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THE NON-EXISTENCE AND EXISTENCE OF
NON-CONSTANT POSITIVE SOLUTIONS FOR

A DIFFUSIVE AUTOCATALYSIS MODEL
WITH SATURATION
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Abstract This paper deals with a diffusive autocatalysis model with satu-
ration under Neumann boundary conditions. Firstly, some stability and Tur-
ing instability results are obtained. Then by the maximum principle, Hölder
inequality and Poincaré inequality, a priori estimates and some basic char-
acterizations of non-constant positive solutions are given. Moreover, some
non-existence results are presented for three different situations. In particu-
lar, we find that the model does not have any non-constant positive solution
when the parameter which represents the saturation rate is large enough. In
addition, we use the theories of Leray-Schauder degree and bifurcation to get
the existence of non-constant positive solutions, respectively. The steady-state
bifurcations at both simple and double eigenvalues are intensively studied and
we establish some specific condition to determine the bifurcation direction.
Finally, a few of numerical simulations are provided to illustrate theoretical
results.
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1. Introduction

A chemical reaction is said to have undergone autocatalysis if the reaction products
have an accelerating effect on the reaction rate [34]. In the past decades, auto-
catalytic models have received extensive attentions in the study of morphogenesis,
population dynamics and autocatalytic oxidation reactions [16,30].

Assume that the initial concentration of reactants remains unchanged and the
reaction rates are the same, then an autocatalysis model with arbitrary order can
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be presented in the following non-dimensional form

∂u(x, t)

∂t
− d1∆u(x, t) = a− u(x, t)vp(x, t), x ∈ Ω, t > 0,

∂v(x, t)

∂t
− d2∆v(x, t) = u(x, t)vp(x, t)− v(x, t), x ∈ Ω, t > 0,

∂u(x, t)

∂ν
=
∂v(x, t)

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, 6≡ 0, v(x, 0) = v0(x) ≥ 0, 6≡ 0, x ∈ Ω̄,

(1.1)

in which Ω is a bounded domain in RN (N ≥ 1) with smooth boundary and ν is
outward unit normal vector on ∂Ω. The variables u(x, t) and v(x, t) respectively
represent the dimensionless concentrations of reactants and autocatalyst, which are
generally considered to be non-negative. The parameter a is the initial concentration
of the reaction precursor, p represents the reaction order of autocatalytic species,
d1, d2 are the diffusion coefficients, a, p, d1 and d2 are all positive. Here, we refer
to [8,26] and the references therein for a more detailed description on the derivation
of this model.

Taking a as a bifurcation parameter, the Hopf bifurcation and the steady-state
bifurcation of system (1.1) were studied in [11], including the steady-state bifur-
cation at double eigenvalues and the techniques of space decomposition and the
implicit function theorem were adopted to deal with the case of double eigenvalues.
However, the direction of steady-state bifurcation was not mentioned in [11]. With-
out loss of generality, Guo et al. chose p = 7 and carried out a detailed steady-state
bifurcation analysis for (1.1), some specific conditions to determine the direction
of steady-state bifurcation given in [12]. The stability of the steady-state bifurca-
tion solutions of (1.1) was investigated in [45]. The non-existence and existence
of positive steady-state solutions for (1.1) with p > 2 were discussed in [17], and
there was also obtained the steady-state bifurcation arising from the unique positive
constant equilibria. The stability and pattern formations in a two-cell coupled auto-
catalysis system with arbitrary order were studied in [44], where Turing bifurcation
solutions were obtained by weakly nonlinear theory. A general reaction-diffusion
system modelling glycolysis was investigated in [46], where the parameter regions
for the stability and instability of the unique constant steady-state solution were
derived, and the existence of time-periodic orbits and non-constant steady-state
solutions was proved by the bifurcation method and Leray-Schauder degree theory.

Biological and chemical applications of model equations often involve the effect
of saturation laws. So in this paper, we mainly deal with the autocatalysis model
(1.1) with saturation effects. Recall the reaction process proposed by Engelhardt [7],

X + Y
k1


k−1

XY, XY
k2−→ P +X (autocatalysis),

X + Y
S(k3,k4)−→ P +X (saturation law),

in which one substrate X reacts with an enzyme Y forming a complex XY through
a reversible process, which then is converted into a product P plus the enzyme, and
k1, k−1, k2 are reaction rates. It is assumed that the concentrations of P is inde-
pendent of time and spatial variables. Here, S(k3, k4) accounts for the Michaelis-
Menten law in enzyme-controlled processes, or the Langmuir-Hinshelwood law in
heterogeneous catalysis and adsorption, the Holling law in ecology.
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Engelhardt [7] not only used a balanced reaction equation to express the stoi-
chiometric relationship between reactants and products, but also proposed a sel’kov
model with saturation effects,

∂x

∂t
−D1∇2x = ν1 −

k1xy
γ

1 +K1yγ
,

∂y

∂t
−D2∇2y =

k1xy
γ

1 +K1yγ
− k2y,

where x and y represent two different concentrations of either chemical species or
morphogenes in a reaction-diffusion model, D1 and D2 represent diffusive coeffi-
cients, ν1 is a constant uniform rate, γ > 1 is the Hill coefficient, and K1 is the
saturation coefficient. For the model above, Hopf bifurcation was considered, but
the effect of the saturation coefficient K1 on the existence and nonexistence of non-
constant positive solutions was ignored. One can also seen [15] for details. For
the Sel’kov model with saturation effects, Du et al. [6] studied the existence and
non-existence conditions of non-constant positive solutions, and Wang and Gao [36]
derived a formula in terms of the diffusion rates to determine the Turing instabil-
ity of the spatially homogeneous Hopf bifurcating periodic solutions. The works
on the bimolecular model with saturation can be seen in [25, 29, 39, 40, 42], where
detailed qualitative analyses were carried out, including the non-existence and exis-
tence of non-constant positive solutions, Hopf bifurcation and steady-state bifurca-
tion, and many pattern formation dynamics were presented. In addition, there are
many works on other autocatalysis models. For example, see [2,4,24,41,43] for the
Lengyel-Epstein model, see [14,21,23,27] for the Brusselator model, see [1,5,18,37]
for the Degn-Harrison model.

Motivated by above works, we consider the following diffusive autocatalysis
model with saturation

∂u

∂t
− d1∆u = a− uvp

1 + kvp
, x ∈ Ω, t > 0,

∂v

∂t
− d2∆v =

uvp

1 + kvp
− v, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

(1.2)

where k > 0 represents the saturation coefficient, and the initial conditions are non-
negative and not idential to 0. The steady-state problem corresponding to (1.2) is
given by 

−d1∆u = a− uvp

1 + kvp
, x ∈ Ω,

−d2∆v =
uvp

1 + kvp
− v, x ∈ Ω,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω.

(1.3)

System (1.3) has a unique positive equilibrium E∗ := (u∗, v∗) = (a1−p + ka, a).
In this paper, we shall focus on the non-existence and existence of non-constant

positive solutions for system (1.3). We first discuss the stability and Turing insta-
bility of the equilibrium E∗ and then a priori estimates and some related properties
of non-constant positive solutions for system (1.3) are established. The effects of
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the diffusion and saturation are intensively investigated and three non-existence re-
sults are given. Moreover, we derive the existence of non-constant positive solutions
based on the Leray-Schauder degree. Using d1 as a bifurcation parameter, we obtain
the local steady-state bifurcation at simple and double eigenvalues, respectively. In
particular, we extend the local bifurcation to the global one and present a formula
to determine the local bifurcation direction.

It must be pointed out that the steady-state bifurcation at double eigenvalues is
difficult to tackle because the classic Crandall-Rabinowitz theorem does not work
and so we need to propose an effective method in this case. Here, we fortunately use
the techniques of space decomposition and implicit function theorem to solve this
problem, ever if only for two special cases. In addition, the diffusion and saturation
effects are fully taken into accounts in our arguments, and we find out that there is
no non-constant positive solution of (1.3) when d1 is small, d2 is large or k is large.

The outline of this paper is arranged as follows. In Section 2, the stability and
Turing instability of the unique positive equilibrium are discussed. In Section 3, a
priori estimates and some basic properties of positive solutions are given. In Section
4, the non-existence and existence of non-constant positive solutions are established
from different perspectives. The fixed-point index theory in Banach space are used
in this section. In Section 5, taking d1 as a bifurcation parameter, a detailed steady-
state bifurcation analysis is carried out, where the local bifurcation, the global one
and the direction of local bifurcation are involved. Some numerical simulations are
given to illustrate some theoretical results in Section 6.

2. The stability and Turing instability

In this section, we discuss the saturation effect on the stability of the unique positive
equilibrium and the effect of diffusion coefficients on Turing instability is also given.
An equilibrium point of the reaction-diffusion system is said to be Turing unstable
if it is stable in the absence of diffusion and it becomes unstable for the diffusive
system.

Assume p > 1 throughout the whole arguments, since E∗ is always locally
asymptotically stable if 0 < p ≤ 1. The local system corresponding to (1.2) which
is an ordinary differential equation takes in the following form

du

dt
= a− uvp

1 + kvp
, t > 0,

dv

dt
=

uvp

1 + kvp
− v, t > 0.

(2.1)

The Jacobian matrix of (2.1) at E∗ is

J =

− ap

1 + kap
− p

1 + kap
ap

1 + kap
p

1 + kap
− 1

 .

The characteristic equation can be given by µ2 − Tµ+D = 0, where

T =
p− 1− (k + 1)ap

1+kap
, D =

ap

1 + kap
> 0.
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As we know, E∗ is locally asymptotically stable if T < 0 and D > 0, and it is
unstable if T > 0 or D < 0. It is easy to see E∗ is locally asymptotically stable if
p > 1 and a ≥ p

√
p− 1.

Let k0 =
p− 1− ap

ap
. Simple analysis leads to the following stability results.

Theorem 2.1. Assume that p > 1.

(i) If a ≥ p
√
p− 1, the equilibrium E∗ is asymptotically stable for system (2.1);

(ii) If 0 < a < p
√
p− 1, the equilibrium E∗ is asymptotically stable for system (2.1)

when k > k0 and is unstable when 0 < k < k0.

Now we focus on the stability of E∗ for system (1.2). Let 0 = λ0 < λ1 < λ2 <
· · · < λi < · · · be the eigenvalues of the operator −∆ subject to the Neumman
boundary condition on Ω, where λi has multiplicity mi ≥ 1. Set φij (1 ≤ j ≤
mi) be the normalized eigenfunctions corresponding to λi and φi := φi1. Then
{φij}(i ≥ 0, 1 ≤ j ≤ mi) forms a complete orthogonal basis in L2(Ω).

The linearization operator of (1.2) at E∗ is

L =

d1∆− ap

1 + kap
− p

1 + kap

ap

1 + kap
d2∆ +

p

1 + kap
− 1

 . (2.2)

Then, the characteristic equation of (2.2) can be denoted by

µ2 − Tn(k)µ+Dn(k) = 0, (2.3)

where

Tn(k) = T − (d1 + d2)λn,

Dn(k) = d1d2λ
2
n +

1

1 + kap
[(1− p+ kap)d1 + apd2]λn +

ap

1 + kap
.

