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A FRACTIONAL LANDWEBER ITERATION
METHOD FOR SIMULTANEOUS INVERSION

IN A TIME-FRACTIONAL DIFFUSION
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Abstract In the present paper, we study the problem to identify the space-
dependent source term and initial value simultaneously for a time-fractional
diffusion equation. This inverse problem is ill-posed, and we use the idea of
decoupling to turn it into two operator equations based on the Fourier method.
To solve the inverse problem, a fractional Landweber regularization method is
proposed. Furthermore, we present convergence estimates between the exact
solution and the regularized solution by using the a-priori and the a-posteriori
parameter choice rules. In order to verify the accuracy and efficiency of the
proposed method, several numerical examples are constructed.
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1. Introduction

In recent years, the study of time-fractional diffusion has attracted some atten-
tion due to its successful application in the fields of anomalous diffusion and me-
chanics and we note that related mathematical theories and numerical methods
of the anomalous diffusion equation have often been used; we refer the reader
to [18,19,22,26,29] and the references therein. Due to the non-local nature of frac-
tional differential operators, we note that time-fractional diffusion models have bet-
ter properties than integer-order diffusion models in simulating real super-diffusion
and sub-diffusion processes [3, 22, 30], and many researchers have studied the di-
rect and inverse problems of the time-fractional diffusion (wave) equation (see for
example [1,4,6,13,29,32,46]). However, the inverse problem of simultaneous multi-
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parameter inversion in time-fractional diffusion equations have not been extensively
studied and we list here some references on this topic [27,28,31,45].

On the physical background, we can refer to [11], Hatano and Hatano used
the continuous-time random walk to better simulations for the anomalous diffusion
in an underground environmental problem. Ginoa, Cerbelli and Roman proposed
a fractional diffusion equation that describe the relaxation of complex viscoelastic
materials in [9]. Mainardi states that the fractional wave equation governs the prop-
agation of mechanical diffusion waves in viscoelastic media in [21]. These new frac-
tional order models are more adequate than previous integer-order models because
fractional derivatives and integrals can describe the memory and genetic properties
of different substances. This is the most significant advantage of fractional order
models over integer-order models, and integer-order models ignore these effects. In
physics, fractional space derivatives are used to model anomalous diffusion or dis-
persion, in which particles disperse at rates inconsistent with classical models of
Brownian motion [5].

In this paper, we investigate the following time-fractional diffusion equation with
the homogeneous Dirichlet boundary condition:

∂αu(x, t)

∂tα
+ Lu(x, t) = f(x), (x, t) ∈ Ω× (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ],

u(x, 0) = φ(x), x ∈ Ω,

(1.1)

where ∂αu(x,t)
∂tα is the Caputo fractional derivative of order α, which is given by

∂αu(x, t)

∂tα
=

1

Γ(1− α)

∫ t

0

(t− η)−α
∂u

∂η
dη, 0 < α < 1,

here, Γ(·) is a Gamma function.

Let Ω ∈ Rd(1 ≤ d ≤ 3) be an open bounded domain with its sufficiently
smooth boundary ∂Ω. Here, L is a symmetric strongly elliptic operator of the
order α(α ∈ (0, 1)) that is defined by

L(u) = −
d∑
i=1

∂

∂xi

 d∑
j=1

θi,j
∂

∂xj
u(x)

+ c(x)u(x).

We assume that θi,j = θj,i, c(x) ≥ 0,∀x ∈ Ω, and we suppose that L is uniformly
elliptic on Ω and its coefficients are smooth: where v > 0 is a constant, such that

v

d∑
i=1

ξ2
i ≤

d∑
i,j=1

θi,j(x)ξiξj , ∀x ∈ Ω, ξ ∈ Rd.

If given the source term f(x) and initial data φ(x) , the problem (1.1) is called the
direct problem. The inverse problem for (1.1) is not well known. Inverse problems
appear when there is no given data (initial data, source term, boundary value
or diffusion coefficient). By adding some additional data, we can get an inverse
problem.
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In this paper, we reconstruct the initial condition u(x, 0) = φ(x) and the source
term f(x) under the noisy measurement, and we assume that T2 > T1 > 0,

g1(·) = u(·, T1), g2(·) = u(·, T2).

Due to the noisy measurement being unavoidable, we denote the noisy measurement
of g1 and g2 as gδ1(·) and gδ2(·), which satisfy

‖u(·, T1)− gδ1(·)‖ ≤ δ, ‖u(·, T2)− gδ2(·)‖ ≤ δ,

where ‖ · ‖ is the L2 norm. When α = 1, the above inverse problem is called the
simultaneous inversion of a standard parabolic equation [15].

About the physical background of the above model, especially in the real-world
applications, one may not know the initial value and source term of the pollution
simultaneously. Hence, the determination of initial value and source term is very
important in underground environmental problem, nuclear pollution crisis and so
on.

Recently, several authors used iterative methods to solve ill-posed problems,
and the reader is referred to [25,41,43]. In 1951, Landweber proposed a fixed point
iteration method to solve the first kind of Fredholm integral equation in [17] and
for more recent applications we refer the reader to [7, 14,23].

