τ)dτE′(xj)

=

∫ xj

0

(xj − τ)ατβJm(ωτ)R(xj − τ)dτ,

(4.18)

(1− α
∫ xj

0

(xj − τ)α−1τβ(Jm(ωτ))h4(xj − τ)dτ

−
∫ xj

0

(xj − τ)ατβ−1Jm(ωτ)h′4(xj − τ)dτ)E′(xj)

− (α

∫ xj

0

(xj − τ)α−1τβJm(ωτ)h2(xj − τ)dτ

−
∫ xj

0

(xj − τ)ατβJm(ωτ)h′2(xj − τ)dτ)E(xj)

=α

∫ xj

0

(xj − τ)α−1τβJm(ωτ)R(xj − τ)dτ

+

∫ xj

0

(xj − τ)ατβ−1(Jm(ωτ))R′(xj − τ)dτ.

(4.19)

Combining Eq. (4.18) and Eq. (4.19) yields

E(xj) =
Q2

Q1
, E

′
(xj) =

Q3

Q1
,

where

Q1 =(1−
∫ xj

0

(xj − τ)ατβJm(ωτ)h2(xj − τ)dτ)

× (1− α
∫ xj

0

(xj − τ)α−1τβ(Jm(ωτ))h4(xj − τ)dτ

−
∫ xj

0

(xj − τ)ατβ−1Jm(ωτ)h′4(xj − τ)dτ)

−
∫ xj

0

(xj − τ)ατβJm(ωτ)h4(xj − τ)dτ

× (α

∫ xj

0

(xj − τ)ατβ(Jm(ωτ))h2(xj − τ)dτ

+

∫ xj

0

(xj − τ)ατβJm(ωτ)h′2(xj − τ)dτ)

Q2 =

∫ xj

0

(xj − τ)ατβJm(ωτ)h4(xj − τ)dτ

× (α

∫ xj

0

(xj − τ)α−1τβJm(ωτ)R(xj − τ)dτ

+

∫ xj

0

(xj − τ)ατβ(Jm(ωτ))R′(xj − τ)dτ)

+

∫ xj

0

(xj − τ)ατβJm(ωτ)R(xj − τ)dτ
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× (1− α
∫ xj

0

(xj − τ)α−1τβ(Jm(ωτ)h4(xj − τ)dτ

−
∫ xj

0

(xj − τ)ατβJm(ωτ)h′4(xj − τ)dτ),

Q3 =(1−
∫ xj

0

(xj − τ)ατβJm(ωτ)h2(xj − τ)dτ)

× (α

∫ xj

0

(xj − τ)α−1τβJm(ωτ)R(xj − τ)dτ

+

∫ xj

0

(xj − τ)ατβ(Jm(ωτ))R′(xj − τ)dτ)

+

∫ xj

0

(xj − τ)ατβJm(ωτ)R(xj − τ)dτ

× (α

∫ xj

0

(xj − τ)α−1τβ(Jm(ωτ)h2(xj − τ)dτ

+

∫ xj

0

(xj − τ)ατβJm(ωτ)h′2(xj − τ)dτ).

Applying Lemma 4.1 and 4.2, we can get that Q1 = O(1) when ω →∞. According
to the Hermite interpolation residual term property, we have

R(x) = u(x)− uh(x) = Cx2(xj − x)2,

where C is a constan. Then according to Lemma 4.1 and the expression for Q2, we
can easily get

Q2 = O(ω−2−min{α+ 3
2 ,β+1}).

Therefore, the error convergence rate can be obtained

E(xj) = O(ω−2−min{α+ 3
2 ,β+1}).

5. Numerical experiments

In this section, in order to verify the effectiveness of our methods, we demonstrate
some numerical experiments by using direct high-order interpolation (DO) method
and the direct Hermite interpolation (DH) method to solve Eq. (1.1). The case of
m = 0, α = 0 and β = −0.5 is chosen and our two methods are applied to compare
with the Filon-type (QFN ) method, piecewise constant collocation (QL,0N ) method

and linear collocation (QL,1N ) method in the literature [21].
Next, we give four numerical examples to demonstrate the effectiveness of our

methods.

