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Abstract In this article, the orthonormal Bernoulli polynomials (OBPs) and
their properties are applied for concluding a general technique for forming a
new operational matrix of the distributed-order (DO) fractional derivative.
Then, we apply tau approach and obtained operational matrix to solve some
DO time-fractional partial differential equations including distributed-order
Rayleigh-Stokes problem (DRSP) for a generalized second-grade fluid and DO
anomalous sub-diffusion equation. Our methodology reduces the solution of
these problems to a set of algebraic equations. By analysis the error of ap-
proximation by the obtained matrix and comparing between the numerical
solutions and exact result, we can conclude that this operational matrix is
valid to solve the mentioned equations. Also, to confirm the accuracy and the
validity of our technique three examples are provided. Finally, we compare
obtained results from this approach with the achieved results from relevant
studies.
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1. Introduction

Recently, the study of distributed-order fractional differential (DOFD) equations
has generated a great deal of interest among researchers. DOFD equations provide a
more precise tool to build and illstrate some adequate models for certain dynamical
systems [29]. When the differential orders are integrated within the range of values,
so the DOFD operators appeared [8]. Most analytical methods are complicated
because the exact solution in these techniques obtained with the special functions
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and infinite series. So for numerical solutions, they are inconvenient. To date, there
are several papers published that have been widely studied on how to solve DOFD
equations. Generally, the construction of the new scheme becomes a two-stage
process. In the first step, a quadrature formulae was utilized to estimate the DOFD
equation to a multi-term fractional differential equation (FDE). In the second step,
we solve this multi-term FDE by a suitable numerical technique. Nevertheless,
analytical methods for solving DOFD equations are complicated forms, so in recent
decades, there seems to be a growing interest in the expansion of numerical methods
to solve DOFD equations. For example, Mashayekhi and Razzaghi [35] applied
hybrid functions for solving DOFD equations. Heydari et al. [27] introduced the
orthonormal piecewise Jacobi functions to solve the DO time-fractional Schrödinger
equation. Ye et al. [53] used a compact difference method for a DO time-fractional
diffusion-wave equation. Gao et al. [17] suggested two different methods of both
one-dimensional and two-dimensional DOFD equation. Heydari et al. presented
a numerical method for distributed-order time fractional 2D Sobolev equation in
[25]. We also refer the interested reader to [1, 4, 7, 13–16, 23, 24, 26, 37, 39]. For
approximated the integral term, in definition of (DO) fractional derivative, Diethelm
and Ford applied the trapezoidal rule [12] and the midpoint rule was used in [37,54].
Also, the Simpson’s rule and the composite trapezoidal rule were used in [17,18].

In 2019, for the first time, we constructed operational matrix based on Legendre
polynomials for DOFD equations [41]. Also, we constructed the generalize of this
matrix by use of Müntz-Legendre polynomials in 2022 [42]. It is noted that we work
on these papers on the concept of Caputo fractional derivative. As far as we know,
to date there isn’t any operational matrix has been constructed to solve DOFD
equations by Riemann-Liouville (R-L) fractional derivative. In this study for the
first time, we construct operational matrix by orthonormal Bernoulli polynomials
for DOFD equations in the R-L type. The spectral tau approach and calculated
operational matrix are used to solve some DO time-fractional partial differential
equations. Our methodology converts the solution of this problem to a system of
algebraic equations. For this main we study a class of DO time-fractional partial
differential equations as follows:

∂q(z,T)

∂T
=
(
λ+D

η(ϑ)
T

) ∂2q(z,T)

∂z2
+ h(z,T), z ∈ [0, L], T ∈ [0, $], (1.1)

with initial condition:
q(z, 0) = f(z), (1.2)

and the boundary conditions:

q(0,T) = g1(T), q(L,T) = g2(T), (1.3)

where D
η(ϑ)
T denoted DO fractional derivative and η(ϑ) is a non-negative smooth

weight function.
For λ = 1 in Eqs. (1.1)-(1.3), we obtain the DRSP for a heated generalized

second-grade fluid with DO time-fractional derivative. Hafez et al. in [20] applied
Jacobi spectral Galerkin method to solve this problem. As pointed by [20], in
order to study the behavior of the solution to DRSP, great attention was paid to
determine a closed-form solution for the particular case η(ϑ) = δ(ϑ+ γ − 1), where
γ ∈ (0, 1) and δ(.) display Dirac delta function. Recently, much attention has been
paid to the fractional Rayleigh-Stokes problem [9,11,52]. Certain classical problems



3354 M. Pourbabaee & A. Saadatmandi

can be considered as a special case of this model. The authors of [47] obtained the
exact solution of the velocity and temperature fields for this problem by using the
Fourier sine transform and the fractional Laplace transform. To solve this model,
effective numerical methods studies by the researcher, for example, the finite element
approach to the two-dimensional fractional Rayleigh-Stokes model was proposed by
in [11]. Mohebbi et al. [36] compared radial basis functions meshless technique and
compact difference method of two-dimensional fractional Rayleigh-Stokes problem.
Although, the spectral meshless radial point interpolation approach [48], compact
finite difference approximation [9], implicit numerical approximation scheme [50],
reproducing kernel method [33] and other methods [3, 6, 51, 55] have been utilized
for solving fractional Rayleigh-Stokes problem.