However, the classical Landweber iterative method has its own drawback in that
the approximate solution is too smooth to reconstruct the exact solution. There-
fore, researchers use some effective improved regularization methods to obtain sta-
ble numerical algorithms for ill-posed problems. Later, it was found that fractional
regularization methods can overcome the shortcomings of over-smoothing to some
extent. The fractional Landweber method was first proposed by Klann and Ram-
lau [16] when considering general regularization techniques for solving linear inverse
problems. The fractional Landweber method was studied for the ill-posed opera-
tor equation Kx = y, where the forward operator K is a compact operator with
a known singular system and Han et al. applied the fractional Landweber regu-
larization method to solve the backward time-fractional diffusion problem in [10].
In [12], Le et al. considered the fractional Landweber method to solve the ini-
tial inverse problem of time-fractional wave equations, in [43], Yang et al. used
the fractional Landweber method to solve an inverse problem for identifying the
source term of nonhomogeneous time-fractional diffusion equation with the frac-
tional Laplacian in a nonlocal boundary, in [2], Babaei et al. applied a softening
regularization method to solve the unknown nonlinear boundary condition problem
of the time-fractional diffusion equation, in [40], Yang et al. studied the inverse
problem using the fractional Landweber method to determine the unknown source
term in the time-fractional diffusion equation with variable coefficients in a general
bound domain, and in [39], Xiong et al. studied an ill-posed problem and investi-
gated a modified Landweber iterative method through the gradient flow equation
induced by the weighted least squares functional. For the advantages of fractional
Landweber iteration method, we can find that the modified method in [39] not
only overcomes the over-smoothness problem of the approximate solutions, but also
can reduce the total number of iterations compared to the traditional Landweber
method. In comparing with the classical Landweber method, the fractional Landwe-
ber method not only reduces the total number of iterations but also can overcome
the problems of oversmoothness of the approximate solutions. According to [36],
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we can see that the fractional Landweber regularization algorithm requires fewer
steps.

To the best of the authors’ knowledge, there is only a few papers on fractional
diffusion equations where the source term and the initial value are determined simul-
taneously. In [27], the authors investigated the standard Tikhonov regularization
method for solving the above inverse problem and gave the conditional stability.
In [36], Wen et al. constructed the solution of the corresponding conjugate opera-
tor equation problem using the Landweber iteration method. Besides, we can only
refer to [35, 37, 38]. Inspired by this, our paper applies the fractional Landweber
iterative method to identify the source term and initial value of the time-fractional
diffusion equation simultaneously. We will use the fractional Landweber iterative
method of operator equations to solve the inverse problem on the basis of the Fourier
method.

The rest of the paper is structured as follows: In Section 2, we present prelimi-
naries needed for the upcoming discussion. The conditional stability and ill-posed
analysis of the simultaneously inverse problem are given in Section 3. In Section 4,
we use the fractional Landweber iteration method to solve the problem and give the
convergence rates under both the a-priori and the a-posteriori parameter selection
rules. In Section 5, several numerical examples are constructed to verify accuracy
and efficiency of the proposed method. Finally, we give a brief conclusion in Section
6.

2. Preliminaries

In order to facilitate the forthcoming proofs and theoretical derivations, we give the
following definition and properties.

Definition 2.1 ( [24]). For arbitrary constants α > 0 and β ∈ R, we consider the
Mittag-Leffler function defined as

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, z ∈ C.

Lemma 2.1 ( [24]). (a) For 0 < α < 1 and η > 0,

0 ≤ Eα,1(−η) < 1,
dα

dηα
Eα,1(−ληα) = −λEα,1(−ληα).

In addition, Eα,1(−η) is fully monotonic. That is to say (−1)ndnEα,1(−η)/dηn ≥ 0,
when η → +∞, and Eα,1(−η) satisfies the following approximation relation:

Eα,1(−η) =
1

ηΓ(1− α)
+O(| η |−2).

(b) For λ > 0, α > 0 and positive integer m ∈ N,

dm

dtm
Eα,1(−λtα) = −λtα−mEα,α−m+1(−λtα), t > 0.
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Lemma 2.2 ( [34, 42]). For any λk satisfying λk > λ1 > 0, there exist positive
constants C, C and C1 depending on α, T , λ1 such that

C

λk
≤ Eα,1(−λkTα) ≤ C

λk
,

C1

λkTα
≤ Eα,1+α(−λkTα) ≤ 1

λkTα
,

where C1(α, T, λ1) = 1− Eα,1(−λ1T
α).

Remark 2.1. In this paper, we need to use two moments T1, T2, according to
Lemma 2.2, there exist positive constants C1, C1 and C2, C2 such that:

C1

λk
≤ Eα,1(−λkTα1 ) ≤ C1

λk
,

C2

λk
≤ Eα,1(−λkTα2 ) ≤ C2

λk
.

Lemma 2.3 ( [20, 33]). For 0 < λ < 1, p > 0, m ∈ N, let rm(λ) := (1 − λ)m, the
following inequality holds:

rm(λ)λp ≤ θp(m+ 1)−p,

where,

θp =

1, 0 ≤ p ≤ 1,

pp, p > 1.

We now prove the following Lemmas:

Lemma 2.4. For m ≥ 1, σk > 0, 0 < aσ2
k < 1, we have

sup
σk>0

(1− aσ2
k)mσ

p
2

k ≤ (
p

4a
)
p
4m−

p
4 .

Proof. We introduce a new variable x := σ2
k <

1
a and define a function f(x) =

(1− ax)mx
p
4 . It is easy to verify that there exists a unique x0 = p

a(4m+p) such that

f
′
(x0) = 0. Then we calculate the second derivative of the function and bring x0

into the equation which is smaller than 0, hence f(x0) is the maximum value point.
Thus we have

f(x) ≤ f(x0) = (1− p

4m+ p
)m
(

p

a(4m+ p)

) p
4

≤ (
p

a
)
p
4 (

1

4m+ p
)
p
4

≤ (
p

4a
)
p
4m−

p
4 .