Example 5.1. We consider the following equation (m = 0, α = 0),

u(x) +

∫ x

0

(x− t)βJ0(ω(x− t))u(t)dt = f(x),

then Q2
A = f(x)−

∫ x
0
tβJ0(ωt)f(x− t)dt, when f(x) = sin(x).
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In Tables 1-2, we apply the direct high-order interpolation (DO) method to
solve the errors of the Example 5.1 and 5.2, respectively, comparing them with
the Filon-type (QFN ) method, the piecewise constant collocation (QL,0N ) method

and the linear collocation (QL,1N ) in the literature [21]. In Tables 3-8, we give the
errors of solving the equation at the point x = 0.2, 0.4, 0.6 and 0.8 when ω =
10, 100, 1000, 10000, 100000 using the direct high-order interpolation (DO) method
and the direct Hermite interpolation (DH) method, and we could find that the
errors are decreasing as the ω increases. The curves of the change of error with ω
at point 0.2, 0.5 and 0.8 using the direct high-order interpolation (DO) method and
the direct Hermite interpolation (DH) method are shown in Figs. 1, 3, 5, 7, 9 and
11. In Figs. 2, 4, 6, 8, 10 and 12, the errors of the two methods at the point x = 0.2
are compared.

Table 1. The errors of solving Example 5.1 by direct high-order interpolation (DO) method is compared

with the Filon-type (QFN ) method, piecewise constant collocation (QL,0N ) method and linear collocation

(QL,1N ) method in the literature [21] at point x = 0.1, 0.5 and 1 (m = 0, α = 0, β = −1/2, ω = 104).

Method\x 0.1 0.5 1

QF10 4.4032e-05 2.0520e-04 3.6216e-04

QL,010 4.3846e-05 2.0421e-04 3.6135e-04

QL,0100 4.4492e-05 2.0571e-04 3.6235e-04

QL,110 4.4033e-05 2.0517e-04 3.6204e-04

QL,1100 4.4032e-05 2.0516e-04 3.6202e-04

QL,11000 4.4032e-05 2.0516e-04 3.6202e-04

DO 4.8816e-07 4.2864e-07 2.6381e-07

Example 5.2. Considering the following equation (m = 0.5, α = 0)

u(x)−
∫ x

0

(x− t)βJ0.5(ω(x− t))u(t)dt = f(x),

then Q2
A = f(x)−

∫ x
0
tβJ0(ωt)f(x− t)dt, when f(x) = ex.

Table 2. The errors of solving Example 5.2 by direct high-order interpolation (DO) method is compared

with the Filon-type (QFN ) method, piecewise constant collocation (QL,0N ) method and linear collocation

(QL,1N ) method in the literature [21] at point x = 1 when β = −0.1,−0.5,−0.8 (m = 0.5, α = 0, ω = 104).

Method\β -0.1 -0.5 -0.8

QF10 2.8459e-06 4.2702e-04 1.3440e-01

QL,010 2.7280e-06 4.2645e-04 1.3440e-01

QL,0100 2.9371e-06 4.2705e-04 1.3440e-01

QL,110 2.8585e-06 4.2771e-04 1.3440e-01

QL,1100 2.8601e-06 4.2780e-04 1.3441e-01

QL,11000 2.8604e-06 4.2781e-04 1.3441e-01

DO 3.9101e-08 2.1964e-06 5.2862e-05
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Example 5.3. We consider the following equation

u(x)−
∫ x

0

tα(x− t)βJm(ω(x− t))u(t)dt = f(x),

when f(x) = ex −
∫ x

0
tα(x − t)βJm(ω(x − t))etdt, then the exact solution of the

equation is u(x) = ex.

Table 3. Absolute error of the two collocation methods for solving Example 5.3 (m= 0.5, α= 3/2, β=
−1/2).

ω\x 0.2 0.4 0.6 0.8

10
DO 2.3709e-04 3.5164e-03 1.6230e-02 4.4382e-02

DH 8.5931e-05 2.1769e-03 1.0828e-02 2.8508e-02

100
DO 8.5176e-05 3.0840e-04 7.1452e-04 1.3917e-03

DH 7.3557e-06 3.0944e-05 7.3363e-05 1.3400e-04

1000
DO 2.7653e-06 9.6179e-06 2.1767e-05 4.1351e-05

DH 6.4986e-08 2.7097e-07 6.1943e-07 1.0689e-06

10000
DO 8.7263e-08 3.0434e-07 6.7964e-07 1.4438e-06

DH 6.3759e-10 4.9046e-09 5.9797e-09 1.7183e-07

100000
DO 2.7212e-09 9.1004e-09 8.9242e-08 4.0175e-08

DH 2.9798e-11 4.0531e-10 6.7894e-08 1.9120e-11

m = 0.5, α = 3/2, β = −1/2, u(x) = ex

Figure 1. The error curves with ω at point x = 0.2, 0.5 and 0.8 for Example 5.3 are solved by the direct
high-order interpolation (DO) method (left) and the direct Hermite interpolation (DH) method (right).

m = 0.5, α = 3/2, β = −1/2, u(x) = ex

Figure 2. Comparison of the error at point x = 0.2 for solving Example 5.3 by using the direct
high-order interpolation (DO) method and the direct Hermite interpolation (DH) method.
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Table 4. Absolute error of the two collocation methods for solving Example 5.3 (m = 0, α = 2, β =
−1/2).