For λ = 0 in Eqs. (1.1)-(1.3), we obtain the modified DO anomalous sub-
diffusion equation [2,32]. This model can be seen as an extension of the anomalous
sub-diffusion equation. The authors of [32] used backward difference method in time
and Galerkin finite element method in space, for solving this equation. Also, the
authors of [2] proposed meshless Galerkin method based upon the shape functions
of reproducing kernel particle method to solve this problem.

A plan of this article organized is as follows: Some basic properties and defi-
nitions of OBPs and fractional derivative operators are prepared in Section 2. In
Section 3 by using OBPs the new operational matrix for FDEs and DOFD equa-
tions are constructed. Section 4 is devoted to the numerical method for solving the
problem given in Eqs. (1.1)-(1.3). In Section 5 we obtain the upper error bound for
the operational matrix. Section 6, include our numerical findings and demonstrate
the good performance of the developed approach. Finally, in Section 7 we conclude
with a few concluding remarks.

2. Bernoulli polynomials

Bernoulli polynomials have received considerable attention in numerical analysis.
The classical Bernoulli polynomial of uth degree is defined on the interval [0, 1]
as [19]

Bu(T) =

u∑
ς=0

u!

(u− ς)!ς!
βςT

u−ς ,

in which βς , ς = 0, ..., u are Bernoulli numbers and determined by

T

exp(T)− 1
=

∞∑
ς=0

βς
Tς

ς!
.

Bernoulli polynomials have a lot of useful properties, but they have no orthogonal
properties. In some numerical methods, the orthogonality properties are particu-
larly. So using these polynomials are less appropriate than orthogonal polynomials
such as Chebyshev and Legendre polynomials. To overcome this problem the Gram-
Schmidt orthonormalization process on sets of Bernoulli polynomials of different
degrees are used. For a particular case, on the interval [0, 1] we have [46]

Θ0(T) = 1,

Θ1(T) =
√

3(2T− 1),

Θ2(T) =
√

5(6T2 − 6T + 1),
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Θ3(T) =
√

7(20T3 − 30T2 + 12T− 1),

Θ4(T) = 3(70T4 − 140T3 + 90T2 − 20T + 1),

Θ5(T) =
√

11(252T5 − 630T4 + 560T3 − 210T2 + 30T− 1).

We can find a pattern in the coefficients of this polynomial by analyzing these coef-
ficients and then introducing the shifted OBPs. So we have the following definition.

Definition 2.1. The OBPs on the interval [0, $] are defind as [22,46]

Θu,$(T) =

√
1 + 2u

$

u∑
ς=0

(−1)ς

u

ς

 2u− ς

u− ς

 Tu−ς

$u−ς , u≥ 0. (2.1)

Thus, these polynomials satisfy the orthogonality properly as follows [46]∫ $

0

Θr,$(T)Θs,$(T)dT = δrs, r, s = 0, 1, 2, . . . ,

where δrs displays the Kronecker delta function.

Remark 2.1. Some of the advantages of Bernoulli basis functions are: (i) as said
in [5] Bernoulli basis functions, in comparison with some basis functions provide
more accurate approximations of the problem solution with a fewer number of basis
functions. (ii) The OBPs are simple basis functions, so the implementation of the
Bernoulli operational matrices method is easy. (iii) As said in [34] the Bernoulli
polynomials have fewer terms than shifted Legendre polynomials (SLP). Also, the
coefficient of individual terms in Bernoulli polynomials is smaller than the coefficient
of individual terms in the SLP.

Definition 2.2. The left R-L fractional derivative of order ϑ of q(T) is given by
the following formulae [40]

RLDϑ
Tq(T) =

1

Γ(n− ϑ)

dn

dTn

∫ T

0

(T− s)n−ϑ−1q(s)ds, n− 1 ≤ ϑ < n, n ∈ N.

Here, Γ(.) is the the Gamma function.
It is noted that the R-L fractional derivative of the power function satisfies [31,

40]

RLDϑ
TT

δ =
Γ(δ + 1)

Γ(δ + 1− ϑ)
Tδ−ϑ, n− 1 ≤ ϑ < n, δ > −1, δ ∈ R. (2.2)

Also, the R-L fractional derivative is a linear operator.

Definition 2.3. The Caputo fractional derivative of order ϑ of q(T) is given by
[21,40,45]

CDϑ
Tq(T) =


1

Γ(n− ϑ)

∫ T

0
(T− s)n−ϑ−1q(n)(s)ds, n− 1<ϑ < n, n ∈ N,

dn

dTn q(T), ϑ = n ∈ N.
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Lemma 2.1. The R-L fractional derivative and the Caputo fractional derivative
satisfy the following relation [31]

RLDϑ
Tq(T) = CDϑ

Tq(T) +

n−1∑
ς=0

Tς−ϑq(ς)(0)

Γ(ς + 1− ϑ)
, (2.3)

so these two fractional derivatives are equivalent if and only if q(ς)(0) = 0, ς =
0, . . . , n− 1.