By linear superposition, the solution u(x, t) which satisfies the problem (1.1) can
be grouped into the components u1(x, t) and u2(x, t), and they are the solutions of



Regularization method for simultaneous inversion 3379

two sub-problems respectively,
∂αu1(x,t)

∂tα + Lu1(x, t) = f(x), (x, t) ∈ Ω× (0, T ),

u1(x, t) |∂Ω= 0, (x, t) ∈ ∂Ω× [0, T ],

u1(x, 0) |t=0= 0, x ∈ Ω.

(2.1)


∂αu2(x,t)

∂tα + Lu2(x, t) = 0, (x, t) ∈ Ω× (0, T ),

u2(x, t) |∂Ω= 0, (x, t) ∈ ∂Ω× [0, T ],

u2(x, 0) |t=0= φ(x), x ∈ Ω.

(2.2)

Hence
u(x, t) = u1(x, t) + u2(x, t).

Consider that L is a symmetric strongly elliptic operator. Assume that L has eigen-
values λk ∈ R and corresponding orthogonal eigenfunctions ϕk(x) ∈ H2(Ω)

⋂
H1

0 (Ω),
and we set

0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · , lim
k→∞

λk =∞.

Using the variable separation method and the results of Lemma 2.1, the formal
solutions of direct problem (2.1) and (2.2) can be constructed as follows, respec-
tively:

u1(x, t) =

∞∑
k=1

fk
1− Eα,1(−λktα)

λk
ϕk(x), (2.3)

u2(x, t) =

∞∑
k=1

Eα,1(−λktα)φkϕk(x), (2.4)

where fk = 〈f(x), ϕk(x)〉 and φk = 〈φ(x), ϕk(x)〉 are Fourier coefficients.
For any given initial function φ(x) and source term f(x), we can periodically

define a pair of linear operators K1 and K2 to solve problem (1.1):

K1 : (f, φ) 7→ u(x, T1),

K2 : (f, φ) 7→ u(x, T2).

Similarly, for problems (2.1) and (2.2), we can define four linear operators respec-
tively.

K1,i : f 7→ u1(x, Ti), i = 1, 2,

K2,i : φ 7→ u2(x, Ti), i = 1, 2.

By the solution expressions (2.3) and (2.4), we can obtain operator equations:

(K1,i(f)) (x) =

∞∑
k=1

fk
1− Eα,1(−λkTαi )

λk
ϕk(x), i = 1, 2, (2.5)

(K2,i(φ)) (x) =

∞∑
k=1

Eα,1(−λkTαi )φkϕk(x), i = 1, 2. (2.6)
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Using the property of linear superposition, then we obtain the expressions of the
following two operator equations

u(x, T1) = (K1(f, φ)) (x) = (K1,1(f)) (x) + (K2,1(φ)) (x) = g1(x), (2.7)

u(x, T2) = (K2(f, φ)) (x) = (K1,2(f)) (x) + (K2,2(φ)) (x) = g2(x). (2.8)

Now, we hope to solve the inverse problem, to find the pair of functions (f, φ) in
the problem (2.1) and (2.2). From equations (2.7) and (2.8), we can seek a solution
(f, φ) to the system: K2,1φ+K1,1f = g1,

K2,2φ+K1,2f = g2.
(2.9)

Lemma 2.5. The two operators are commutative i.e. K2,2K2,1 = K2,1K2,2.

Proof. Using equation (2.6)

(K2,1(φ)) (x) =

∞∑
k=1

Eα,1(−λkTα1 )φkϕk(x),

then

K2,2 (K2,1(φ)) (x) =

∞∑
k=1

Eα,1(−λkTα1 )φkEα,1(−λkTα2 )φk(x).

Similarly,

K2,1 (K2,2(φ)) (x) =

∞∑
k=1

Eα,1(−λkTα2 )φkEα,1(−λkTα1 )φk(x).

Hence , K2,2K2,1 = K2,1K2,2.
According to the above Lemma 2.5, applying the operator K2,2 to the first

equation in the system (2.9) and the operator K2,1 to the second one, we obtain:

K2,2K2,1φ+K2,2K1,1f = K2,2g1, (2.10)

K2,1K2,2φ+K2,1K1,2f = K2,1g2. (2.11)

By subtracting equation (2.10) from equation (2.11) and using semi-groups proper-
ties, we have

(K2,1K1,2 −K2,2K1,1)f = K2,1g2 −K2,2g1.

Similarly, we apply the operator K1,2 to the first equation in the system (2.9) and
K1,1 to the second one, we get

K1,2K2,1φ+K1,2K1,1f = K1,2g1, (2.12)

K1,1K2,2φ+K1,1K1,2f = K1,1g2. (2.13)

We subtract the equation (2.12) from (2.13) as follows

(K1,2K2,1 −K1,1K2,2)φ = K1,2g1 −K1,1g2.
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Thus, (2.9) is equivalent to the systemKf = η1,

Kφ = η2.
(2.14)

Here

K = K1,2K2,1 −K1,1K2,2, η1 = K2,1g2 −K2,2g1, η2 = K1,2g1 −K1,1g2.

Through the properties of singular values, we obtain the singular values of the
operators K1,1,K1,2,K2,1,K2,2, respectively

σ1k =
1− Eα,1(−λkTα1 )

λk
,

σ2k =
1− Eα,1(−λkTα2 )

λk
,

σ3k = Eα,1(−λkTα1 ),

σ4k = Eα,1(−λkTα2 ).

It is not difficult to get the singular values of the linear, compact and self-adjoint
operator K:

σk =
Eα,1(−λkTα1 )− Eα,1(−λkTα2 )

λk
, k = 1, 2 · · · . (2.15)

Remark 2.2. In this paper, the study of problems (2.7)-(2.8) is reduced to the
study of the system (2.14), that is, the study of the first class of operator equations
in L2(Ω) of the form

Kb = η.