If p > 1 and k ≥ k0 + 1, we have Tn ≤ T < 0, Dn > 0 for n ∈ N0, and thus the
equilibrium E∗ is locally asymptotically stable.

Assume that p > 1 and max {0, k0} < k < k0 + 1. Then we have Tn ≤ T < 0 for
all n ∈ N0. If d2/d1 ≥ k0 + 1 − k, then we have Dn > 0 and thus the equilibrium
E∗ is locally asymptotically stable.

Next we consider the stability of E∗ if d2/d1 < k0 + 1− k. Let

∆ =

[
(1− p+ kap)d1 + apd2

1 + kap

]2

− 4apd1d2

1 + kap

=
a2pd2

2 − 2ap(p+ 1 + kap)d1d2 + (1− p+ kap)2d2
1

(1 + kap)
2 .

Define the quadratic function

h(z) = a2pz2 − 2ap(p+ 1 + kap)z + (1− p+ kap)2.

The discriminant of h(z) is

∆̃ = [2ap(p+ 1 + kap)]2 − 4a2p(1− p+ kap)2 = 16p(1 + kap)a2p > 0.
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Hence, the equation h(z) = 0 has two different real positive roots

z1 =
1 + p+ kap−2

√
p(1 + kap)

ap
, z2 =

1 + p+ kap+2
√
p(1 + kap)

ap
. (2.4)

If z1 < z < z2, then h(z) < 0 and we have Dn(k) > 0 for all n ∈ N0. Note that
z1 < d2/d1 < k0 + 1 − k < z2 and E∗ is stable when d2/d1 ≥ k0 + 1 − k. So we
know that the equilibrium E∗ is stable when d2/d1 > z1.

Theorem 2.2. Assume that p > 1.

(i) If k ≥ k0 + 1, the equilibrium E∗ is asymptotically stable for system (1.2);

(ii) If max {0, k0} < k < k0 + 1, the equilibrium E∗ is asymptotically stable for
system (1.2) when d2/d1 > z1, where z1 is given by (2.4).

Remark 2.1. The expression of k0 tells that if 0 < a < p
√
p− 1, then k0 > 0 and

if a ≥ p
√
p− 1, then k0 ≤ 0, that is

max {0, k0} =


k0, if 0 < a < p

√
p− 1,

0, if a ≥ p
√
p− 1.

Now we discuss the stability of the equilibrium E∗ when 0 < d2/d1 < z1. In
this case, ∆ > 0 and Dn(k) = 0 has two real positive roots

λ+(d1, d2) =
R+
√
R2 − 4d1d2S

2(1 + kap)d1d2
, λ−(d1, d2) =

R−
√
R2 − 4d1d2S

2(1 + kap)d1d2
, (2.5)

where

R = d2A+ d1N = (p− 1− kap)d1 − apd2, S = ap(1 + kap) > 0.

Define the function

K(d1) =
d2

d1
A+N +

√
(
d2

d1
A+N)

2

− 4d2S

d1
.

Then

K ′(d1) = −
[
d2

d2
1

A+

(
d2

d1
A+N)

d2

d2
1

A− 2d2S

d2
1√

(
d2

d1
A+N)

2

− 4d2S

d1

]
.

Recall that A < 0 and 0 < d2/d1 < k0+1−k. Then we have R = d2A+d1N > 0 and
K ′(d1) > 0. Therefore, λ+ is strictly monotonically increasing with respect to d1.

On the other hand, we have λ+(d1, d2)λ−(d1, d2) =
ap

(1 + kap)d1d2
. Differentiating

with respect to d1, we get

λ′+(d1, d2)λ−(d1, d2) + λ+(d1, d2)λ′−(d1, d2) = − ap

(1 + kap)d2
1d2

< 0.
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Since λ′+(d1, d2) > 0, λ+(d1, d2) > 0 and λ−(d1, d2) > 0, we obtain λ′−(d1, d2) < 0.
Therefore, λ− is strictly monotonically decreasing with respect to d1.

Denote

Φ1 = {λ|λ > 0, λ−(d1, d2) < λ < λ+(d1, d2)}, Φ2 = {λ0, λ1, λ2, · · · }.

If there exists n0 ∈ N such that λ−(d1, d2) < λn0
< λ+(d1, d2), then Φ1 ∩ Φ2 6= ∅

and the equilibrium E∗ is unstable. So we focus on the case of large d1 or small d2,
the inequality 0 < d2/d1 < z1 hold true.

Fix d2 and let d1 →∞ to get

lim
d1→∞

λ−(d1, d2) = 0, lim
d1→∞

λ+(d1, d2) =
p− 1− kap

d2(1 + kap)
= λ∗. (2.6)

If λ1 ≥ λ∗, then Φ1 ∩ Φ2 = ∅ and we have Dn(k) > 0 for all n ∈ N0. On the other
hand, if λ1 < λ∗, then Φ1 ∩ Φ2 6= ∅ and the equilibrium E∗ is unstable.

Theorem 2.3. Assume that p > 1 and max {0, k0} < k < k0 +1. Then there exists
large D1 > 0 such that if d1 > D1, the equilibrium E∗ is asymptotically stable for
system (1.2) when λ1 ≥ λ∗ and is Turing unstable when λ1 < λ∗.

If fix d1 and let d2 → 0, then

lim
d2→0

λ−(d1, d2) =
ap

d1(p− 1− kap)
, lim

d2→0
λ+(d1, d2) =∞.

Therefore, there exists small δ > 0 such that Φ1 ∩ Φ2 6= ∅ for 0 < d2 < δ, which
shows that the equilibrium E∗ is unstable.

Theorem 2.4. Assume that p > 1 and max {0, k0} < k < k0 + 1. Then there
exists small δ > 0 such that the equilibrium E∗ is Turing unstable for system (1.2)
if 0 < d2 < δ.

The positive equilibrium E∗ is stable when k is large. The ratio of diffusion co-
efficient d2/d1 affect the stability of the equilibrium E∗ when k is in a certain range.
The equilibrium E∗ is still stable when d2/d1 is properly large. The equilibrium E∗

may be stable or Turing instability when d2/d1 is properly small.

3. A priori estimates and some characters

In this section, we shall use the maximum principle, Poincaré inequality and Hölder
inequality to obtain a priori estimates and some properties of positive solutions of
(1.3). Start with two useful lemmas.

Lemma 3.1. (see [22]) Suppose that g ∈ C
(
Ω× R1

)
.

(i) Assume that w (x) ∈ C2 (Ω) ∩ C1
(
Ω
)

and satisfies

∆w (x) + g (x,w (x)) ≥ 0, x ∈ Ω, ∂νw ≤ 0, x ∈ ∂Ω.

If w (x0) =max
Ω
w (x), then g (x0, w (x0)) ≥ 0;

(ii) Assume that w (x) ∈ C2 (Ω) ∩ C1
(
Ω
)

and satisfies

∆w (x) + g (x,w (x)) ≤ 0, x ∈ Ω, ∂νw ≤ 0, x ∈ ∂Ω.
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If w (x0) =min
Ω
w (x), then g (x0, w (x0)) ≤ 0.

Lemma 3.2. (see [20]) Let Ω be a bounded Lipschitz domain in RN and Λ be a
positive constant. Suppose that w ∈ W 1,2(Ω) is a nonnegative weak solution of the
inequalities

0 ≤ −∆w(x) + Λw(x), x ∈ Ω, ∂νw ≤ 0, x ∈ ∂Ω.

For any q ∈ [1, n/(n− 2)), there is a constant C0 = C0(q,Ω,Λ), such that

||w||q ≤ C0 inf
Ω
w.

Now we give a priori estimates for positive solutions of system (1.3).

Theorem 3.1. Let (u, v) be any positive solution of (1.3). Then there exists a
positive constant C∗ = C∗(d2,Ω) such that (u, v) satisfies

ak ≤ u ≤ a(k +
Cp∗

ap|Ω|p
),

a|Ω|
C∗
≤ v ≤ a(1 +

Cp∗
kap|Ω|p

).

Proof. Let u(x0) = min
Ω
u(x). From (ii) of Lemma 3.1, it follows that

a− u(x0)vp(x0)

1 + kvp(x0)
≤ 0,

i.e.,
u(x0)vp(x0) ≥ a(1 + kvp(x0)) ≥ akvp(x0).

Thus we get
u(x) ≥ u(x0) ≥ ak. (3.1)

Integrate the first and second equations in (1.3) over Ω, respectively, to get∫
Ω

uvp

1 + kvp
dx =

∫
Ω

vdx = a|Ω|, (3.2)

where |Ω| is the volume of Ω. Since v satisfies

−d2∆v + v ≥ 0, x ∈ Ω, ∂νv ≤ 0, x ∈ ∂Ω,

by Lemma 3.2, there exists a positive constant C∗ = C∗(d2,Ω) such that

a|Ω| =
∫

Ω

vdx ≤ C∗ inf
Ω
v,

which leads to

v(x) ≥ inf
Ω
v ≥ a|Ω|

C∗
. (3.3)

From (3.2), we have |Ω|/C∗ ≤ 1.
Let u(x1) = max

Ω
u(x). From (i) of Lemma 3.1, it follows that

a− u(x1)vp(x1)

1 + kvp(x1)
≥ 0.



The non-existence and existence of. . . 3261

Thus, by the lower bound for v in (3.3), we have

u(x) ≤ u(x1) ≤ a(k +
1

vp(x1)
) ≤ a(k +

Cp∗
ap|Ω|p

). (3.4)

Let v(x2) = max
Ω

v(x). Form (i) of Lemma 3.1 and the upper bound for u in (3.4),

we have

v(x) ≤ v(x2) ≤ u(x2)vp(x2)

1 + kvp(x2)
≤ u(x1)

k
≤ a(1 +

Cp∗
kap|Ω|p

). (3.5)

The proof is completed with (3.1), (3.3)-(3.5).

Theorem 3.2. Assume 0 < p < 1. Then any positive solution of system (1.3)
satisfies

ak ≤ u ≤ a(k +
1

Cp∗∗
), C∗∗ ≤ v ≤ a(1+

1

kCp∗∗
),

where C∗∗ is the unique positive root of the equation 1 + ksp − aksp−1 = 0.

Proof. Let v(y1) = min
Ω
v(x). From (ii) of Lemma 3.1, it follows that

u(y1)vp(y1)

1 + kvp(y1)
− v(y1) ≤ 0.

From Theorem 3.1, we know u ≥ ak and thus

1 + kvp(y1) ≥ u(y1)vp−1(y1) ≥ akvp−1(y1). (3.6)

The function f(s) = 1 + ksp − aksp−1 is increasing in (0,+∞) when 0 < p < 1
and k > 0. Therefore, f(s) has a unique zero point C∗∗ satisfying 0 < C∗∗ < a.

By (3.6), we have v(y1) ≥ C∗∗. Similar to the proof in Theorem 3.1, it is easy
to verify

u ≤ a(k +
1

Cp∗∗
), v ≤ a(1+

1

kCp∗∗
).