Definition 2.4. For ϑ ∈ (0, 1), η(ϑ) ≥ 0, η(ϑ) 6≡ 0 and 0 <
∫ 1

0
η(ϑ)dϑ < ∞, the

distributed-order fractional derivatives in the R-L is defined as [29]

D
η(ϑ)
T q(T) =

∫ 1

0

η(ϑ)RLD1−ϑ
T q(T)dϑ, (2.4)

similar to the R-L fractional derivative, the DO fractional derivative is a linear
operator.

For the approximation of the integral in Eq. (2.4) we use the Gauss-Legendre
quadrature formula on the interval (0, 1) as∫ 1

0

η(ϑ)RLD1−ϑ
T q(T) ∼=

Y∑
r=0

wrη(εr)
RLD1−εr

T q(T), (2.5)

where {wr}Yr=0 are the corresponding quadrature weights, and {εr}Yr=0 are Gauss-
Legendre quadrature nodes on the interval (0, 1) [28].

Let G = L2[0, $] and q(T) be a square integrable function defined over G, then
q(T) may be expressed in an OBP series as [22]

q(T) =

∞∑
u=0

αuΘu,$(T),

where αu =
∫$
0
q(T)Θu,$(T)dT, u = 0, 1, . . .. We can consider the following

truncated series for q(T) as

q(T) ' qR(T) =

R∑
u=0

αuΘu,$(T) = ΛTΠR,$(T), (2.6)

where

Λ = [α0, α1, . . . , αR]T , ΠR,$(T) = [Θ0,$(T),Θ1,$(T), . . . ,ΘR,$(T)]T . (2.7)

Similarly, a function q(z,T) ∈ L2([0, L]× [0, $]) can be approximated by OBPs as

q(z,T) '
R∑

u=0

R∑
j=0

αujΘu,$(T)Θj,L(z) = ΠT
R,$(T)QΠR,L(z), (2.8)

where the OBP vectors ΠR,$(T) and ΠR,L(z) introduce similar to Eq. (2.7). The
shifted coefficient matrix Q is also given by

Q =


α00 · · · α0R

...
. . .

...

αR0 · · · αRR

 , (2.9)
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where

αuj =

∫ L

0

∫ $

0

q(z,T)Θu,$(T)Θj,L(z)dTdz, j, u = 0, 1, . . . , R.

Lemma 2.2. The operational matrices of integer derivative of the vector ΠR,$(T)
are defined as:

dςΠR,$(T)

dTς
= D(ς)ΠR,$(T) where D(ς) = (D(1))ς . (2.10)

Here D(1) is an operational matrix of integer derivative [22].

Also, the integration of ΠR,$(T) from 0 to T can be displayed as∫ T

0

ΠR,$(T)dT ' PΠR,$(T), (2.11)

where, P is an (R + 1) × (R + 1) operational matrix of integration and, similar
to [49], given by

P =
$

2



1 1√
1.3

0 · · · 0

−1√
1.3

0 1√
3.5

· · · 0

0 −1√
3.5

0
. . .

...

...
...

. . . 0 1√
(2R+1).(2R+3)

0 0 · · · −1√
(2R−1).(2R+1)

0


. (2.12)

3. Constracting new operational matrices by OBPs

The main contribution of this section is to construct operational matrices for R-L
fractional derivative and DO fractional derivative by using of OBPs. At first we
obtained operational matrix for FDE as follow:

Theorem 3.1. Let ΠR,$(T) be orthonormal Bernoulli polynomials vector defined
in Eq. (2.7) and 0 < ϑ < 1, then

RLD1−ϑ
T ΠR,$(T) ' D(1−ϑ)ΠR,$(T), (3.1)

where D(1−ϑ) is the orthonormal Bernoulli operational matrix of R-L fractional
derivative of order 1− ϑ that defined as

D(1−ϑ) '



χ(0, 0) χ(0, 1) · · · χ(0, R)

...
...

. . .
...

χ(u, 0) χ(u, 1) · · · χ(u, R)

...
...

...
...

χ(R, 0) χ(R, 1) · · · χ(R,R)


. (3.2)
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Where χ(u, h) is given by

χ(u, h)

=

√
2u + 1

√
2h+ 1

$

×
u∑
ς=0

h∑
r=0

(−1)ς+r

u

ς

2u− ς

u− ς

Γ(1− ς + u)

h

r

 2h− r

h− r

$ϑ

(u + h− ς − r + ϑ)Γ(u + ϑ− ς)
. (3.3)

Proof. Using Eqs. (2.1) and (2.2) we have

RLD1−ϑ
T Θu,$(T) =

√
1 + 2u

$

u∑
ς=0

(−1)ς

u

ς

 2u− ς

u− ς


$u−ς

RLD1−ϑ
T Tu−ς (3.4)

=

√
1 + 2u

$

u∑
ς=0

(−1)ς

u

ς

 2u− ς

u− ς

Γ(1− ς + u)

$u−ςΓ(u + ϑ− ς)
Tu+ϑ−ς−1,

0 ≤ u ≤ R.