From the injectivity of K, we have

b = K−1η =

∞∑
k=1

1

σk
(η, ϕk)ϕk.

Furthermore, since the measured data g1 and g2 are never known accurately in
practice, our goal is to construct stable approximate solutions of f and φ in the
system Kf = ηδ1,

Kφ = ηδ2,
(2.16)

where ηδ1 = K2,1g
δ
2 − K2,2g

δ
1, ηδ2 = K1,2g

δ
1 − K1,1g

δ
2, gδ1 and gδ2 are the perturbed

data functions which satisfying

‖g1(·)− gδ1(·)‖+ ‖g2(·)− gδ2(·)‖ ≤ δ + δ = 2δ. (2.17)
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3. Ill-posedness and conditional stability for the si-
multaneous inversion problem

Definition 3.1. For arbitrary χ ∈ L2(Ω), we have the Hilbert space

D ((L)p) =

χ ∈ L2(Ω) :

( ∞∑
k=1

λ2p
k | 〈χ, ϕk〉 |

2

) 1
2

<∞

 , (3.1)

where
‖χ‖D((L)p) = (λ2p

k | 〈χ, ϕk〉 |
2)

1
2 . (3.2)

Theorem 3.1. If u ∈ C([0, T ];L2(Ω))
⋂
C((0, T ];H2(Ω)

⋂
H1

0 (Ω)) is the solution
that satisfies problem (1.1), φ(x) ∈ L2(Ω), f(x) ∈ L2(Ω), and u(x, T1) = u(x, T2) ≡
0, then:

f = φ = 0.

Proof. The solution to (1.1) is

u(x, t) =

∞∑
k=1

1− Eα,1(−λktα)

λk
fkϕk +

∞∑
k=1

Eα,1(−λktα)φkϕk,

then

gi(x) = u(x, Ti) =

∞∑
k=1

1− Eα,1(−λkTαi )

λk
fkϕk +

∞∑
k=1

Eα,1(−λkTαi )φkϕk, i = 1, 2.

Integrate ϕk on both sides of the above equation at the same time,

gik =
1− Eα,1(−λkTαi )

λk
fk + Eα,1(−λkTαi )φk, i = 1, 2,

where

gik = (gi, ϕk) =

∫
Ω

gi(x)ϕk(x)dx, i = 1, 2,

so, the coefficients for f(x) and φ(x), respectively

fk =
Eα,1(−λkTα2 )g1k − Eα,1(−λkTα1 )g2k

Eα,1(−λkTα2 )− Eα,1(−λkTα1 )
λk,

φk =
(1− Eα,1(−λkTα1 )) g2k − (1− Eα,1(−λkTα2 )) g1k

Eα,1(−λkTα1 )− Eα,1(−λkTα2 )
.

Because 0 < T1 < T2, so Eα,1(−λkTα1 ) 6= Eα,1(−λkTα2 ). According to Lemma 2.1,
1−Eα,1(−λkTα1 ) 6= 0 and Eα,1(−λkTα2 )− 1 6= 0. Hence, if u(x, T1) = u(x, T2) = 0,
then g1k = g2k = 0. Combine the above results, we have fk = φk = 0, ŒŽ f = φ =
0.

Theorem 3.2. If f(x) and φ(x) ∈ D ((L)p) ⊂ Hp satisfy the a-priori bound con-
dition

max
{
‖f(x)‖D((L)p), ‖φ(x)‖D((L)p)

}
≤ E, (3.3)

where p is a nonnegative constant, then we obtain u(·, t) ∈ D
(
(L)p+1

)
, and

‖u(·, t)‖D((L)p+1) ≤
(
1 + C

tα

)
E for any t > 0.
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The proof can be found in [27].
From Theorem 3.2, it can be seen that u(x, T1), u(x, T2) ∈ D

(
(L)1

)
(Ω) if f ,

φ ∈ L2(Ω). The operator K :
(
L2(Ω)

)2 → (
L2(Ω)

)2
is compact because D

(
(L)1

)
is compactly imbedded into L2(Ω). Accordingly, the problem is ill-posed.

Next, we will give the conditional stability of the ill-posed problem in the fol-
lowing theorem.

Theorem 3.3. Let gi = u(·, Ti) for i = 1, 2. Suppose f , φ ∈ D ((L)p) satisfy the
a-priori bound condition (3.3), in which p is a positive constant, then

‖f‖ ≤ CE
2
p+2

(
‖g1‖+ (

T2

T1
)α‖g2‖

) p
p+2

and

‖φ‖ ≤ CE
2
p+2

(
1

1− Eα,1(−λ1Tα1 )
‖g1‖+ ‖g2‖

) p
p+2

.

The proof can be found in [27].

4. Fractional Landweber iteration and convergence
analysis

In this section, we will use the fractional Landweber iteration regularisation method
to solve the ill-posed problem, and present the convergence analysis under two regu-
larization parameter choice rules. The standard theory of the fractional Landweber
iteration method can be found in [16].

Now, we rewrite the system (2.14) as f

φ

 = (I − aK∗K)

 f

φ

+ aK∗

 η1

η2

 , (4.1)

for some α > 0. We set the initial value

 f0

φ0

 =

 finitial

φinitial

, then iterate this

equation fm

φm

 = (I − aK∗K)

 fm−1

φm−1

+ aK∗

 η1

η2

 , m = 1, 2, 3 · · · . (4.2)

Here m is the number of iterations, which plays the role of regularization pa-
rameter, and a is the relaxation factor satisfying

0 < a < min

{
1

‖K1,1‖2
,

1

‖K1,2‖2
,

1

‖K2,1‖2
,

1

‖K2,2‖2

}
.