The proof is completed.

Remark 3.1. The unique zero point C∗∗ mentioned in Theorem 3.2 satisfies C∗∗ →
a as k →∞.

Theorem 3.3. Assume that p = 1 and ak > 1. Then any positive solution of
system (1.3) satisfies

ak ≤ u ≤ a2k2

ak − 1
,

ak − 1

k
≤ v ≤ a2k

ak − 1
.

Proof. Choose f(s) = 1 + ks − ak in Theorem 3.2 or directly use Lemma 3.1
yields the estimates.

Next we give more information on the characterization of positive solutions.
Denote their averages over Ω by

ū =
1

|Ω|

∫
Ω

u (x) dx, v̄ =
1

|Ω|

∫
Ω

v (x) dx.
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It follows from (3.2) that v̄ = a. Let φ = u− ū, ψ = v − v̄. Then∫
Ω

φdx =

∫
Ω

ψdx = 0.

If (u, v) is a non-constant solution, then φ and ψ are non-trivial and change signs
in Ω. However, the following result shows φψ and ∇φ · ∇ψ have a negative average
over Ω, respectively.

Theorem 3.4. Let (u, v) be a non-constant positive solution of (1.3). Then∫
Ω

φψdx < 0 and

∫
Ω

∇φ · ∇ψdx < 0.

Proof. Let ω = d1u+ d2v. Then ω satisfies

−∆ω = a− v = v̄ − v = −ψ. (3.7)

Multiplying (3.7) by ω = d1u+ d2v and then integrating Ω by parts, we have∫
Ω

|∇ω|2dx = −
∫

Ω

ωψdx = −d1

∫
Ω

φψdx− d2

∫
Ω

ψ2dx. (3.8)

This implies that∫
Ω

φψdx = − 1

d1

(∫
Ω

|∇ω|2dx+ d2

∫
Ω

ψ2dx

)
< 0. (3.9)

Multiplying (3.7) by ψ and then integrating by parts, we have

−
∫

Ω

ψ2dx = −
∫

Ω

ψ∆ωdx

=

∫
Ω

∇ω · ∇ψdx

=

∫
Ω

(d1∇u+ d2∇v) · ∇ψdx

= d1

∫
Ω

∇φ · ∇ψdx+ d2

∫
Ω

|∇ψ|2dx.

Hence, we obtain∫
Ω

∇φ · ∇ψdx = − 1

d1

(
d2

∫
Ω

|∇ψ|2dx+

∫
Ω

ψ2dx

)
< 0. (3.10)

The proof is completed.
According to Theorem 3.1, there are positive constants C1 and C2, depending

on a, k, p, d1, d2 and Ω, such that

|a− uvp

1 + kvp
| ≤ C1, | uvp

1 + kvp
− v| ≤ C2.

Theorem 3.5. Let (u, v) be a non-constant positive solution of (1.3). Then there
exists a positive constant C1 such that∫

Ω

(|∇φ|2 + φ2)dx ≤ C2
1 |Ω|(1 + λ1)

d2
1λ

2
1

.
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Proof. Multiply the first equation in (1.3) by φ and then integrate over Ω by parts
to yield

d1

∫
Ω

|∇φ|2dx =

∫
Ω

(a− uvp

1 + kvp
)φdx ≤ C1

∫
Ω

|φ|dx. (3.11)

Using the Hölder inequality∫
Ω

|φ|dx ≤ |Ω| 12 (

∫
Ω

|φ|2dx)
1
2 ,

and the Poincaré inequality∫
Ω

|φ|2dx ≤ λ−1
1

∫
Ω

|∇φ|2dx,

where λ1 is the first positive eigenvalue of −∆ subject to the Neumman boundary
condition, we get

d1

∫
Ω

|∇φ|2dx ≤ C1|Ω|
1
2

√
λ1

(∫
Ω

|∇φ|2dx
) 1

2

.

This shows that ∫
Ω

|∇φ|2dx ≤ C2
1 |Ω|
d2

1λ1
,

∫
Ω

φ2dx ≤ C2
1 |Ω|
d2

1λ
2
1

.

Therefore, ∫
Ω

(|∇φ|2 + φ2)dx ≤ C2
1 |Ω|(1 + λ1)

d2
1λ

2
1

.

The proof is completed.
Similarly, we have the follwing result.

Theorem 3.6. Let (u, v) be a non-constant positive solution of (1.3). Then there
exists a positive constant C2 such that∫

Ω

(|∇ψ|2 + ψ2)dx ≤ C2
2 |Ω|(1 + λ1)

d2
2λ

2
1

.

Theorem 3.7. Let (u, v) be a non-constant positive solution of (1.3). Then

d2
2

∫
Ω

|∇v|2dx < d2
1

∫
Ω

|∇u|2dx ≤ 4(d2
2λ

2
1 + d2λ1 + 1)

3λ2
1

∫
Ω

|∇v|2dx. (3.12)

Proof. From (3.10), it follows that∫
Ω

|∇ω|2dx = d2
1

∫
Ω

|∇φ|2dx+ 2d1d2

∫
Ω

∇φ · ∇ψdx+ d2
2

∫
Ω

|∇ψ|2dx

= d2
1

∫
Ω

|∇φ|2dx− 2d2(

∫
Ω

ψ2dx+ d2

∫
Ω

|∇ψ|2dx) + d2
2

∫
Ω

|∇ψ|2dx

= d2
1

∫
Ω

|∇φ|2dx− d2
2

∫
Ω

|∇ψ|2dx− 2d2

∫
Ω

ψ2dx > 0,

which leads to

d2
2

∫
Ω

|∇ψ|2dx < d2
1

∫
Ω

|∇φ|2dx. (3.13)
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The right inequality in (3.12) holds true. On the other hand, we have

d2
1

∫
Ω

|∇φ|2dx =

∫
Ω

|∇ω|2dx+ d2
2

∫
Ω

|∇ψ|2dx+ 2d2

∫
Ω

ψ2dx.

Combining (3.8) with the Poincaré inequality and Cauchy inequality, we obtain

d2
1

∫
Ω

|∇φ|2dx = d2
2

∫
Ω

|∇ψ|2dx+ d2

∫
Ω

ψ2dx− d1

∫
Ω

φψdx

≤ d2
2

∫
Ω

|∇ψ|2dx+
d2

λ1

∫
Ω

|∇ψ|2dx+
1

λ1

∫
Ω

ψ2dx+
d2

1λ1

4

∫
Ω

φ2dx

≤
(
d2

2 +
d2

λ1
+

1

λ2
1

)∫
Ω

|∇ψ|2dx+
d2

1

4

∫
Ω

|∇φ|2dx.

Hence, we get

3d2
1

4

∫
Ω

|∇u|2dx ≤ d2
2λ

2
1 + d2λ1 + 1

λ2
1

∫
Ω

|∇v|2dx. (3.14)

In view of (3.13) and (3.14), the proof is completed.

Theorem 3.8. Let (u, v) be a non-constant positive solution of (1.3). Then

3d2
2λ

3
1

4(d2
2λ

2
1 + d2λ1 + 1)(λ1 + 1)

<
d2

2

∫
Ω

(|∇ψ|2 + ψ2)dx

d2
1

∫
Ω

(|∇φ|2 + φ2)dx
<
λ1 + 1

λ1
.

Proof. By the Poincaré inequality, we have∫
Ω

(|∇φ|2 + φ2)dx ≤ λ1 + 1

λ1

∫
Ω

|∇φ|2dx.

From the right inequality in (3.12), it follows

d2
2

∫
Ω

(|∇ψ|2 + ψ2)dx

d2
1

∫
Ω

(|∇φ|2 + φ2)dx
>

λ1

λ1 + 1
·
d2

2

∫
Ω
|∇ψ|2dx

d2
1

∫
Ω
|∇φ|2dx

≥ 3d2
2λ

3
1

4(d2
2λ

2
1 + d2λ1 + 1)(λ1 + 1)

.

By the left inequality in (3.12), we obtain

d2
2

∫
Ω

(|∇ψ|2 + ψ2)dx

d2
1

∫
Ω

(|∇φ|2 + φ2)dx
<
λ1 + 1

λ1
·
d2

2

∫
Ω
|∇ψ|2dx

d2
1

∫
Ω
|∇φ|2dx

<
λ1 + 1

λ1
.

The proof is completed.

4. Non-constant positive solutions

In this section, we study the non-existence and existence of non-constant positive
solutions for system (1.3).
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4.1. Non-existence of non-constant positive solutions

In this subsection, we obtain sufficient conditions for the non-existence of non-
constant positive solutions of (1.3) as the parameters d1, d2 and k are varied. Our
analysis deals with the following three situations: small d1, large d2 and large
k. Here we note that the non-existence results play a key role in the following
arguments.

Considering Theorem 3.1, for simplicity and convenience, we denote

M1 := M1(a, k, p, d2,Ω) and M2 := M2(a, k, p, d2,Ω)

by the upper bounds of u and v, respectively.

Theorem 4.1. There exists a positive constant D∗1 := D∗1(λ1,M1,M2) such that
(1.3) does not admit a non-constant positive solution when d1 ≤ D∗1.

Proof. Suppose on the contrary that (1.3) has a non-constant positive solution
(u, v). Multiplying the first equation of (1.3) by φ and integrating over Ω by parts,
we have

d1

∫
Ω

|∇φ|2dx = −
∫

Ω

uvp

1 + kvp
φdx

= −
∫

Ω

[
vp(u− ū)

1 + kvp
+

(
vp

1 + kvp
− v̄p

1 + kv̄p

)
ū

]
φdx

= −
∫

Ω

vp(u− ū)

1 + kvp
φdx−

∫
Ω

ū(vp − v̄p)
(1 + kvp)(1 + kv̄p)

φdx

= −
∫

Ω

vp

1 + kvp
φ2dx−

∫
Ω

ūpγp−1

(1 + kvp)(1 + kv̄p)
φψdx,

where γ lies between v and v̄. From Theorem 3.1, Cauchy inequality and Poincaré
inequality, it follows that

d1

∫
Ω

|∇φ|2dx ≤ pM1M
p−1
γ

∫
Ω

|φ||ψ|dx−Mα

∫
Ω

φ2dx

≤ p2M2
1M

2(p−1)
γ

4Mα

∫
Ω

ψ2dx+Mα

∫
Ω

φ2dx−Mα

∫
Ω

φ2dx

≤ p2M2
1M

2(p−1)
γ

4λ1Mα

∫
Ω

|∇ψ|2dx,

where

Mγ =


M2, if p > 1,

1, if p = 1,

α, if 0 < p < 1,

Mα =
αp

1 + kαp
, α =

aC∗
|Ω|

.

By Theorem 3.7, we get∫
Ω

|∇φ|2dx < d1

D∗1

∫
Ω

|∇φ|2dx, where D∗1 =
4λ1Mαd

2
2

p2M2
1M

2(p−1)
γ

. (4.1)
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Therefore, if d1 ≤ D∗1 , the inequality (4.1) becomes no sense and thus the assump-
tion is not ture. The proof is completed.