Now, we approximate Tu−ς−1+ϑ based on OBP series as

Tu−ς−1+ϑ '
R∑
h=0

dhΘh,$(T), (3.5)

where

dh =

√
1 + 2h

$

h∑
r=0

(−1)r

h

r

 2h− r

h− r


$h−r

∫ $

0

Tu−ς−1+ϑTh−rdT

=

√
1 + 2h

$

h∑
r=0

(−1)r

h

r

 2h− r

h− r

$u+h−ς−r+ϑ

$h−r(u + h− ς − r + ϑ)
, (3.6)

so

RLD1−ϑ
T Θu,$(T)

=

√
2u + 1

$

u∑
ς=0

(−1)ς

u

ς

2u− ς

u− ς

Γ(1− ς + u)

$u−ςΓ(u− ς + ϑ)
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×
R∑
h=0

√
1 + 2h

$

h∑
r=0

(−1)r

h

r

2h− r

h− r

$u−ς+h−r+ϑ

$h−r(u− ς + h− r + ϑ)
Θh,$(T)

=

R∑
h=0

χ(u, h)Θh,$(T), (3.7)

where χ(u, h) is given in Eq. (3.3).

By applying the linear property of DO operator and by utilize of Gauss-Legendre
quadrature formulae we present the next lemma:

Lemma 3.1. Let u ∈ N, ς ∈ Z and ς < u, then Dη(ϑ)Tu−ς can be approximated as

D
η(ϑ)
T Tu−ς '

Y∑
r=1

dςrT
u−ς−1+εr , dςr =

wrη(εr)Γ(u− ς + 1)

Γ(u− ς + εr)
, (3.8)

where {wr}Yr=1 and {εr}Yr=1 are the weights and the points of the Gauss-Legendre
quadrature rule respectively.

Proof. According to Eqs. (2.2) and (2.5) this proof is complete.

Theorem 3.2. Suppose Y ∈ N, ϑ > 0, by applying the Gauss-Legendre quadra-
ture rule we can obtain a new operational matrix for DOFD equation by OBPs as
following:

D
η(ϑ)
T ΠR,$(T) ' D̂(η(ϑ))ΠR,$(T),

where

D̂(η(ϑ)) '



ζ(0, 0) ζ(0, 1) · · · ζ(0, R)

ζ(1, 0) ζ(1, 1) · · · ζ(1, R)

...
...

. . .
...

ζ(u, 0) ζ(u, 1) · · · ζ(u, R)

...
...

...
...

ζ(R, 0) ζ(R, 1) · · · ζ(R,R)


.

Here D̂(η(ϑ)) is the (R+ 1)× (R+ 1) orthonormal Bernoulli operational matrix for
DOFD equation and for u = 0, . . . , R and j = 0, . . . , R we have

ζ(u, j) =

√
2u + 1

$

u∑
ς=0

Y∑
r=1

 (−1)ς

$u−ς

u

ς

 2u− ς

u− ς

(wrη(εr)Γ(1− ς + u)

Γ(u− ς + εr)

)

×
√

2j + 1

$

j∑
`=0

(−1)`

 j

`

 2j − `

j − `

$u+εr−ς

u + j − ς − `+ εr
. (3.9)
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Proof. By considering Lemma 3.1 and linear property of DO operator and by
using Eq. (2.1) we have

D
η(ϑ)
T Θu,$(T) (3.10)

=

√
2u + 1

$

u∑
ς=0

(−1)ς

$u−ς

u

ς

 2u− ς

u− ς

D
η(ϑ)
T Tu−ς

'
√

2u + 1

$

u∑
ς=0

Y∑
r=1

(−1)ς

$u−ς

u

ς

 2u− ς

u− ς

 dςrT
u+εr−ς−1, 0 ≤ u ≤ R.

Naturally, we can approximate Tu−ς−1+εr by truncating series OBPs as

Tu−ς−1+εr '
R∑
j=0

bςrjΘj,$(T), (3.11)

in which

bςrj =

∫ $

0

Tu−ς−1+εrΘj,$(T)dT

=

√
2j + 1

$

j∑
`=0

(−1)`

$j−`

 j

`

2j − `

j − `

∫ $

0

Tu−ς−1+εrTj−`dT

=

√
2j + 1

$

j∑
`=0

(−1)`

 j

`

 2j − `

j − `

$u−ς+εr

u− ς + j − `+ εr
. (3.12)

Combination of Eqs. (3.10)-(3.12) conclude that

D
η(ϑ)
T Θu,$(T) '

√
2u + 1

$

u∑
ς=0

Y∑
r=1

(−1)ς

$u−ς

u

ς

2u− ς

u− ς

 dςr

R∑
j=0

bςrjΘj,$(T)

=

R∑
j=0

√2u + 1

$

u∑
ς=0

Y∑
r=1

(−1)ς

$u−ς

u

ς

 2u− ς

u− ς

 dςrbςrj

Θj,$(T)