In this case, K is a self-adjoint operator, Ki,j(i, j = 1, 2, 3, 4) are linear compact
operators.
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We define the operator Rm : L2(Ω)× L2(Ω)→ L2(Ω)× L2(Ω) as follows: fδm

φδm

 = Rm

 ηδ1

ηδ2

 .

Here

Rm := a

m−1∑
k=0

(I − aK∗K)kK∗, for m = 1, 2, · · ·.

Then we have
fδm = Rmη

δ
1 =

∞∑
k=1

1
σk

[
1− (1− aσ2

k)m
]γ (

ηδ1, ϕk
)
ϕk,

φδm = Rmη
δ
2 =

∞∑
k=1

1
σk

[
1− (1− aσ2

k)m
]γ (

ηδ2, ϕk
)
ϕk,

(4.3)

where γ ∈ ( 1
2 , 1], we denote η1,k = (η1, ϕk), η2,k = (η2, ϕk), and we define

(K1(f, φ)) (x) = (K1,1(f)) (x) + (K2,1(φ)) (x) = h1(x) + h3(x), (4.4)

(K2(f, φ)) (x) = (K1,2(f)) (x) + (K2,2(φ)) (x) = h2(x) + h4(x). (4.5)

Now Ki,j(i, j = 1, 2, 3, 4) are linear compact operators, so we define the operators
R1,m and R2,m: L2(Ω)× L2(Ω)→ L2(Ω)× L2(Ω), which are given by

R1,mg1 =

∞∑
k=1

1

σ1k

[
1− (1− aσ2

1k)m
]γ
h1,kϕk +

∞∑
k=1

1

σ3k

[
1− (1− aσ2

3k)m
]γ
h3,kϕk,

(4.6)

R2,mg2 =

∞∑
k=1

1

σ2k

[
1− (1− aσ2

2k)m
]γ
h2,kϕk +

∞∑
k=1

1

σ4k

[
1− (1− aσ2

4k)m
]γ
h4,kϕk,

(4.7)
where hi,k = (hi, ϕk). (i = 1, 2, 3, 4.)

We can refer to the specific iterative process in [44]. When γ = 1, this is the
classical Landweber iterative method. The convergence results are given in the
following theorems.

4.1. A-priori regularization parameter choice rule

Theorem 4.1. Let g1 ∈ L2(Ω), g2 ∈ L2(Ω) and u, f and φ are the unique ex-
act solution for the inverse problem (1.1). Assume that a satisfies 0 < a <

min
{

1
‖K1,1‖2 ,

1
‖K1,2‖2 ,

1
‖K2,1‖2 ,

1
‖K2,2‖2

}
, and um, fm, and φm are the m-th frac-

tional Landweber iterative regularization approximation solutions in the above iter-
ative procedure. Then we have

lim
m→∞

‖f(·)− fm(·)‖L2(Ω) = 0 and lim
m→∞

‖φ(·)− φm(·)‖L2(Ω) = 0

for every initial function f0 ∈ L2(Ω) and φ0 ∈ L2(Ω).
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We know that the proposed iterative procedure is a regularization method, hence
it is related to inexact data. We assume that the exact solutions f and φ are
obtained, i.e., there exist functions f ∈ L2(Ω) and φ ∈ L2(Ω) satisfying

u(·, T1; f, φ) = g1(·), u(·, T2; f, φ) = g2(·),

and the noise level δ as an upper bound takes the following forms

‖gδ1(·)− g1(·)‖ ≤ δ, ‖gδ2(·)− g2(·)‖ ≤ δ,

where the observation is known a-priori.

Theorem 4.2. Suppose the a-priori condition (3.3) and noise assumption (2.17)
hold. If we choose regularization parameter m = [b], where:

b =

(
E

δ

) 4
p+2

, (4.8)

then we have the following estimates:∥∥fδm(·)− f(·)
∥∥ ≤ C5E

2
p+2 δ

p
p+2 ,∥∥φδm(·)− φ(·)

∥∥ ≤ C6E
2
p+2 δ

p
p+2 ,

where [b] denotes the largest integer not exceeding b and C5, C6 are positive con-
stants.

Proof. Using the triangle inequality, we have

‖fδm(·)− f(·)‖ ≤ ‖fδm(·)− fm(·)‖+ ‖fm(·)− f(·)‖ . (4.9)

From (2.17) and Remark 2.1, we have∥∥fδm(·)− fm(·)
∥∥

=

∥∥∥∥∥
∞∑
k=1

1

σk
[1− (1− aσ2

k)m]γηδ1,kϕk −
∞∑
k=1

1

σk
[1− (1− aσ2

k)m]γη1,kϕk

∥∥∥∥∥
=

∥∥∥∥∥
∞∑
k=1

1

σk
[1− (1− aσ2

k)m]γ
(
ηδ1,k − η1,k

)
ϕk

∥∥∥∥∥
=

∥∥∥∥∥
∞∑
k=1

1

σk
[1− (1− aσ2

k)m]γ(K2,1g
δ
2,k −K2,2g

δ
1,k −K2,1g2,k +K2,2g1,k)ϕk

∥∥∥∥∥
≤
(∥∥K2,1(gδ2,k − g2,k)

∥∥+
∥∥K2,2(gδ1,k − g1,k)

∥∥)( sup
σk>0

1

σk
[1− (1− aσ2

k)m]γ
)

≤ sup
λk>0

(Eα,1(−λkTα1 ) + Eα,1(−λkTα2 ))

(
sup
σk>0

G(n)

)
δ,

where,

Eα,1(−λkTα1 ) + Eα,1(−λkTα2 ) ≤ C1

λk
+
C2

λk
=
C3

λk
≤ C3

λ1
.
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Now C1 depends on α, T1, C2 depends on α, T2, and C3 = C1 + C2.
In the following

G(n) =
1

σk
[1− (1− aσ2

k)m]γ , σk =
Eα,1(−λkTα1 )− Eα,1(−λkTα2 )

λk
.