ω\x 0.2 0.4 0.6 0.8

10
DO 2.2021e-04 3.0671e-03 1.4568e-02 4.6287e-02

DH 7.1429e-05 2.0607e-03 1.3485e-02 5.6109e-02

100
DO 2.8492e-05 1.3168e-04 3.6535e-04 8.3125e-04

DH 2.2051e-06 1.8479e-05 7.0467e-05 1.9608e-04

1000
DO 7.5960e-07 3.6927e-06 1.0241e-05 2.2617e-05

DH 1.8129e-08 1.5817e-07 5.8390e-07 1.5031e-06

10000
DO 2.3434e-08 1.1462e-07 3.2646e-07 6.9185e-07

DH 1.7662e-10 1.5403e-09 1.5876e-08 1.5427e-08

100000
DO 1.3835e-09 5.0064e-09 1.2821e-08 2.1485e-08

DH 6.4636e-10 1.4095e-09 2.9367e-09 2.6690e-13

m = 0, α = 2, β = −1/2, u(x) = ex

Figure 3. The error curves with ω at point x = 0.2, 0.5 and 0.8 for Example 5.3 are solved by the direct
high-order interpolation (DO) method (left) and the direct Hermite interpolation (DH) method (right).

m = 0, α = 2, β = −1/2, u(x) = ex

Figure 4. Comparison of the error at point x = 0.2 for solving Example 5.3 by using the direct
high-order interpolation (DO) method and the direct Hermite interpolation (DH) method.
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Table 5. Absolute error of the two collocation methods for solving Example 5.3 (m = 1, α = 2, β =
−1/2).

ω\x 0.2 0.4 0.6 0.8

10
DO 3.5970e-05 1.0715e-03 7.4853e-03 2.7667e-02

DH 2.8131e-06 2.9724e-04 3.4400e-03 1.6011e-02

100
DO 4.1594e-05 2.3155e-04 6.7093e-04 1.5214e-03

DH 1.7032e-06 1.6184e-05 6.1963e-05 1.6508e-04

1000
DO 1.5909e-06 7.8698e-06 2.1822e-05 4.7858e-05

DH 1.7674e-08 1.5501e-07 5.6671e-07 1.4326e-06

10000
DO 5.1041e-08 2.4987e-07 6.8817e-07 1.5061e-06

DH 1.7607e-10 1.5334e-09 5.5370e-09 2.1462e-08

100000
DO 1.6134e-09 7.8956e-09 2.3699e-08 4.7581e-08

DH 8.9240e-13 1.2020e-11 2.0335e-09 5.1282e-10

m = 1, α = 2, β = −1/2, u(x) = ex

Figure 5. The error curves with ω at point x = 0.2, 0.5 and 0.8 for Example 5.3 are solved by the direct
high-order interpolation (DO) method (left) and the direct Hermite interpolation (DH) method (right).

m = 1, α = 2, β = −1/2, u(x) = ex

Figure 6. Comparison of the error at point x = 0.2 for solving Example 5.3 by using the direct
high-order interpolation (DO) method and the direct Hermite interpolation (DH) method.
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Example 5.4. We consider the following equation

u(x)−
∫ x

0

tα(x− t)βJm(ω(x− t))u(t)dt = f(x),

when f(x) = sin(x)−
∫ x

0
tα(x− t)βJm(ω(x− t)) sin(t)dt, then the exact solution of

this equation is u(x) = sin(x).

Table 6. Absolute error of the two collocation methods for solving Example 5.4 (m = 0.5, α = 3/2, β =
−1/2).

ω\x 0.2 0.4 0.6 0.8

10
DO 1.5490e-04 1.6807e-03 6.0735e-03 1.2568e-02

DH 1.3980e-05 5.6850e-04 3.3575e-03 9.1942e-03

100
DO 6.8146e-05 1.9016e-04 3.2337e-04 4.3537e-04

DH 1.1965e-06 8.0778e-06 2.2735e-05 4.3195e-05

1000
DO 2.2188e-06 5.9381e-06 9.8592e-06 1.2945e-05

DH 1.0570e-08 7.0734e-08 1.9195e-07 3.4452e-07

10000
DO 7.0068e-08 1.8649e-07 3.0752e-07 4.1083e-07

DH 1.5147e-10 6.7481e-10 1.5221e-09 3.7438e-09

100000
DO 2.2349e-09 5.8742e-09 9.9666e-09 1.2225e-08

DH 2.3333e-11 4.0039e-12 2.8880e-10 3.5677e-10

m = 0.5, α = 3/2, β = −1/2, u(x) = sin(x)

Figure 7. The error curves with ω at point x = 0.2, 0.5 and 0.8 for Example 5.4 are solved by the direct
high-order interpolation (DO) method (left) and the direct Hermite interpolation (DH) method (right).

m = 0.5, α = 3/2, β = −1/2, u(x) = sin(x)

Figure 8. Comparison of the error at point x = 0.2 for solving Example 5.4 by using the direct
high-order interpolation (DO) method and the direct Hermite interpolation (DH) method.
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Table 7. Absolute error of the two collocation methods for solving Example 5.4 (m = 0, α = 2, β =
−1/2).