Theorem 4.2. There exists a positive constant D∗2 := D∗2(λ1,M1,M2) such that
(1.3) does not admit a non-constant positive solution when d2 ≥ D∗2.

Proof. Suppose on the contrary that (1.3) has a non-constant positive solution
(u, v). Multiplying the first equation of (1.3) by ψ and integrating over Ω by parts,
we have

d2

∫
Ω

|∇ψ|2dx =

∫
Ω

[
u(vp − v̄p)

(1 + kvp)(1 + kv̄p)
+
v̄p(u− ū)

1 + kv̄p
− (v − v̄)

]
ψdx

=

∫
Ω

[
upγp−1ψ2

(1 + kvp)(1 + kv̄p)
+

v̄pφψ

1 + kv̄p
− ψ2

]
dx.

Recall
∫

Ω
φψdx < 0 in Theorem 3.4. By Theorem 3.1 and Poincaré inequality, we

obtain

d2

∫
Ω

|∇ψ|2dx <
∫

Ω

pγp−1uψ2

(1 + kvp)(1 + kv̄p)
dx <

pM1M
p−1
γ

λ1(1 + kap)

∫
Ω

|∇ψ|2dx. (4.2)

Let D∗2 =
pM1M

p−1
2

λ1(1 + kap)
. If d2 ≥ D∗2 , the inequality (4.2) becomes no sense, which

shows there is no non-constant positive solution of (1.3). The proof is completed.

Next we show that when k is large enough, system (1.3) doesn’t have a non-
constant positive solution. It is a new phenomenon that the saturation law deter-
mines the formation of spatial patterns of system (1.3).

For convenience, we make a variable change w = u/k and system (1.3) becomes
−d1k∆w = a− kwvp

1 + kvp
, x ∈ Ω,

−d2∆v =
kwvp

1 + kvp
− v, x ∈ Ω,

∂w

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω.

(4.3)

Clearly, system (4.3) has a unique positive constant solution (w∗, v∗) = (a +
a1−p/k, a).

Lemma 4.1. Assume that (w, v) is any positive solution of system (4.3). Then we
have a priori estimates for (w, v).

(i) If 0 < p < 1, then

a ≤ w ≤ a(1 +
1

kCp∗∗
), C∗∗ ≤ v ≤ a(1+

1

kCp∗∗
),

where C∗∗ > 0 is a constant given in Theorem 3.2;

(ii) If p = 1 and ak > 1, then

a ≤ w ≤ a2k

ak − 1
,

ak − 1

k
≤ v ≤ a2k

ak − 1
;
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(iii) If either p > 1 or p = 1 and 0 < ak ≤ 1, then

a ≤ w ≤ a(1 +
Cp∗

kap|Ω|p
),

a|Ω|
C∗
≤ v ≤ a(1 +

Cp∗
kap|Ω|p

),

where C∗ > 0 is a constant given in Theorem 3.1.

Proof. The proof can be obtained in the same way as in Theorems 3.1-3.3.

Lemma 4.2. Fix d1, d2 > 0 and assume that (wk, vk) is a positive solution of
system (4.3). Then (wk, vk)→ (a, a) in C2(Ω)× C2(Ω) as k →∞.

Proof. From the embedding theory and standard elliptic theorems using the equa-
tions in (4.3) and Lemma 4.1, we know that there exists a sequence ki with ki →∞
as i → ∞, and (w̃, ṽ) ∈ C2(Ω), such that (w̃ki , ṽki) → (w̃, ṽ) in C2(Ω) × C2(Ω) as
i → ∞, where (w̃ki , ṽki) are the corresponding positive solutions of system (4.3),
and w̃ is a constant and ṽ satisfies

−d2∆ṽ = w̃ − ṽ, x ∈ Ω, ∂ν ṽ = 0, x ∈ ∂Ω.

Thus, ṽ is also a positive constant, which combined with (3.2) or v̄ = a implies
w̃ = ṽ = a. The proof is completed.

Theorem 4.3. Fix d1, d2 > 0. There exists K > 0, which depends on p, d1, d2 and
Ω, such that (4.3) does not admit a non-constant positive solution when k ≥ K.

Proof. We first write w = ξ + h with h̄ = 0 and ξ = R+. Denote

L2
0(Ω) = {g ∈ L2(Ω)| ḡ = 0}, W 2,2

ν (Ω) = {g ∈W 2,2(Ω)| ∂νg = 0, x ∈ ∂Ω}.

It is easy to find that discussing the solution of system (4.3) is equivalent to finding
the solution of the following system

∆h+
r

d1
P
[
a− (ξ + h)vp

r + vp
]

= 0, x ∈ Ω,∫
Ω

[
a− (ξ + h)vp

r + vp
]
dx = 0,

∆v +
1

d2

[ (ξ + h)vp

r + vp
− v
]

= 0, x ∈ Ω,

∂h

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω,

ξ > 0, v(x) > 0, x ∈ Ω,

(4.4)

where r = k−1 and Pz = z − z̄. P is the projective operator from L2(Ω) to L2
0(Ω).

Obviously, (0, a + a1−p/k, a) is a solution of (4.4). Note that when r = 0, system
(4.4) has a unique solution (0, a, a). It suffices to prove that if r > 0 is small enough,
then (0, a, a) is the unique solution of (4.4). For this purpose, we further define

F (r, h, ξ, v) = (f1, f2, f3)(r, h, ξ, v) : R+ × (L2
0(Ω) ∩W 2,2

ν (Ω))× R+ ×W 2,2
ν (Ω)

→ L2
0(Ω)× R+ × L2(Ω),
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where

f1(r, h, ξ, v) = ∆h+
r

d1
P
[
a− (ξ + h)vp

r + vp
]
,

f2(r, h, ξ, v) =

∫
Ω

[
a− (ξ + h)vp

r + vp
]
dx,

f3(r, h, ξ, v) = ∆v +
1

d2

[ (ξ + h)vp

r + vp
− v
]
.

It is easy to see that finding solution of (4.3) is equivalent to solving F (r, h, ξ, v) =
0. Note that system (4.4) has a unique solution (0, a, a) when r = 0. Simple
computations give

D(h,ξ,v)F (0, 0, a, a) : (L2
0(Ω) ∩W 2,2

ν (Ω))× R×W 2,2
ν (Ω)→ L2

0(Ω)× R× L2(Ω),

and

D(h,ξ,v)F (0, 0, a, a)(y, τ, z) =


∆y

−
∫

Ω

(y + τ)dx

∆z − 1

d2
z +

1

d2
(y + τ)

 .

Since ∆ : L2
0(Ω) ∩ W 2,2

ν (Ω) → L2
0(Ω) is invertible, D(h,ξ,v)F (0, 0, a, a) is also in-

vertible. Moreover, D(h,ξ,v)F (0, 0, a, a) can be verified to be surjective by simple
calculations.

By the implicit function theorem and Lemma 4.2, there exist positive constants
r0 and δ0 such that for each r ∈ [0, r0], (0, a, a) is the unique solution F (r, h, ξ, v) = 0
in Bδ0(0, a, a), where Bδ0(0, a, a) is the ball centered at (0, a, a) with radius δ0. The
proof is completed.

4.2. The existence of non-constant positive solutions

In this subsection, we shall discuss the existence of non-constant positive solutions
of (1.3) using the theory of Leray-Schauder topological degree.

For later arguments, we define the function space X = {(u, v) ∈ C2(Ω)∩C1(Ω) :
∂νu = ∂νv = 0 on ∂Ω}, X∗ = {u = (u, v) ∈ X : C < u, v < C on Ω} with
C,C > 0 which can be obtained in Section 3. Let E(λi) be the corresponding
eigenspace of λi and {φij : j = 1, 2, · · · ,dimE(λi)} be an orthonormal basis for
E(λi), and Xij = {cφij : c ∈ R2}. We decompose X as

X =
∞
⊕
i=0

Xi and Xi =
dimE(λi)
⊕
j=0

Xij .

Define

G(u) =

d−1
1 (a− uvp

1 + kvp
)

d−1
2 (

uvp

1 + kvp
− v)

 .

Then (1.3) can be written as

−∆u = G(u), x ∈ Ω, ∂νu = 0, x ∈ ∂Ω, (4.5)
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and u is a positive solution of (4.5) if and only if

L(u) ≡ u− (−∆ + I)−1{G(u) + u} = 0

has a positive solution, where I is the identity operator. Note that L(·) is a
compact perturbation of the identity operator, and so the Leray-Schauder degree
deg(L(·), 0, X∗) is well defined because of L(·) 6= 0 on ∂X∗. Furthermore, we ob-
serve that

DuL(u∗) = I − (−∆ + I)−1(A+ I),

where

A := DuG(u∗) =

−
ap

d1(1 + kap)
− p

d1(1 + kap)
ap

d2(1 + kap)

p− 1− kap

d2(1 + kap)

 , u∗ = (u∗, v∗).

If DuL(u∗) is invertible, then it follows from [3] that the index of L at u∗ is defined
as

index(L(·),u∗) = (−1)ζ , (4.6)

where ζ is the sum of algebraic multiplicities of the negative eigenvalues of DuL(u∗).
A direct calculation shows that, for each integer i ≥ 0, Xi is invariant under
DuL(u∗), and ξ is an eigenvalue of DuL(u∗) on Xi if and only if it is an eigenvalue
of the matrix λiI − A.

Denote

H(λ) = det(λI − A) = λ2 +
d2a

p + d1(1 + kap − p)
d1d2(1 + kap)

λ+
ap

d1d2(1 + kap)
. (4.7)

From the discussions in Section 2, we know that if p > 1, max {0, k0} < k < k0 + 1
and 0 < d2/d1 < z1, then H(λ) = 0 has two positive roots λ±(d1, d2), where z1 and
λ±(d1, d2) are given by (2.4) and (2.5), respectively. Moreover, by (2.6), we have
λ−(d1, d2)→ 0, λ+(d1, d2)→ λ∗ when d1 →∞.

Theorem 4.4. Assume that p > 1, max {0, k0} < k < k0 + 1 and 0 < d2/d1 < z1,

where z1 is given by (2.4). If λ∗ =
p− 1− kap

d2(1 + kap)
∈ (λm, λm+1) for some integer

m ≥ 1 and
m∑
i=1

dimE(λi) is odd, then there exists D1 > 0 such that (1.3) has at

least one non-constant positive solution provided that d1 ≥ D1.

Proof. From the above arguments and λ∗ ∈ (λm, λm+1) for some m ≥ 1, it follows
that there exists a constant D1 > 0 such that

λ+(d1, d2) ∈ (λm, λm+1), λ−(d1, d2) ∈ (λ0, λ1) for all d1 ≥ D1.