Let v = a
1
2σk, and ψ(v) = v−2[1 − (1 − v2)m]2γ . Because 0 < a < 1

‖K‖2 , we have

0 < aσk < 1. Hence, the function is continuous when v ∈ (0, 1). For γ ∈ ( 1
2 , 1) and

v ∈ (0, 1), using Lemma 3.3 in [16]:

ψ(v) ≤ m.

Thus,
sup
σk>0

G(n) ≤
√
am. (4.10)

Then ∥∥fδm(·)− fm(·)
∥∥ ≤ C3

λ1

√
amδ. (4.11)

For the second term on the right side of (4.9), using a-priori bound condition (3.3),
we obtain:

‖f(·)− fm(·)‖ =

∥∥∥∥∥
∞∑
k=1

1

σk
η1,kϕk −

∞∑
k=1

1

σk

[
1−

(
1− aσ2

k

)m]γ
η1,kϕk

∥∥∥∥∥
=

∥∥∥∥∥
∞∑
k=1

[
1−

(
1− (1− aσ2

k)m
)γ] 1

σk
η1,kϕk

∥∥∥∥∥
≤

∥∥∥∥∥
∞∑
k=1

(
1− aσ2

k

)m
λ−pk λpkfk

∥∥∥∥∥
≤ E sup

λk>0,σk>0

(
1− aσ2

k

)m
λ−pk .

According to Remark 2.1 , we have

C1

λk
− C2

λk
≤ Eα,1(−λkTα1 )− Eα,1(−λkTα2 ) ≤ C1

λk
− C2

λk
.

We define
C1

λk
− C2

λk
= C4

λK
, hence C4

λ2
k
≤ Eα,1(−λkTα1 )−Eα,1(−λkTα2 )

λk
= σn.

Hence, using Lemma 2.4, we get:

‖fm(·)− f(·)‖ ≤ E sup
σk>0

(1− aσ2
k)mC

− p2
4 σ

p
2

k ≤ C
− p2
4 (

p

4a
)
p
4m−

p
4E. (4.12)

Combining (4.11) and (4.12), we select m = [b] and obtain:

‖fδm(·)− f(·)‖ ≤ C5E
2
p+2 δ

p
p+2 ,

where C5 = C3

λk

√
a+ C

− p2
4 ( p4a )

p
4 .

By the same calculation used to obtain (4.12) we have

‖φ(·)− φm(·)‖ ≤ C−
p
2

4 (
p

4a
)
p
4m−

p
4E.
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On the other hand,∥∥φδm(·)− φm(·)
∥∥

=

∥∥∥∥∥
∞∑
k=1

1

σk

[
1− (1− aσ2

k)m
]γ
ηδ2,kϕk −

∞∑
k=1

1

σk

[
1− (1− aσ2

k)m
]γ
η2,kϕk

∥∥∥∥∥
=

∥∥∥∥∥
∞∑
k=1

1

σk

[
1− (1− aσ2

k)m
]γ (

ηδ2,k − η2,k

)
ϕk

∥∥∥∥∥
=

∥∥∥∥∥
∞∑
k=1

1

σk

[
1− (1− aσ2

k)m
]γ (

K1,2g
δ
1,k −K1,1g

δ
2,k −K1,2g1,k +K1,1g2,k

)
ϕk

∥∥∥∥∥
≤
(
‖K1,2(gδ1,k − g1,k)‖+ ‖K1,1(g2,k − gδ2,k)‖

)
sup
σk>0

(
1

σk
[1− (1− aσ2

k)m]γ
)
δ

≤
(

1− Eα,1(−λkTα1 )

λk
+

1− Eα,1(−λkTα2 )

λk

)√
amδ,

using Lemma 2.2, we have:

‖φδm(·)− φm(·)‖ ≤ 2

λk

√
amδ <

2

λ1

√
amδ. (4.13)

If we select m = [b], then one has

‖φδm(·)− φ(·)‖ ≤ C6E
2
p+2 δ

p
p+2 ,

where C6 = 2
√
a

λ1
+ C

− p2
4 ( p4a )

p
4 .

4.2. A-posteriori regularization choice rule

We know that iterative-type regularization methods of ill-posed problems have
semi-convergence character. For this reason, we need a reliable stopping rule to
detect critical changes from convergence to divergence.

Now we use the Morozov discrepancy principle [8] to determine the regularization
parameter m by using the a-posteriori choice rule, and we give the convergent error
estimate for the regularized solution.
The general a-posteriori rule can be summarized as follows:

τ1δ ≤ ‖uδm(·, T1)− gδ1(·)‖+ ‖uδm(·, T2)− gδ2(·)‖ ≤ τ2δ. (4.14)

Here τ1 > 2, τ2 > 2 are constants independent of δ, fδm, φδm are the m − th
fractional Landweber approximation solutions defined in (4.3).