=

R∑
j=0

ζ(u, j)Θj,$(T), (3.13)

where ζ(u, j) is given in Eq. (3.9). So the following vector form is held for Eq.
(3.13)

D
η(ϑ)
T Θu,$(T) ' [ζ(u, 0), ζ(u, 1), . . . , ζ(u, R)] ΠR,$(T), u = 0, . . . , R, (3.14)

which completes the proof.
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Remark 3.1. Let η(ϑ) = δ(ϑ − s), witch s ∈ (0, 1) and δ(.) is a Dirac delta
function. If we consider Y = r = 1, εr = s and wr = 1 it is uncomplicated to see
that D̂(η(ϑ)) = D(1−ϑ). In the other words the operational matrix of DO fractional
derivative calculated in Theorem 3.2 is generalized the operational matrix of R-L
fractional derivative which is given in Theorem 3.1.

4. Solving problem (1.1)-(1.3)

In the current section, we applay the new operational matrix D̂(η(ϑ)) together with
tau method to solve DO time-fractional partial differential equations given in Eqs.
(1.1)-(1.3). According to Eq. (2.8), we approximate q(z,T) by OBPs as q(z,T) '
ΠT
R,$(T)QΠR,L(z). So, by using Eq. (2.10), we can obtained

∂2q(z,T)

∂z2
' ΠT

R,$(T)QD(2)ΠR,L(z). (4.1)

Also, we approximate h(z,T) as

h(z,T) ' ΠT
R,$(T)HΠR,L(z). (4.2)

Here H is the known matrix and Q is an (R+ 1)× (R+ 1) unknown matrix. Now,
by integration Eq. (1.1) from 0 to T and using Eq. (1.2) we have

q(z,T)− f(z) = λ

∫ T

0

∂2q(z,T)

∂z2
dT +

∫ T

0

Dη(ϑ)

(
∂2q(z,T)

∂z2

)
dT +

∫ T

0

h(z,T)dT.

(4.3)
Expanding f(z) by OBPs we obtain

f(z;T) '
R∑
j=0

fjΘj,L(z) = ΠT
R,$(T)FΠR,L(z), (4.4)

here F is a known (R+ 1)× (R+ 1) matrix and can be displayed as

F =



f0 f1 · · · fR

0 0 · · · 0

...
... · · ·

...

0 0 · · · 0


.

Now, by using Eqs. (2.11) and (4.1) , we have∫ T

0

∂2q(z,T)

∂z2
dT '

∫ T

0

ΠT
R,$(T)QD(2)ΠR,L(z)dT

=

(∫ T

0

ΠT
R,$(T)dT

)
QD(2)ΠR,L(z)

' ΠT
R,$(T)PTQD(2)ΠR,L(z). (4.5)



3362 M. Pourbabaee & A. Saadatmandi

Similarly by using Eqs. (2.11) and (4.2) we obtain∫ T

0

h(z,T)dT '
∫ T

0

ΠT
R,$(T)HΠR,L(z)dT ' ΠT

R,$(T)PTHΠR,L(z). (4.6)

Employing Eq. (2.11) and Theorem 3.2, we get∫ T

0

D
η(ϑ)
T

(
∂2q(z,T)

∂z2

)
dT '

(∫ T

0

D
η(ϑ)
T ΠT

R,$(T)dT

)
QD(2)ΠR,L(z)

'

(∫ T

0

ΠT
R,$(T)dT

)
(D̂(η(ϑ)))TQD(2)ΠR,L(z)

' ΠT
R,$(T)PT (D̂(η(ϑ)))TQD(2)ΠR,L(z). (4.7)

By combination of Eqs. (4.3)-(4.7) we can write residual UR(z,T) for Eq. (1.1) as

UR(z,T) = ΠT
R,$(T)

[
Q− F− λPTQD(2) −PT (D̂(η(ϑ)))TQD(2) −PTH

]
ΠR,L(z)

= ΠT
R,$(T)EΠR,L(z),

where
E = Q− F− λPTQD(2) −PT (D̂(η(ϑ)))TQD(2) −PTH.

By considering the tau method we create the following linear algebraic equations

Euj = 0, 0 ≤ u ≤ R, 0 ≤ j ≤ R− 2. (4.8)

On the other hand by substituting Eq. (2.8) to boundary conditions given in Eq.
(1.3) we get

ΠT
R,$(T)QΠR,L(0) = g1(T), (4.9)

ΠT
R,$(T)QΠR,L(L) = g2(T). (4.10)

Now we collocate Eqs. (4.9) and (4.10) at the shifted Legendre roots Tu, where
1 ≤ u ≤ R+ 1. Thus by combination Eqs. (4.8)-(4.10) we obtain (R+ 1)× (R+ 1)

algebraic equations. The number of the unknown coefficients αuj is equal to (R +
1)× (R+ 1) and by using any standard numerical algorithm to solve the calculated
system, we can obtain αuj . In this work we apply the fsolve command in Maple to
solve this algebraic system. Consequently q(z,T) can be computed via Eq. (2.8).