We aim to show that (1.3) has at least one non-constant positive solution if d1 ≥ D1.
Prove the conclusion by contradiction and assume that the assertion is not true
for some d1 = d̂1 ≥ D1. By Theorem 4.2, there exists D∗2 > 0 such that (1.3)
has no non-constant positive solution for all d2 ≥ D∗2 . Moreover, we can choose

d2 = d̂2 ≥ D∗2 sufficiently large such that λ∗ < λ1. Then we have

0 < λ−(d1, d2) < λ+(d1, d̂2) < λ1, D1 ≤ d1 ≤ d̂1. (4.8)
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For t ∈ [0, 1], we define

G(u; t) =

 [td1 + (1− t)d̂1]−1(a− uvp

1 + kvp
)

[td2 + (1− t)d̂2]−1(
uvp

1 + kvp
− v)

 ,

and let

A(t) :=DuG(u∗; t)

=

−
ap

(1 + kap)[td1 + (1− t)d̂1]
− p

(1 + kap)[td1 + (1− t)d̂1]
ap

(1 + kap)[td2 + (1− t)d̂2]

p− 1− kap

(1 + kap)[td2 + (1− t)d̂2]

 .

Think about the following problem

−∆u = G(u; t), x ∈ Ω, ∂νu = 0, x ∈ ∂Ω. (4.9)

Obviously, system (4.9) has a unique positive constant solution u∗. Note that u
is a positive solution of system (1.3) if and only if it is a positive solution of (4.9)
for t = 1. Since the operator (I −∆)−1 : C(Ω) → C(Ω) exists and is compact, we
know that u is a positive solution of (4.9) if and only if u satisfies

L(u; t) ≡ u− (−∆ + I)−1{G(u; t) + u} = 0 on X. (4.10)

Further calculations to get

DuL(u∗; 0) = I − (−∆ + I)−1(A(0) + I),

DuL(u∗; 1) = I − (−∆ + I)−1(A(1) + I),

where

A(0) =

−
ap

d̂1(1 + kap)
− p

d̂1(1 + kap)
ap

d̂2(1 + kap)

p− 1− kap

d̂2(1 + kap)

 ,

A(1) =

−
ap

d1(1 + kap)
− p

d1(1 + kap)
ap

d2(1 + kap)

p− 1− kap

d2(1 + kap)

 .

Next, we calculate the number of negative eigenvalues of DuL(u∗; 1) on X.

Since X is composed by
∞
⊕
i=0

Xi, we have

∑
i≥0,H(λi)<0

dimE(λi) =

m∑
i=1

dimE(λi).

According to (4.7), we can obtain

H(λ0, d̂1) =
ap

d̂1D∗2(1 + kap)
> 0,
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H(λi, d̂1) > 0 for all i ≥ m+ 1, H(λj , d̂1) < 0 for all 0 < j ≤ m.

Thus, 0 is not an eigenvalue of the matrix λiI−A(1) for any i ≥ 0, and
m∑
i=1

dimE(λi)

is odd by the hypothesis. For t = 0, Theorem 4.2 implies that L(u; 0) has the only
positive solution u∗ in X, and from (4.8), it is easy to see that H(λi) > 0 for all

i ≥ 0 and
m∑
i=1

dimE(λi) = 0.

By Theorem 3.1, there exist positive constants C and C depending on p, k, d2

and |Ω|, such that any positive solution (u, v) of (1.3) satisfies

C < u(x), v(x) < C on Ω.

Let Ω1 = {u ∈ X|C < u < C on Ω}, then L(u; t) 6= 0 for u ∈ ∂Ω1. By the
homotopy invariance of topological degree, we have

deg(L(·; 0), 0,Ω1) = deg(L(·; 1), 0,Ω1). (4.11)

According to our hypothesis, both equations L(u; 0) = 0 and L(u; 1) = 0 have only
the non-negative solution u∗ in Ω1, and from the formula (4.6), we have

deg(L(·; 0), 0,Ω1) = index(L(·; 0);u∗) = (−1)

m∑
i=1

dim E(λi)
= 1,

deg(L(·; 1), 0,Ω1) = index(L(·; 1);u∗) = (−1)

m∑
i=1

dimE(λi)
= −1,

which is contradictory with (4.11) and thus the proof is completed.

5. Steady-state bifurcation

In this section, we focus on a detailed qualitative analysis on the steady-state bi-
furcation for system (1.3) in one-dimensional space. Related works can be found
in [9, 10,13,19,38]. Assume Ω = (0, π) and consider the steady-state problem

−d1∆u = a− uvp

1 + kvp
, x ∈ (0, π),

−d2∆v =
uvp

1 + kvp
− v, x ∈ (0, π),

u′ = v′ = 0, x = 0, π.

(5.1)

Furthermore, we shall give the structure and direction of bifurcation solutions. For
convenience, we translate (u∗, v∗) to the origin by the translation (ũ, ṽ) = (u −
u∗, v−v∗) and still denote ũ, ṽ by u, v, respectively. Then (5.1) turns to the following
system 

−d1u
′′ = a− (u+ u∗)(v + v∗)p

1 + k(v + v∗)p
, x ∈ (0, π),

−d2v
′′ =

(u+ u∗)(v + v∗)p

1 + k(v + v∗)p
− (v + v∗), x ∈ (0, π),

u′ = v′ = 0, x = 0, π.

(5.2)
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5.1. Local steady-state bifurcation

In this subsection, taking d1 as a bifurcation parameter, we shall prove the existence
of positive solutions bifurcating from E∗. The Crandall-Rabinowitz bifurcation the-
orem is used to derive bifurcations from simple eigenvalues. For the case of double
eigenvalues, we resort to some space decomposition techniques and the implicit
function theorem.

Let X = {(u, v) ∈ W 2,2(0, π) × W 2,2(0, π) : u′ = v′ = 0, x = 0, π} and
Y = L2(0, π)× L2(0, π). Define the map F : R+ ×X → Y by

F (d1, U) =

 d1u
′′ + a− (u+ u∗)(v + v∗)p

1 + k(v + v∗)p

d2v
′′ +

(u+ u∗)(v + v∗)p

1 + k(v + v∗)p
− (v + v∗)

 , U = (u, v).

Then the solutions of (5.2) are exactly zeros of this map. Clearly, F (d1, (0, 0)) = 0.
By calculations, the Fréchet derivative of F with respect to U at (0, 0) can be given
by

L(d1) = FU (d1, (0, 0)) =

d1∆− ap

1 + kap
− p

1 + kap

ap

1 + kap
d2∆ +

p

1 + kap
− 1

 , ∆ =
d2

dx2
,

whose characteristic equation is given by (2.3) in Section 2.
Define

(H1): p > 1 + kap and d2 <
p− 1− kap

1 + kap
.

In this section, we always assume that (H1) is true. Then there exists a largest

integer i∗ ≥ 1 such that d2λi <
p− 1− kap

1 + kap
for 1 ≤ i ≤ i∗. Let µ = 0 in (2.3).

Then we have

d1=d1,i :=
ap(1 + d2λi)

λi[p− (1 + d2λi)(1 + kap)]
, λi = i2, 1 ≤ i ≤ i∗. (5.3)

If we set
d∗1 = d∗1(p, d1, d2) = min

1≤i≤i∗
d1,i, (5.4)

the local stability of E∗ is presented in the following.

Theorem 5.1. Assume p > 1 and k > max{0, k0} so that E∗ is locally asymptot-
ically stable for (2.1). Then the equilibrium E∗ is locally asymptotically stable for
(1.2) if d2 ≥ (p−1−kap)/(1+kap), or d2 < (p−1−kap)/(1+kap) and 0 < d1 < d∗1;
the equilibrium E∗ is unstable for (1.2) if d2 < (p−1−kap)/(1 +kap) and d1 > d∗1.

Proof. If d2 ≥ (p− 1− kap)/(1 + kap), we have

Di(k) = d1λi[
1

1 + kap
p− (1 + d2λi)]−

ap(1 + d2λi)

1 + kap
> 0,

for i ≥ 1. This implies that Reµ < 0 for all eigenvalues µ of L(d1) and E∗ is locally
asymptotically stable for (1.2).



The non-existence and existence of. . . 3273

If d2 < (p−1−kap)/(1+kap) and 0 < d1 < d∗1, we see d2λi < (p−1−kap)/(1+
kap) and d1 < d1,i for 1 ≤ i ≤ i∗, which leads to Di(k) > 0 for 1 ≤ i ≤ i∗. For
i > i∗, we see d2λi ≥ (p−1−kap)/(1+kap) and then still obtain Di(k) > 0. Hence,
we have Di(k) > 0 for all i ≥ 1, which shows the asymptotical stability of E∗ for
(1.2).

If d2λ1 < (p − 1 − kap)/(1 + kap) and d1 > d∗1, let the minimum in (5.3)
be attained at j ∈ [1, i∗] and thus we have d1 > d1,j , which implies Dj(k) =

d1λj [
1

1+kap p− (1 + d2λj)]− ap(1+d2λj)
1+kap < 0. Hence, E∗ is unstable for (1.2).

Note that d1,i may be equal or not equal to d1,j when i 6= j. To obtain the bifur-
cation from the point (d1,i, (0, 0)) (1 ≤ i ≤ i0), our arguments will be divided into
two different cases, corresponding to that from the simple and double eigenvalues,
respectively.

Theorem 5.2. Assume that (H1) is satisfied. Then the following statements are
true:

(i) If i 6= j implies d1,i 6= d1,j for arbitrary integers i, j ∈ [1, i∗], then (d1,i, (0, 0))
is a bifurcation point of F (d1, U) = 0. Moreover, there is a curve of non-
constant solutions (d1(s), (u(s), v(s))) of F (d1, U) = 0 for |s| sufficiently small,
satisfying d1(0) = d1,i, (u(0), v(0)) = (0, 0), u(s) = sφi + o(s), v(s) = seiφi +

o(s) , where φi =
√

2
π cos ix, ei = ap

(1+kap)(1+d2λi)−p , and d1(s), u(s), v(s) are

continuously differential functions with respect to s;

(ii) Suppose that there exist positive integers i, j ∈ [1, i∗] and i 6= j such that

d1,i = d1,j = d̃1. Let

Φi =

 1

ei

φi, Φ∗i =

 1

e∗i

φi, (5.5)

X2 = {(y, z) ∈ X :

∫ π

0

(y + eiz)φidx =

∫ π

0

(y + ejz)φjdx = 0}, (5.6)

A1 = −1

2
c2ei

2 − c1ei, A2 = −c2eiej − c1ei − c1ej , A3 = −1

2
c2ej

2 − c1ej ,
(5.7)

where

ei =
ap

(1 + kap)(1 + d2λi)− p
, ei

∗ =
p

p− (1 + kap)(1 + d2λi)
, (5.8)

and

c1 =
pap

a(1 + kap)
2 , c2 =

p(p− 1)− kp(p+ 1)ap

a(1 + kap)
2 .

If 1 + eie
∗
i 6= 0, 1 + eje

∗
j 6= 0 and j = 2i (resp. i = 2j), then (d̃1, (0, 0)) is a

bifurcation point of F (d1, U) = 0. Moreover, there is a curve of non-constant
solutions (d1(ω), s(ω)(cosωΦi+sinωΦj +W (ω))) of F (d1, U) = 0 for |ω−ω0|
sufficiently small, satisfying d1(ω0) = d̃1, s(ω0) = 0,W (ω0) = 0, where ω0 is
any constant satisfying

tan2 ω0 6=
A1(e∗j − 1)i2

A2(e∗i − 1)j2
(resp. tan2 ω0 6=

A2(e∗j − 1)i2

A3(e∗i − 1)j2
), (5.9)
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and d1(ω), s(ω),W (ω) are continuously differentiable functions with respect to
ω.