ω\x 0.2 0.4 0.6 0.8

10
DO 1.6011e-04 1.6748e-03 6.1170e-03 1.4424e-02

DH 1.1620e-05 5.3803e-04 4.1800e-03 1.8088e-02

100
DO 2.2993e-05 8.1987e-05 1.6714e-04 2.6327e-04

DH 3.5865e-07 4.8233e-06 2.1834e-05 6.3198e-05

1000
DO 6.1014e-07 2.2824e-06 4.6440e-06 7.0898e-06

DH 2.9488e-09 4.1285e-08 1.8093e-07 4.8447e-07

10000
DO 1.8921e-08 7.0759e-08 1.4333e-07 2.1686e-07

DH 1.4384e-10 3.8557e-10 1.8275e-09 5.2115e-09

100000
DO 4.5856e-10 2.4730e-09 3.4994e-09 7.4287e-09

DH 1.3403e-10 2.4677e-10 9.8570e-10 7.0416e-10

m = 0, α = 2, β = −1/2, u(x) = sin(x)

Figure 9. The error curves with ω at point s = 0.2, 0.5 and 0.8 for Example 5.4 are solved by the direct
high-order interpolation (DO) method (left) and the direct Hermite interpolation (DH) method (right).

m = 0, α = 2, β = −1/2, u(x) = sin(x)

Figure 10. Comparison of the error at point x = 0.2 for solving Example 5.4 by using the direct
high-order interpolation (DO) method and the direct Hermite interpolation (DH) method.
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Table 8. Absolute error of the two collocation methods for solving Example 5.4 (m = 1, α = 2, β =
−1/2).

ω\x 0.2 0.4 0.6 0.8

10
DO 2.2199e-05 4.5756e-04 2.3779e-03 6.4867e-03

DH 4.5804e-07 7.7688e-05 1.0674e-03 5.1660e-03

100
DO 3.3023e-05 1.4170e-04 3.0127e-04 4.7181e-04

DH 2.7708e-07 4.2254e-06 1.9206e-05 5.3221e-05

1000
DO 1.2756e-06 4.8554e-06 9.8767e-06 1.4969e-05

DH 2.8749e-09 4.0464e-08 1.7563e-07 4.6181e-07

10000
DO 4.0952e-08 1.5428e-07 3.1160e-07 4.6894e-07

DH 2.7593e-11 4.2685e-10 1.6321e-09 4.3299e-09

100000
DO 1.2959e-09 4.8539e-09 9.9020e-09 1.4843e-08

DH 5.1514e-13 1.8895e-11 8.0537e-11 1.1000e-10

m = 1, α = 2, β = −1/2, u(x) = sin(x)

Figure 11. The error curves with ω at point s = 0.2, 0.5 and 0.8 for Example 5.4 are solved by the
direct high-order interpolation (DO) method (left) and the direct Hermite interpolation (DH) method
(right).

m = 1, α = 2, β = −1/2, u(x) = sin(x)

Figure 12. Comparison of the error at point x = 0.2 for solving Example 5.4 by using the direct
high-order interpolation (DO) method and the direct Hermite interpolation (DH) method.
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From the above examples, it is easy to see that efficiency of our methods for
solving the second kind of Volterra integral equations with weakly singular highly
oscillatory Bessel kernels. And from the Examples 5.1 and 5.2, we conclude that
our method, the direct high-order interpolation (DO) method, is superior to the

Filon-type (QFN ) method, the piecewise constant collocation (QL,0N ) method and the

linear collocation (QL,1N ) method in the Ref. [21].

6. Conclusion

We focus on the second kind of Volterra integral equations with the weakly sin-
gular highly oscillatory Bessel kernel. For this type of equations, we propose two
collocation methods: direct high-order interpolation and direct Hermite interpola-
tion, based on the solution of the modified moments

∫ xj
0
tα(xj− t)βJm(ω(xj− t))dt.

From the convergence analysis and numerical experiments, it is easy to see that the
methods we propose are very efficient for solving weakly singular highly oscillatory
problems. However, we only consider the kernel of the Bessel transform to be highly
oscillatory combined with weakly singular. Future research should consider other
highly oscillatory equations containing different weakly singular forms and try to
apply different methods to solve the highly oscillatory weakly singular equations to
achieve improved accuracy of the approximate solutions.
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