5. Upper error bound for operational matrix D̂(η(ϑ))

In this section, we obtain an upper error bound for operational matrix D̂(η(ϑ)).
Here, we assume $ = 1 and 0 < ϑ < 1.

Theorem 5.1. Suppose that Γ be a Hilbert space and S be a closed subspace with
finite dimensions of Γ and {ŝ1, ŝ2, · · · , ŝR} is any basis of S. Let x is an arbitrary
element in Γ, then it has a unique best approximation out of S such as z∗ and we
have [10, 30, 43]

‖x− z∗‖22 =
G(x, ŝ1, ŝ2, . . . , ŝR)

G(ŝ1, ŝ2, . . . , ŝR)
,
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where

G(x, ŝ1, ŝ2, · · · , ŝR) =



< x, x > < x, ŝ1 > · · · < x, ŝR >

< ŝ1, x > < ŝ1, ŝ1 > · · · < ŝ1, ŝR >

...
... · · ·

...

< ŝR, x > < ŝR, ŝ1 > · · · < ŝR, ŝR >


.

Theorem 5.2 ( [44]). Assume q(T) ∈ L2[0, 1] and qR(T) is the best approximation
of q(T) out of {Θ0,1(T),Θ1,1(T), · · · ,ΘR,1(T)} as

qR(T) '
R∑

u=0

auΘu,1(T) = ΛTΠR,1(T),

where Λ and ΠR,1(T) are defined in Eq. (2.7). So we have

lim
R→∞

‖q(T)− qR(T)‖2 = 0.

Also, the error vector Eϑ
D̂(η(ϑ))

is an approximation of the DO fractional deriva-

tive of ΠR,1(T) by employing D̂(η(ϑ)) is given by

Eϑ
D̂(η(ϑ)) = Dη(ϑ)ΠR,1(T)− D̂(η(ϑ))ΠR,1(T) =



eϑd0

eϑd1
...

eϑdR


.

According to Eq. (3.11) when we approximated Tu−ς−1+εr we have

Tu−ς−1+εr '
R∑
j=0

bςrjΘj,1(T),

where bςrj calculated by the best approximation. By consider Theorem 5.1 we get∥∥∥∥∥∥Tu−ς+εr−1 −
R∑
j=0

bςrjΘj,1(T)

∥∥∥∥∥∥
2

=

(
G(Tu−ς−1+εr ,Θ0,1(T),Θ1,1(T), . . . ,ΘR,1(T))

G(Θ0,1(T),Θ1,1(T), . . . ,ΘR,1(T))

) 1
2

. (5.1)

Furthermore, by considering the integration error, Eq. (3.10) can be written as

Dη(ϑ)Θu,1(T)

=
√

1 + 2u

u∑
ς=0

(−1)ς

u

ς

 2u− ς

u− ς

Dη(ϑ)Tu−ς
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=
√

1 + 2u

u∑
ς=0

(−1)ς

u

ς

 2u− ς

u− ς

[ Y∑
r=1

dςrT
u+εr−ς−1 +Mς(T)

]
(5.2)

=

u∑
ς=0

Y∑
r=1

BuςrT
u−ς+εr−1 +

√
1 + 2u

u∑
ς=0

(−1)ς

u

ς

 2u− ς

u− ς

×Mς(T),

where

Buςr =
√

1 + 2u(−1)ς

u

ς

2u− ς

u− ς

× dςr.
It is noted that Mς(T) is the error of estimate integral by Y -point Gauss-Legendre
quadrature formula. Mς may be estimated as [38,41].

Mς(T) ' π

4Y
d2Y

dϑ2Y
φς(T, ξ), ξ ∈ [0, 1], (5.3)

where φς(T, ξ) = η(ϑ) RLD1−ϑTu−ς . For fixed T ∈ [0, 1] and by this assumption
that φς(T, ξ) ∈ C2Y ([0, 1]) we have

‖Mς(T)‖22 =

∫ 1

0

|Mς(T)|2dT '
∫ 1

0

π2

42Y
|d

2Y φς(T, ξ)

dϑ2Y
|2dT ≤ π2

42Y
β2
ς , (5.4)

where

βς = max

{
|d

2Y φς(T, ξ)

dϑ2Y
|, 0 < ϑ,T < 1

}
, ς = 0, . . . , u.