Proof. It is obvious that the linear operators Fd1 , FU and Fd1U are continuous.
Recall that the operator

L(d1,i) = FU (d1,i, (0, 0)) =

d1,i∆−
ap

1 + kap
− p

1 + kap

ap

1 + kap
d2∆ +

p

1 + kap
− 1

 .

By simple calculations, we have

kerL(d1,i) = span{Φi}, Φi =

 1

ei

φi,
where ei =

ap

(1 + kap)(1 + d2λi)− p
. The adjoint operator is defined by

L∗(d1,i) =

d1,i∆−
ap

1 + kap
ap

1 + kap

− p

1 + kap
d2∆ +

p

1 + kap
− 1

 .

Similarly, we can obtain

kerL∗(d1,i) = span{Φ∗i }, Φ∗i =

 1

e∗i

φi,
where ei

∗ =
p

p− (1 + kap)(1 + d2λi)
. Since R(L(d1,i)) = (kerL∗(d1,i))

⊥, we have

codim R(L(d1,i)) = dim kerL(d1,i) = 1.

Finally, we see

Fd1u(d1,i, (0, 0))Φi =

∆ 0

0 0

Φi =

−λiφi
0

 ,

and

〈Fd1U (d1,i, (0, 0))Φi,Φ
∗
i 〉 = −λi

∫ π

0

φ2
i dx = −λi 6= 0, (5.10)

which implies Fd1U (d1,i, (0, 0))Φi /∈ R(L(d1,i)). The proof of (i) is completed.
(ii) Suppose that there are positive integers i, j ∈ [1, i∗] and i 6= j such that d1,i =

d1,j = d̃1. Then we have kerL(d̃1) = span{Φi,Φj}, kerL∗(d̃1) = span{Φi∗,Φj∗} and

R(L(d̃1)) = {(y, z)T ∈ Y :

∫ π

0

(y + e∗i z)φidx =

∫ π

0

(y + e∗jz)φjdx = 0}.
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Obviously, we have dim kerL(d̃1)=codimR(L(d̃1))=2. The Crandall-Rabinowitz
bifurcation theorem does not hold in this case. Next, we shall use the techniques
of space decomposition and the implicit function theorem to deal with the case of
double eigenvalues.

Rewrite the map F : R+ ×X → Y as

F (d1, (u, v)) =

 d1u
′′ + a− (u+ u∗)(v + v∗)

p

1+k(v + v∗)
p

d2v
′′ +

(u+ u∗)(v + v∗)
p

1+k(v + v∗)
p − (v + v∗)



= L(d1)

u

v

+

F 1(u, v)

F 2(u, v)

 ,

where F 2(u, v) = −F 1(u, v) and

F 1(u, v) = −c1uv −
1

2
c2v

2 − 1

2
c3uv

2 − 1

6
c4v

3 +O(|u||v|3, |v|4), (5.11)

c1 =
pap

a(1 + kap)
2 ,

c2 =
p(p− 1)− kp(p+ 1)ap

a(1 + kap)
2 ,

c3 =
p(p− 1)ap − kp(p+ 1)a2p

a2(1 + kap)
3 ,

c4 =
p(p− 1)(p− 2)− 4kp(p− 1)(p+ 1)ap + k2p(p+ 1)(p+ 2)a2p

a2(1 + kap)
3 .

We make the decomposition X = X1 ⊕X2 and look for solutions of F = 0 in the
form

(u, v)T = s(cosωΦi + sinωΦj +W ), W = (w1, w2)T ,

where X1 = span{Φi,Φj}, X2 is defined by (5.6) and s, ω ∈ R are parameters.
Define a projection P on Y by

P

u

v

 =
1

1 + eie∗i

[ ∫ π

0

(u+ e∗i v)φidx

]
Φi +

1

1 + eje∗j

[ ∫ π

0

(u+ e∗jv)φjdx

]
Φj .

Based on the assumption in conclusion (ii), we have 1+eiei
∗ 6= 0 and 1+ejej

∗ 6= 0.
By simple computations, we have R(P ) = span{Φi,Φj} = X1 ⊂ Y, P 2 = P . Hence,
P is the projection from Y to X1 ⊂ Y , and then decompose Y as Y = Y1 ⊕ Y2

with Y1 = R(P ) and Y2 = kerP = R(L(d̃1)).
Next, we use the implicit function theorem to prove the existence of non-constant

pairs (u, v). Fix ω0 ∈ R for the time being and define a nonlinear mapping
K(d1, s,W ;ω) : R× R×X2 × (ω0 − δ, ω0 + δ)→ Y by

K(d1, s,W ;ω) = s−1F̃ (d1, s(cosωΦi + sinωΦj +W ))

= L(d1)(cosωΦi + sinωΦj +W ) + s(F̃1, F̃2)T ,
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where F̃2 = −F̃1 and

F̃1 =− c1(cosωφi + sinωφj + w1)(ei cosωφi + ej sinωφj + w2)

− 1

2
c3(cosωφi + sinωφj + w1)(ei cosωφi + ej sinωφj + w2)2

− 1

2
c2(ei cosωφi + ej sinωφj + w2)2

− 1

6
c4(ei cosωφi + ej sinωφj + w2)3 + o(|s|2).

Obviously, K(d̃1, 0, 0;ω0) = 0. The Fréchet derivative of K(d1, s,W ;ω) with respect

to (d1, s,W ) at (d̃1, 0, 0;ω0) is the linear mapping

K(d1,s,W )(d̃1, 0, 0;ω0)(d1, s,W )

= L(d̃1)W − d1λi cosω0

φi

0

− d1λj sinω0

φj

0


+sA1cos2ω0

 φ2
i

−φ2
i

+ sA2 cosω0 sinω0

 φiφj

−φiφj

+ sA3sin2ω0

 φ2
j

−φ2
j

 ,

where A1, A2 and A3 are given in (5.7).

We further prove that K(d1,s,W )(d̃1, 0, 0;ω0) : R×R×X2× (ω0− δ, ω0 + δ)→ Y
is an isomorphism. We can rewrite

K(d1,s,W )(d̃1, 0, 0;ω0)(d1, s,W ) = Y1 + Y2, Y1 ∈ Y1 and Y2 ∈ Y2,

and decomposeφi

0

 = h1Φi +

u1

v1

 ,

φj

0

 = h2Φj +

u2

v2

 ,

where

h1 =
1− ei

1 + eiei∗
6= 0,

u1

v1

 =

 1− h1

−h1ei

φi,

h2 =
1− ej

1 + ejej∗
6= 0,

u2

v2

 =

 1− h2

−h2ej

φj ,

and it is clear that

u1

v1

 ,

u2

v2

 ∈ Y2.

Now, we divide our discussion into two cases j = 2i and i = 2j.
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Case I. j = 2i.
In this case, we easily get∫ π

0

φ2
iφjdx =

√
1

2π
,

∫ π

0

φiφ
2
jdx = 0 and

∫ π

0

φ3
i dx =

∫ π

0

φ3
jdx = 0.

Then we can obtain

 φ2
j

−φ2
j

 ∈ Y2 and we further need to decompose

 φ2
i

−φ2
i

 = h3Φj +

u3

v3

,
 φiφj

−φiφj

 = h4Φi +

u4

v4

,
where

h3 =
e∗j − 1

eje∗j + 1

∫ π

0

φ2
iφjdx =

√
1

2π

e∗j − 1

eje∗j + 1
6= 0,u3

v3

 =

 φ2
i − h3φj

−φ2
i − h3ejφj

 ∈ Y2,

h4 =
e∗i − 1

eie∗i + 1

∫ π

0

φ2
iφjdx =

√
1

2π

e∗i − 1

eie∗i + 1
6= 0,u4

v4

 =

 φiφj − h4φi

−φiφj − h4eiφi

 ∈ Y2.

Some arrangements give

K(d1,s,W )(d̃1, 0, 0;ω0)(d1, s,W ) = Y1 + Y2,

where

Y1 =(−d1h1λi cosω0 + sh4A2 cosω0 sinω0)Φi

+ (−d1h2λj sinω0 + sh3A1 cos2 ω0)Φj ∈ Y1,

Y2 =L(d̃1)W − d1λi cosω0

u1

v1

− d1λj sinω0

u2

v2


+ sA1 cos2 ω0

u3

v3

+ sA2 cosω0 sinω0

u4

v4

+ sA3 sin2 ω0

 φ2
j

−φ2
j

 ∈ Y2.

Let
K(d1,s,W )(d̃1, 0, 0;ω0)(d1, s,W ) = 0. (5.12)

Note that L(d̃1) is an isomorphism from X2 to Y2. Then (5.12) is equivalent to
Y1 = 0 and Y2 = 0. Based on the condition in (5.9), we get d1 = 0, s = 0
from Y1 = 0. Substituting them into Y2 = 0, we have W = 0, which implies
K(d1,s,W )(d̃1, 0, 0;ω0) is injective.
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We further prove K(d1,s,W )(d̃1, 0, 0;ω0) is surjective. For any

u

v

 ∈ Y , we find

(d1, s,W ) ∈ R× R×X2 such that

K(d1,s,W )(d̃1, 0, 0;ω0)(d1, s,W ) =

u

v

. (5.13)

According to the decomposition of Y , there exist α, β ∈ R and (u0, v0) ∈ Y2 such
that u

v

 =

u0

v0

+ αΦi + βΦj .

Substitute it into (5.13) to get

−d1h1λi cosω0 + sh4A2 cosω0 sinω0 = α,

−d1h2λj sinω0 + sh3A1 cos2 ω0 = β,

L(d̃1)W − d1λi cosω0

u1

v1

− d1λj sinω0

u2

v2

+ sA1 cos2 ω0

u3

v3


+sA2 cosω0 sinω0

u4

v4

+ sA3 sin2 ω0

 φ2
j

−φ2
j

 =

u0

v0

.
(5.14)

Due to ω0 satisfying (5.9) when j = 2i, we have

d1 = d̄1 :=
αh3A1 cosω0 − βh4A2 sinω0

h2h4λjA2 sin2 ω0 − h1h3λiA1 cos2 ω0

,

s = s̄ =:
αh2λj tanω0 − βh1λi

h2h4λjA2 sin2 ω0 − h1h3λiA1 cos2 ω0

.

Substituting d̄1 and s̄ into the third equation of (5.14), we obtain W = L−1

 ū

v̄

 ∈
Y2, where ū

v̄

 =

u0

v0

+ d̄1λi cosω0

u1

v1

+ d̄1λj sinω0

u2

v2

− s̄A1 cos2 ω0

u3

v3


− s̄A2 cosω0 sinω0

u4

v4

− s̄A3 sin2 ω0

 φ2
j

−φ2
j


:=

 ū

v̄

 ∈ Y2.
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Then we find

(d1, s,W ) = (d̄1, s̄, L
−1

 ū

v̄

),

satisfying (5.12). This shows that K(d1,s,W )(d̃1, 0, 0;ω0) is surjective.