Lemma 4.1. Let ρ(m) = ‖uδm(·, T1) − gδ1(·)‖ + ‖uδm(·, T2) − gδ2(·)‖. Then we have
the following results:
(1) ρ(m) is a continuous function;
(2) limm→0 ρ(m) = ‖gδ1(·)‖+ ‖gδ2(·)‖;
(3) limm→∞ ρ(m) = 0;
(4) ρ(m)is a strictly decreasing function over (0,∞).
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Proof. From (4.3), (4.4)and (4.5), we obtain:

ρ(m) =

( ∞∑
k=1

([
1−

(
1− (1− aσ2

1k)m
)γ]

hδ1,k +
[
1−

(
1− (1− aσ2

3k)m
)γ]

hδ3,k

)2
) 1

2

+

( ∞∑
k=1

([
1−

(
1− (1− aσ2

2k)m
)γ]

hδ2,k

+
[
1−

(
1− (1− aσ2

4k)m
)γ]

hδ4,k

)2
) 1

2

.

Hence,

lim
m→0

ρ(m) =

( ∞∑
k=1

(hδ1,k + hδ3,k)2

) 1
2

+

( ∞∑
k=1

(hδ2,k + hδ4,k)2

) 1
2

=
∥∥gδ1(·)

∥∥+
∥∥gδ2(·)

∥∥ .
The above results (3)-(4) are easily obtained.

Lemma 4.2. Assume m makes (4.14) hold at the first time. The following inequal-
ity holds:

(ma)
1
2 ≤

(
C7

τ2 − 2

) 1
p+1
(
E

δ

) 1
p+1

,

where C7 =
(
2 + (C1)−p + (C2)−p

)
θ p+1

2
.

Proof. From the definition of m, and using the triangle inequality we obtain:

τ2δ ≤
∥∥uδm−1(·, T1)− gδ1(·)

∥∥+
∥∥uδm−1(·, T2)− gδ2(·)

∥∥
=

∥∥∥∥∥
∞∑
k=1

[
1−

[
1− (1− aσ2

1k)m−1
]γ]

hδ1,kϕk

+
[
1−

[
1− (1− aσ2

3k)m−1
]γ]

hδ3,kϕk

∥∥∥
+

∥∥∥∥∥
∞∑
k=1

[
1−

[
1− (1− aσ2

2k)m−1
]γ]

hδ2,kϕk

+
[
1−

[
1− (1− aσ2

4k)m−1
]γ]

hδ4,kϕk

∥∥∥
≤

∥∥∥∥∥
∞∑
k=1

(1− aσ2
1k)m−1

(
hδ1,k − h1,k

)
ϕk +

∞∑
k=1

(1− aσ2
1k)m−1h1,kϕk

+

∞∑
k=1

(1− aσ2
3k)m−1

(
hδ3,k − h3,k

)
ϕk +

∞∑
k=1

(1− aσ2
3k)m−1h3,kϕk

∥∥∥∥∥
+

∥∥∥∥∥
∞∑
k=1

(1− aσ2
2k)m−1

(
hδ2,k − h2,k

)
ϕk +

∞∑
k=1

(1− aσ2
2k)m−1h2,kϕk

+

∞∑
k=1

(1− aσ2
4k)m−1

(
hδ4,k − h4,k

)
ϕk +

∞∑
k=1

(1− aσ2
4k)m−1h4,kϕk

∥∥∥∥∥ .
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Due to
∥∥∥1− aσ2

i,k

∥∥∥ < 1, we get:

τ2δ ≤

∥∥∥∥∥
∞∑
k=1

(
hδ1,k − h1,k + hδ3,k − h3,k

)
ϕk

∥∥∥∥∥
+

∥∥∥∥∥
∞∑
k=1

(1− aσ2
1k)m−1h1,kϕk +

∞∑
k=1

(1− aσ2
3k)m−1h3,kϕk

∥∥∥∥∥
+

∥∥∥∥∥
∞∑
k=1

(1− aσ2
2k)m−1h2,kϕk +

∞∑
k=1

(1− aσ2
4k)m−1h4,kϕk

∥∥∥∥∥
≤

∥∥∥∥∥
∞∑
k=1

(
gδ1,k − g1,k

)
ϕk

∥∥∥∥∥+

∥∥∥∥∥
∞∑
k=1

(
gδ1,k − g1,k

)
ϕk

∥∥∥∥∥
+

∥∥∥∥∥
∞∑
k=1

(1− aσ2
1k)m−1σ1kfkϕk +

∞∑
k=1

(1− aσ2
3k)m−1σ3kφkϕk

∥∥∥∥∥
+

∥∥∥∥∥
∞∑
k=1

(1− aσ2
2k)m−1σ2kfkϕk +

∞∑
k=1

(1− aσ2
4k)m−1σ4kφkϕk

∥∥∥∥∥ ,
using Lemma 2.3 and Remark 2.1,

τ2δ ≤ 2δ +

∥∥∥∥∥
∞∑
k=1

(
1− aσ2

1k

)m−1
σ1kλ

−p
k λpkfkϕk +

∞∑
k=1

(
1− aσ2

3k

)m−1
σ3kλ

−p
k λpkφkϕk

∥∥∥∥∥
+

∥∥∥∥∥
∞∑
k=1

(
1− aσ2

2k

)m−1
σ2kλ

−p
k λpkfkϕk +

∞∑
k=1

(
1− aσ2

4k

)m−1
σ4kλ

−p
k λpkφkϕk

∥∥∥∥∥
≤ 2δ + E

(
sup
σ1k>0

(1− aσ2
1k)m−1σ1k

λpk
+ sup
σ3k>0

(1− aσ2
3k)m−1σ3k

λpk

)
+ E

(
sup
σ2k>0

(1− aσ2
2k)m−1σ2k

λpk
+ sup
σ4k>0

(1− aσ2
4k)m−1σ4k

λpk

)
≤ 2δ + E

(
sup
σ1k>0

(1− aσ2
1k)m−1(aσ2

1k)
p+1
2 a−

p+1
2

+C
−p
1 sup

σ3k>0
(1− aσ2

3k)m−1(aσ2
3k)