Now, by using Eqs. (3.13) and (5.2) we get∥∥eϑdu∥∥2
=

∥∥∥∥∥∥Dη(ϑ)Θu,1(T)−
R∑
j=0

ζ(u, j)Θj,1(T)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
u∑
ς=0

Y∑
r=1

BuςrT
u−ς+εr−1 +

√
1 + 2u

u∑
ς=0

(−1)ς

u

ς

 2u− ς

u− ς

Mς(T)

−
R∑
j=0

ζ(u, j)Θj,1(T)

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
u∑
ς=0

Y∑
r=1

BuςrT
u−ς+εr−1 −

R∑
j=0

ζ(u, j)Θj,1(T)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥√1 + 2u

u∑
ς=0

(−1)ς

u

ς

 2u− ς

u− ς

Mς(T)

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
u∑
ς=0

Y∑
r=1

BuςrT
u−ς+εr−1 −

R∑
j=0

u∑
ς=0

Y∑
r=1

BuςrbςrjΘj,1(T)

∥∥∥∥∥∥
2
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+

∥∥∥∥∥∥√1 + 2u

u∑
ς=0

(−1)ς

u

ς

 2u− ς

u− ς

Mς(T)

∥∥∥∥∥∥
2

≤
u∑
ς=0

Y∑
r=1

Buςr

∥∥∥∥∥∥Tu−ς−1+εr −
R∑
j=0

bςrjΘj,1(T)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥√1 + 2u

u∑
ς=0

(−1)ς

u

ς

 2u− ς

u− ς

Mς(T)

∥∥∥∥∥∥
2

. (5.5)

Also, by employing Eq. (5.4) we have∥∥∥∥∥∥√1 + 2u

u∑
ς=0

(−1)ς

u

ς

 2u− ς

u− ς

Mς(T)

∥∥∥∥∥∥
2

≤
√

1 + 2u

u∑
ς=0

u

ς

2u− ς

u− ς

 π

4Y
∆, (5.6)

where ∆ = max{βς , ς = 0, . . . , u}. Finally, using Eqs. (5.1), (5.5) and (5.6) we get
a switable bound for ‖eϑdu‖2 as following

‖eϑdu‖2 ≤
u∑
ς=0

Y∑
r=1

Buςr

(
G(Tu−ς−1+εr ,Θ0,1(T),Θ1,1(T), . . . ,ΘR,1(T))

G(Θ0,1(T),Θ1,1(T), . . . ,ΘR,1(T))

) 1
2

+
√

2u + 1

u∑
ς=0

u

ς

 2u− ς

u− ς

 ∆π

4Y
, u = 0, · · · , R. (5.7)

By considering the above discussion and Theorem 5.1, it can be concluded that
by increasing the number of OBP bases and the number of quadrature points, the
vector Eϑ

D̂(η(ϑ))
tends to zero.

6. Numerical results

In this section, to illustrate the efficiency of our numerical method, we give three
examples. All the symbolic and numerical computations were performed by using
Maple 17 in a personal computer with 2.20 GHz, Core i7, and 8 GB of memory.

Example 6.1. Firstly, we apply the proposed method on the next modified DO
anomalous sub-diffusion equation on a region Ω = (0, 1)× (0, 0.5) as follow [32]

∂q(z,T)

∂T
=

∫ 1

0

Γ(ϑ+ 2) RLD1−ϑ
T

(
∂2q(z,T)

∂z2

)
dϑ+ h(z,T),

with boundary conditions
q(1,T) = q(0,T) = 0,

and with initial condition
q(z, 0) = 0,
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Figure 1. The absolute error function for R = 4, Y = 6, of Example 6.1.

where h(z,T) = 2Tz2(1 − z)2 − 4T2−T
lnT (6z2 − 6z + 1). The exact solution of this

example is q(z,T) = z2T2(1− z)2.

Table 1. Comparison of the L2-error for the present method with the method in [32] for Example 6.1

present method (R = 4) Method in [32]

Y L2-error τ L2-error

2 2.90× 10−6 1/16 7.92× 10−5

3 3.43× 10−8 1/32 1.97× 10−5

4 1.26× 10−9 1/64 4.78× 10−6

5 1.60× 10−9 1/128 1.08× 10−6

The graph for the absolute error function |q(z,T) − qR(z,T)| with R = 4 and
Y = 6 is plotted in Figure 1. Also, the comparison of L2-error for our method and
the result obtained by using the Galerkin finite element method given in [32] re-
ported in Table 1. From this table, we see that our method has better results if com-
pared with the method in [32] which uses mid-point quadrature rule with 40 points.
For discretized the appeared integral we use Y -point Gauss-Legendre quadrature
formula. Note that this formula is more accurate than mid-point quadrature rule.

Example 6.2. To demonstrate the ability and reliability of the presented method
for the DRSP, we consider the following test [20].

∂q(z,T)

∂T
=

∫ 1

0

η(ϑ) RLD1−ϑ
T (

∂2q(z,T)

∂z2
)dϑ+

∂2q(z,T)

∂z2
+ h(z,T),

(z,T) ∈ [0, 1]× [0, 1],

In this example, by considering the exact non-smooth solution in time direction
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q(z,T) = ezTk+2, we can obtain the boundary conditions, initial condition, and the
function h(z,T). We consider three cases for weight function as follow:

• Case 1: η(ϑ) = δ(ϑ+ α− 1), 0 < α < 1, k = 1,

• Case 2: η(ϑ) = δ(ϑ+ α− 1), 0 < α = k < 1,

• Case 3: η(ϑ) = Γ(ϑ+ k + 2), k = 0.5, 1.5, 2.