Therefore, K(d1,s,W )(d̃1, 0, 0;ω0) is an isomorphism from R+ × R × X2 to Y .
Apply the implicit theorem for

K(d1, s,W ;ω) = 0, (5.15)

and we know that there is a curve of non-constant solutions (d1(ω), s(ω),W (ω)) of
(5.15) (i.e. F = 0) in a small neighborhood of ω0, where d1(ω), s(ω),W (ω) are con-

tinuously differentiable functions with respect to ω satisfying d1(ω0) = d̃1, s(ω0) =
0,W (ω0) = 0 and W ∈ X2. Therefore, (d1(ω), s(ω)(cosωΦi + sinωΦj +W (ω))) are
non-constant solutions of F (d1, (u, v)) = 0.

Case II. i = 2j.

In this case, we can easily get

∫ π

0

φ2
iφjdx = 0, and

∫ π

0

φiφ
2
jdx =

√
1

2π
6= 0.

Then

−φ2
i

φ2
i

 ∈ Y2 and we decompose

 φ2
j

−φ2
j

 = h5Φi +

u5

v5

,
 φiφj

−φiφj

 = h6Φj +

u6

v6

,
where u5

v5

 =

 φ2
j − h5φi

−φ2
j − h5eiφi

, h5 =

√
1

2π

e∗i − 1

eie∗i + 1
= h4,

u6

v6

 =

 φiφj − h6φj

−φiφj − h6ejφj

, h6 =

√
1

2π

e∗j − 1

eje∗j + 1
= h3.

Therefore, we can assume that

K(d1,s,W )(d̃1, 0, 0;ω0)(d1, s,W )

=L(d̃1)W + (−d1h1λi cosω0 + sh4A3 sin2 ω0)Φi

+ (−d1h2λj sinω0 + sh3A2 cosω0 sinω0)Φj − d1λi cosω0

u1

v1


− d1λj sinω0

u2

v2

+ sA3 sin2 ω0

u5

v5


+ sA2 cosω0 sinω0

u6

v6

+ sA1 cos2 ω0

 φ2
i

−φ2
i

.
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By similar arguments as in Case I, we can prove that K(d1,s,W )(d̃1, 0, 0;ω0) is an
isomorphism if ω0 satisfies (5.9). The conclusion will be derived from the implicit
function theorem. The whole proof is finished.

Remark 5.1. It follows from the expression of d1,i that if d2, i, j and p satisfy

d2
2(1 + kap)i2j2 + d2(1 + kap)(i2 + j2)− p = 0,

then for i 6= j, we have d1,i = d1,j . For example, taking a = 1, p = 3, k = 1.5 and
d2 = 0.039 leads to d1,1 = d1,2, which can be seen in Fig.9.

Remark 5.2. When j 6= 2i and i 6= 2j is not established, the existence of non-

constant positive solutions of (5.1). In this case, we have

∫ π

0

φ2
iφjdx =

∫ π

0

φ2
jφidx

= 0, which implies −φ2
i

φ2
i

,
−φ2

j

φ2
j

 and

−φiφj
φiφj

 ∈ Y2,

and we do not need any more decompositions. However, K(d1,s,W ) : (d̃1, 0, 0;ω0)R+×
R × X2 → Y is not an isomorphism at this time. So we can not use the implicit
function theorem to obtain the existence result for the case that j 6= 2i and i 6= 2j.

5.2. Global bifurcation structure

In this subsection, we extend the local bifurcation obtained in Theorem 5.2 (i) to the
global one. Let J be the closure of the non-constant solution set of system (5.1) and
Γi the connected component of J ∪ {(d1,i, (u

∗, v∗))}. We further study the global
bifurcation structure and get more information on the bifurcation curve Γi. Our
method is based on the global bifurcation theory of Rabinowitz and Leray-Schauder
degree theory for compact operators.

Theorem 5.3. Under the same hypothesis of Theorem 5.2 (i), the projection of
the bifurcation curve Γi can be extended to infinity in (d1,i,+∞). Furthermore,
if d1 > d∗1 and d1 6= d1,j for any integer j > 0, system (5.1) has at least one
non-constant positive solution, where d∗1 is defined by (5.4).

Proof. We first rewrite system (5.1) as
−d1u

′′ = − ap

1 + kap
u− p

1 + kap
v + F 1(u, v), x ∈ (0, π),

−d2v
′′ =

ap

1 + kap
u+

p− 1− kap

1 + kap
v + F 2(u, v), x ∈ (0, π),

(5.16)

where F 2(u, v) = −F 1(u, v) and F 1(u, v) can be found in (5.11).
Denote Gd1 : l→ θ by the operator for the following problem

−d1θ
′′ +

ap

1 + kap
θ = l in (0, π), θ′ = 0 at x = 0, π,

and Gd2 : l→ θ for

−d2θ
′′ +

p− 1− kap

1 + kap
θ = l in (0, π), θ′ = 0 at x = 0, π.
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Let U = (u, v)T , then we have

K(d1)U = (− p

1 + kap
Gd1(v),

ap

1 + kap
Gd2(u) +

2(p− 1− kap)
1 + kap

Gd2(v)),

and
H(U) = (Gd1(F 1(u, v)), Gd2(F 2(u, v))).

Then the equations in (5.16) can be transmitted to

U = K(d1)U +H(U). (5.17)

Note that K(d1) is a compact linear operator on X for any fixed d1 > 0. H(U) =
o(|U |) for U near zero uniformly on closed d1 sub-intervals of (0,∞), and it is also
a compact operator on X.

To apply the global bifurcation theorem in [31], we first prove that 1 is an
eigenvalue of K(d1,i) with algebraic multiplicity one. From Theorem 5.2 (i), it
is easy to see that ker(K(d1,i) − I) = ker(L(d1,i)) = span{Φi}. Hence, 1 is an
eigenvalue of K(d1,i), and dim ker(K(d1,i) − I) = 1. Since the algebraic multi-
plicity of the eigenvalue 1 is equal to the dimension of the generalized null space
∪∞n=1 ker (K(d1,i)− I)n, we only need to verify that ker(K(d1,i)−I)∩R(K(d1,i)−I) =
{0}. Let K∗(d1,i) be the adjoint operator of K(d1,i). For any (ϕ, χ) ∈ ker(K∗(d1,i)−
I), we have

ap

1 + kap
Gd2(χ) = ϕ, − p

1 + kap
Gd1,i(ϕ) +

2(p− 1− kap)
1 + kap

Gd2(χ) = χ.

By the definitions of Gd1 and Gd2 , we have

− d2ϕ
′′ = −p− 1− kap

1 + kap
ϕ+

ap

1 + kap
χ,

− d1,iχ
′′ =

p− 2− 2kap

1 + kap
ϕ− 2(p− 1− kap)d1,i

ap(1 + kap)d2
ϕ+

2(p− 1− kap)d1,i − apd2

(1 + kap)d2
χ.

Simple calculations lead to

ker(K∗(d1,i)− I) = Φ̃i, Φ̃i =


ap

1 + kap

p− 1− kap

1 + kap
+ d2λi

φi.

In addition, we know∫ π

0

Φi
T Φ̃idx =

2d2a
p(1 + kap)

(1 + kap)[(1 + d2λi)(1 + kap)− p]
< 0,

which means that Φi /∈ (ker(K∗(d1,i) − I))⊥ = R(K(d1,i) − I). Hence, we have
ker(K(d1,i)−I)∩R(K(d1,i)−I) = {0} and the algebraic multiplicity of the eigenvalue
1 is one.

If d1 6= d1,i is in a small neighborhood of d1,i, then the linear operator I−K(d1) :
X → X is a bijection and (0, 0) is an isolated solution of (5.17). Define

i(I −K(d1)−H, (d1, 0)) = deg(I −K(d1), B, 0) = (−1)p,
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where B is a sufficiently small ball centered at 0, and p is the sum of the algebraic
multiplicities of the eigenvalues of K(d1) that are greater than one. We next show
that the index changes when d1 crosses d1,i, which implies for ε > 0 sufficiently
small,

i(I −K(d1,i − ε)−H, (d1,i − ε, 0)) 6= i(I −K(d1,i + ε)−H, (d1,i + ε, 0)). (5.18)

Suppose that µ is the eigenvalue of K(d1,i) with eigenfunction (ϕ, χ). Then
(ϕ, χ) satisfies

− µd1ϕ
′′ = − ap

1 + kap
µϕ− p

1 + kap
χ,

− µd2χ
′′ =

ap

1 + kap
ϕ+

2(p− 1− kap)
1 + kap

χ− p− 1− kap

1 + kap
µχ.

Using the Fourier cosine series ϕ =
∑

0≤j≤∞
ajφj and χ =

∑
0≤j≤∞

bjφj , we have

∑
0≤j≤∞

−(
ap

1 + kap
+ d1λj)µ − p

1 + kap

ap

1 + kap
2(p− 1− kap)

1 + kap
− (

p− 1− kap

1 + kap
+ d2λj)µ


×

aj

bj

φj = 0.

The characteristic equation is given by

µ2 − 2(p− 1− kap)µ+
pap

ap + d1λj(1 + kap)
= 0, (5.19)

where the integer j is from zero to ∞. For d1 = d1,i, if µ = 1 is a root of (5.19), we
find that d1,i = d1,j by the definition of d1,i = d1,j and so i = j by the assumption.
Hence, without counting the eigenvalues corresponding to j 6= i in (5.19), K(d1) has
the same number of eigenvalues greater than 1 for all d1 close to d1,i. Moreover,
they have the same algebraic multiplicities. On the other hand, for j = i in (5.19),
let µ(d1), µ̃(d1) be the two roots of (5.19). Then we have

µ(d1,i) = 1 and µ̃(d1,i) =
p− 1− kap − d2λi(1 + kap)

p− 1− kap + d2λi(1 + kap)
< 1.

If d1 is close to d1,i, then we have µ̃(d1) < 1. Since µ(d1) is an increasing function
with respect to d1, we have

µ(d1,i + ε) > 1 and µ(d1,i − ε) < 1.

Therefore, K(d1,i + ε) has exactly one more eigenvalue which is greater than 1 than
K(d1,i − ε) does. By a similar argument above, the algebraic multiplicity of this
eigenvalue is also one. Hence, we verify that (5.18) holds true. Therefore, using
Theorem 1.3 in [31], we conclude that Γi either meets infinity in R × X or meets
(d1,j , (u

∗, v∗)) for some j 6= i, d1,j > 0. Furthermore, by using of the idea of
Nishiura [28] and Takagi [35], the bifurcating curve Γi must be extended to infinity
in R×X. The proof is completed.
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5.3. Bifurcation direction

In this subsection, the direction of the steady-state bifurcation from simple eigen-
values obtained in Theorem 5.2 (i) is investigated.

It follows from Theorem 5.2 that

dim kerFU (d1,i, (0, 0)) = codimR(FU (d1,i, (0, 0))) = 1,

and kerFU (d1,i, (0, 0)) = span{Φi}. So X and Y can be decomposed as

X = kerFU (d1,i, (0, 0))⊕ Z and Y = R(FU (d1,i, (0, 0)))⊕ Z̄,

where Z and Z̄ are the complement of kerFU (d1,i, (0, 0)) in X and R(FU (d1,i, (0, 0)))
in Y , respectively. By (5.10), we get

〈Fd1U (d1,i, (0, 0))Φi,Φ
∗
i 〉 = −λi = −i2 6= 0.

We first calculate d ′1(0). The expression (4.5) in [32] gives

d ′1(0) = − 〈FUU (d1,i, (0, 0))Φ2
i ,Φ

∗
i 〉

2〈Fd1U (d1,i, (0, 0))Φi,Φ∗i 〉
.

By calculations, we have

〈FUU (d1,i, (0, 0))Φ2
i ,Φ

∗
i 〉 = (ki + lie

∗
i )

∫ π

0

φ3
i dx = 0,

where ki = −li and

li = 2c1ei + c2e
2
i =

pei[2a
p + (p− 1)ei − k(p+ 1)apei]

a(1 + kap)
2 . (5.20)

Thus we get d ′1(0) = 0.
Continuing to calculate d′′1(0), which can also be read from [32],

d ′′1 (0) = −〈FUUU (d1,i, (0, 0))Φ3
i ,Φ

∗
i 〉+ 3〈FUU (d1,i, (0, 0))Φiθ,Φ

∗
i 〉

3〈Fd1U (d1,i, (0, 0))Φi,Φ∗i 〉
,

where θ is the solution of the following problem

FUU (d1,i, (0, 0))Φ2
i + FU (d1,i, (0, 0))θ = 0.

Some calculations give

〈FUUU (d1,i, (0, 0))Φ3
i ,Φ

∗
i 〉 =

4

π2
(mi + nie

∗
i )

∫ π

0

cos4(ix)dx =
3

2π
(mi + nie

∗
i ),

where mi = −ni and ni = (3c3 + c4ei)e
2
i .

Let θ = (θ1, θ2). Then it satisfies
d1,iθ

′′
1 −

ap

1 + kap
θ1 −

p

1 + kap
θ2 = −kiφ2

i , x ∈ (0, π),

d2θ
′′
2 +

ap

1 + kap
θ1 +

p− 1− kap

1 + kap
θ2 = −liφ2

i , x ∈ (0, π),

θ′i(0) = θ′i(π) = 0, i = 1, 2.

(5.21)
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Integrating (5.21) on [0, π], and solving the linear equation group, we have∫ π

0

θ1dx = − (1 + kap)li
ap

,

∫ π

0

θ2dx = 0. (5.22)

By calculations, we know that

〈FUU (d1,i, (0, 0))Φiθ,Φ
∗
i 〉 = C∗1

∫ π

0

θ1φ
2
i dx+ C∗2

∫ π

0

θ2φ
2
i dx,

where

C∗1 =
papei(e

∗
i − 1)

a(1 + kap)
2 , C∗2 =

pei(e
∗
i − 1){ap + [(p− 1)− k(p+ 1)ap]}

a(1 + kap)
2 .

Multiplying (5.21) by φ2
i , we obtain

d1,i

∫ π

0

θ1′′φ
2
i dx−

ap

1 + kap

∫ π

0

θ1φ
2
i dx−

p

1 + kap

∫ π

0

θ2φ
2
i dx = − 3

2π
ki,

d2

∫ π

0

θ2′′φ
2
i dx+

ap

1 + kap

∫ π

0

θ1φ
2
i dx+

p− 1− kap

1 + kap

∫ π

0

θ2φ
2
i dx = − 3

2π
li.

(5.23)
Using integration by parts, we get∫ π

0

θ′′j φ
2
i dx =

4i2

π

∫ π

0

θj(1− πφ2
i )dx, j = 1, 2. (5.24)

Substitute (5.22) and (5.24) to (5.23) to get

(
ap

1 + kap
+ 4i2d1,i)

∫ π

0

θ1φ
2
i dx+

p

1 + kap

∫ π

0

θ2φ
2
i dx

=
3

2π
ki −

4i2(1 + kap)lid1,i

πap
,

ap

1 + kap

∫ π

0

θ1φ
2
i dx+ (

p− 1− kap

1 + kap
− 4i2d2)

∫ π

0

θ2φ
2
i dx = − 3

2π
li.

Solve the system above and then we have

β1
∆
=

∫ π

0

θ1φ
2
i dx=

li(1 + kap)C∗3
2πapC∗4

, β2
∆
=

∫ π

0

θ2φ
2
i dx =

2i2d1,ili(1 + kap)

πC∗4
,

where

C∗3 = 4i2[2d1,i(p− 1− kap)− 8i2d1,id2(1 + kap)− 3d2a
p]− 3ap(1 + kap),

C∗4 = [ap − 4i2d1,i(p− 1− kp) + 4i2d2a
p + 16i4d1,id2(1 + kap)].

In totally, we have

d1
′′(0) =

mi(1− e∗i ) + 2π(C∗1β1 + C∗2β2)

2πλi
. (5.25)

Thus, by the sign of d1
′′(0), we can establish the following theorem to determine

the local bifurcation direction.

Theorem 5.4. The bifurcation from (d1,i, (0, 0)) obtained in Theorem 5.2 (i) is
subcritical if d1

′′(0) < 0 and it is supercritical if d1
′′(0) > 0, where d1

′′(0) is given by
(5.25).
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6. Numerical simulations

In previous sections, we establish the stability and existence of spatial pattern for
system (1.2) by the stability analysis, topological degree theory and bifurcation
theory, which indicate the rich dynamics in this system. In this section, we shall
give some numerical examples to illustrate the spatiotemporal patterns formation
corresponding to the analytical results obtained above. Let Ω= (0,π). Then we
have λ1 = 1.

Example 1. Take a = 0.9, p = 2, k = 0.8, d1 = 0.5, d2 = 1 and (u0, v0) = (1.8311 +
0.2 cosx, 0.9 + 0.2 cosx). Then k0 = 0.2346, z1 = 0.021. The conditions k0 < k <
k0 + 1 and d2/d1 > z1 hold true. By Theorem 2.2 (ii), the equilibrium E∗ is stable
for system (1.2). See Fig. 1.

Figure 1. The equilibrium E∗ of (1.2) is stable for a = 0.9, p = 2, k = 0.8, d1 = 0.5, d2 = 1.

Example 2. Take a = 0.9, p = 2, k = 0.23 and (u0, v0) = (1.3181 + 0.2 cosx, 0.9 +
0.2 cosx). System (1.2) has positive periodic solutions. See Fig. 2 for d1 = 0.5 and
d2 = 1.

In addition, we also depict the trajectory graphs of the equilibrium E∗ for system
(1.2). Obviously, for Example 1, the equilibrium E∗ is asymptotically stable. See
Fig. 3. However, for Example 2, the equilibrium E∗ losses its stability and Hopf
bifurcation occurs. See Fig. 4.

Example 3. Take a = 1, p = 3, k = 1.3, d1 = 1, d2 = 0.05 and (u0, v0) = (2.3 +

0.2 cosx, 1 + 0.2 cosx). Then k0 = 1 and from (2.6), λ∗ =
p− 1− kap

d2(1 + kap)
= 6.087 and

λ1 = 1. Hence, by Theorem 2.3, the equilibrium E∗ is Turing unstable for system
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Figure 2. Positive periodic solution of (1.2) for a = 0.9, p = 2, k = 0.23, d1 = 0.5, d2 = 1.
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Figure 3. The trajectory graph (left) and phase portrait (right) of (1.2) for a = 0.9, p = 2, k = 0.8, d1 =
0.5, d2 = 1.
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Figure 4. The trajectory graph (left) and phase portrait (right) of (1.2) for a = 0.9, p = 2, k =
0.23, d1 = 0.5, d2 = 1.
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(1.2). See Fig. 5.

Figure 5. The equilibrium E∗ of (1.2) is Turing unstable for a = 1, p = 4, k = 2, d1 = 1, d2 = 0.05.

Example 4. Take a = 1, p = 3, k = 1.5, d2 = 0.045 and (u0, v0) = (2.5 +
0.2 cosx, 1 + 0.2 cosx). It follows from (5.3) that d1,1 = 2.6968 and d1,2 = 5.9.
By Theorem 5.2 (i), a steady-state bifurcation occurs at d1,i, i = 1, 2. And by The-
orem 5.4, the direction of bifurcation from (d1,1, E

∗) is subcritical and the direction
of bifurcation from (d1,2, E

∗) is supercritical. See Fig. 6 for d1 = 2.7 and Fig. 7 for
d1 = 5.9.

Example 5. Take a = 1, p = 3, k = 1.5, d2 = 0.039 and (u0, v0) = (2.5 +

0.2 cosx, 1+0.2 cosx). It follows from (5.3) that d1,1 = d1,2 = d̂1 = 2.5776. By The-

orem 5.2 (ii), a steady-state bifurcation occurs at d1 = d̂1, which is shown in Fig.
8, where we choose d1 = 2.6. We must point out that this steady-state bifurcation
is from the double eigenvalue.

The neutral curves d1 with respect to i ∈ R are shown in Fig. 9. Clearly,
d1,1 6= d1,2 in the left of Fig. 9 and d1,1 = d1,2 in the right of Fig. 9, which implies
the steady-state bifurcation in Figs. 6,7 are from the simple eigenvalue and that in
Fig. 8 is from the double eigenvalue.

Example 6. Take a = 1, p = 4, k = 2, d2 = 0.14 and (u0, v0) = (3 + 0.2 cos 5x, 1 +
0.2 cos 5x). System (1.2) can induce spatially inhomogeneous Hopf bifurcation. See
Fig. 10 for d1 = 1.9. Fix d2 = 0.14, we also find that as d1 increases system (1.2)
can still present the steady-state bifurcation. See Fig. 11 for d1 = 2.4.
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d1 = 2.7 d1 = 2.7

Figure 6. Steady-state bifurcation solution at the simple eigenvalue of (1.3) for a = 1, p = 3, k =
1.5, d2 = 0.045. Here, d1 = 2.7.

d1 = 5.9 d1 = 5.9

Figure 7. Steady-state bifurcation solution at the simple eigenvalue for a = 1, p = 3, k = 1.5, d2 =
0.045. Here d1 = 5.9.
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d1 = 2.6 d1 = 2.6

Figure 8. Steady-state bifurcation solution at the double eigenvalue for a = 1, p = 3, k = 1.5, d2 =
0.039. Here d1 = 2.6.
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Figure 9. The neutral curves d1 about i ∈ N for a = 1, p = 3, k = 1.5. Left: d2 = 0.045; Right:
d2 = 0.039.
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d1 = 1.9 d1 = 1.9

Figure 10. Positive periodic solution of (1.2) for a = 1, p = 4, k = 2, d2 = 0.14. Here d1 = 1.9.

d1 = 2.4 d1 = 2.4

Figure 11. Positive periodic solution shifts to the steady-state for a = 1, p = 4, k = 2, d2 = 0.14. Here
d1 = 2.4.
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