Table 2. Case1: Comparison of the L∞-error of present method in Example 6.2

α CFDA [9] SGM [20] Present method

τ2 = h4 = 1
625 N = M = 5 N = M = 10 R = 5 R = 10

0.1 3.05× 10−5 2.78× 10−6 2.66× 10−8 4.5× 10−6 3.2× 10−10

0.3 5.78× 10−5 3.74× 10−6 3.77× 10−8 4.7× 10−6 1.9× 10−9

0.5 6.46× 10−5 4.28× 10−6 3.89× 10−8 4.4× 10−6 4.7× 10−9

0.7 6.43× 10−5 3.81× 10−6 2.40× 10−8 5.2× 10−6 6.5× 10−9

0.9 6.22× 10−5 2.66× 10−6 5.96× 10−9 5.1× 10−6 3.8× 10−9

Table 3. Case2: Comparison of the L∞-error of present method in Example 6.2

α = k INAS [50] RKM [33] Present method

τ2 = h4 = 1
256 τ2 = h4 = 1

256 R = 8 R = 12

0.5 7.62× 10−4 1.63× 10−4 1.02× 10−4 1.60× 10−5

0.6 8.42× 10−4 1.78× 10−4 7.61× 10−5 1.12× 10−5

0.7 9.25× 10−4 1.91× 10−4 5.11× 10−5 7.1× 10−6

0.8 1.01× 10−3 2.03× 10−4 2.91× 10−5 3.7× 10−6

0.9 1.11× 10−3 2.17× 10−4 1.25× 10−5 1.4× 10−6

Table 4. Case 3: Comparison of the L2-error and L∞-error of present method for Example 6.2 with
Y = 6

R k = 0.5 k = 1.5 k = 2

L2-error L∞-error L2-error L∞-error L2-error L∞-error

5 7.42× 10−5 8.21× 10−4 3.25× 10−5 2.81× 10−4 9.52× 10−7 5.10× 10−6

10 1.60× 10−6 3.71× 10−5 1.60× 10−7 2.90× 10−6 1.44× 10−11 2.01× 10−10

15 1.07× 10−7 5.81× 10−6 4.29× 10−9 2.01× 10−7 9.78× 10−11 1.80× 10−9

The weight functions for cases 1,2 are Dirac delta functions. So according to
Remark 3.1 and by considering r = 1 we can use operational matrix obtained in
Theorem 3.1. In this example, we compare the L∞-errors of our method for cases
1,2 with the spectral Galerkin method (SGM) [20], method in [9], method in [50]
and method in [33] in Tables 2 and 3, respectively. It is obvious in these tables
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Figure 2. The L2-error for Case1 (left) and Case2 (right) for Example 6.2.

that even for small choices of R and for special weight functions the results are
accurate. Also, Figure 2 shows the graph of the L2-error for specified values of α
and different values of R. Furthermore, Table 4 presents L2-error and L∞-error
results with applying the proposed method for Case 3. These results are in perfect
agreement with the exact solution.

Example 6.3. For the last example we consider another modified DO anomalous
sub-diffusion equation as follow:

∂q(z,T)

∂T
=

∫ 1

0

Γ(2+ϑ) RLD1−ϑ
T (

∂2q(z,T)

∂z2
)dϑ+h(z,T), Ω ∈ (0, 1)×(0, 0.5), (6.1)

with boundary conditions

q(1,T) = q(0,T) = 0,

and initial condition

q(z, 0) = 0.

The exact solution of this example is q(z,T) = T2 sin(2πz) and

h(z,T) = 2T sin(2πz) +
8π2 sin(2πz)T(T− 1)

ln(T)
.

Table 5. Comparison of the L2-error via Y = 3 and various values of R in Example 6.3

R 3 5 7 9 11

L2-error 2.19× 10−2 1.15× 10−3 3.86× 10−5 1.08× 10−6 6.63× 10−7

Table 5 shows the L2-error for Y = 3 and various values of R. It is found that
in Table 5, as R increases, the L2-error decrease. Also, Figure 3 shows the graph of
the absolute error function for R = 13 and Y = 5.
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Figure 3. The absolute error function with R = 13, Y = 5, for Example 6.3.

7. Conclusion

In this article, by using OBPs, we construct new operational matrices of fractional
derivative and DO fractional derivative of the R-L type. By applying these matrices
and the spectral tau method, effective and simple numerical method was developed
to solve some DO time-fractional partial differential equations. Also, in Section 5,
the upper error bound for operational matrix D̂(η(ϑ)) was obtained. In this paper,
for discretized DO we use of Gauss-Legendre quadrature formula. Some examples
were presented in order to confirm the effectiveness of the obtained results. From the
results reported for Examples 6.1 and 6.2 we can conclude that the presented method
get to the exact solution with fewer quadrature point, while some papers such as [9,
32, 50], use the more number of quadrature points. A direction of future research
is to apply an operational matrix obtained in this work for solving other classes
of DOFD equations such as DO time-fractional diffusion-wave equation. Also, the
technique presented in this paper can be developed to construct an operational
matrix of DO fractional derivatives based on other orthogonal functions.
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