p+1
2 a−

p+1
2

)
+ E

(
sup
σ2k>0

(1− aσ2
2k)m−1(aσ2

2k)
p+1
2 a−

p+1
2

+C
−p
2 sup

σ4k>0
(1− aσ2

4k)m−1(aσ2
4k)

p+1
2 a−

p+1
2

)
≤ 2δ + E

(
θ p+1

2
(ma)−

p+1
2 + (C1)−pθ p+1

2
(ma)−

p+1
2

)
+ E

(
θ p+1

2
(ma)−

p+1
2 + (C2)−pθ p+1

2
(ma)−

p+1
2

)
≤ 2δ + E

(
2θ p+1

2
+ (C1)−pθ p+1

2
+ (C2)−pθ p+1

2

)
(ma)−

p+1
2 ,

where, θ p+1
2

=

1, 0 ≤ p ≤ 1,(
p+1

2

) p+1
2 , p > 1.

, and we have used Remark 2.1.
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We denote C7 =
(
2 + (C1)−p + (C2)−p

)
θ p+1

2
, then

τ2δ ≤ 2δ + C7E(ma)−
p+1
2 ,

and by a simple calculation:

(ma)
1
2 ≤

(
C7

τ2 − 2

) 1
p+1
(
E

δ

) 1
p+1

.

Theorem 4.3. Assume the a-priori condition (3.3) and the noise assumption (2.17)
hold, and the regularization parameter m is given by Lemma 4.2. We obtain the
error estimates as follows:

‖fδm(·)− f(·)‖ ≤
(
C8 + (C9)

1
p+1

)
E

1
p+1 δ

p
p+1 ,

‖φδm(·)− φ(·)‖ ≤
(

(C10)
p
p+1 + C11

)
E

1
p+1 δ

p
p+1 ,

where C8 = C3

λ1

(
C7

τ2−2

) 1
p+1

, C9 =

(
1

Eα,1(−λ1Tα1 )

Eα,1(−λ1Tα2 )
−1

)[
1 +

(
T2

T1

)α
+ τ2

]
,

C10 =

(
1

C2

(
Eα,1(−λ1Tα1 )

Eα,1(−λ1Tα2 )
−1

)
)[

1 +
(

1
1−Eα,1(−λ1Tα1 )

)
+ τ2

]
, C11 = 2

λ1

(
C7

τ2−2

) 1
p+1

.

Proof. By the triangle inequality, we get

‖fδm(·)− f(·)‖ ≤ ‖fδm(·)− fm(·)‖+ ‖fm(·)− f(·)‖. (4.15)

Using (4.11) and Lemma 4.2, we obtain:

‖fδm(·)− fm(·)‖ ≤ C3

λ1

√
amδ ≤ C8E

1
p+1 δ

p
p+1 , (4.16)

where C8 = C3

λ1

(
C7

τ2−2

) 1
p+1

.

For the second item on the right side of (4.15), we have

‖f(·)− fm(·)‖2

=

∥∥∥∥∥
∞∑
k=1

1

σk
η1,kϕk −

∞∑
k=1

[
1− (1− aσ2

k)m
]γ 1

σk
η1,kϕk

∥∥∥∥∥
2

=

∥∥∥∥∥
∞∑
k=1

1

σk

[
1− [1− (1− aσ2

k)m]γ
]
η1,kϕk

∥∥∥∥∥
2

≤

∥∥∥∥∥
∞∑
k=1

1

σk
(1− aσ2

k)mη1,kϕk

∥∥∥∥∥
2

=

∞∑
k=1

[
(1− aσ2

k)m(g1,k − g2,kσ3k/σ4k)
] 2
p+1

(σ1k − σ2kσ3k/σ4k)2
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×

( ∞∑
k=1

[
(1− aσ2

k)m(g1,k − g2,kσ3k/σ4k)
]2) 2p

p+1

≤
∞∑
k=1

(g1,k − g2,kσ3k/σ4k)
2
p+1

(σ1k − σ2kσ3k/σ4k)2

( ∞∑
k=1

(g1,k − g2,kσ3k/σ4k)
2

) 2p
p+1

≤

( ∞∑
k=1

(g1,k − g2,kσ3k/σ4k)
2

(σ1k − σ2kσ3k/σ4k)2(p+1)

) 1
p+1
( ∞∑
k=1

(g1,k − g2,kσ3k/σ4k)
2

) p
p+1

≤

( ∞∑
k=1

1

(σ1k − σ2kσ3k/σ4k)2p
f2
k

) 1
p+1

×


( ∞∑
k=1

(
g1,k − g2,kσ3k/σ4k − gδ1,k + gδ2,kσ3k/σ4k

)2) 1
2

+

( ∞∑
k=1

(gδ1,k − gδ2,kσ3k/σ4k)2

) 1
2


2p
p+1

,

where we have used the Hölder inequality, and we also have

| σ1k − σ2kσ3k/σ4k |=
1

λk

(
Eα,1(−λkTα1 )

Eα,1(−λkTα2 )
− 1

)
.

It is not difficult to verify that
Eα,1(−Tα1 t)
Eα,1(−Tα2 t)

is a nondecreasing function greater than

1 for any t > 0, hence

| σ1k − σ2kσ3k/σ4k |=
1

λk

(
Eα,1(−λkTα1 )

Eα,1(−λkTα2 )
− 1

)
≥ 1

λk

(
Eα,1(−λ1T

α
1 )

Eα,1(−λ1Tα2 )
− 1

)
,

and σ3k/σ4k =
Eα,1(−Tα1 λk)
Eα,1(−Tα2 λk) ≤ lim

t→∞
Eα,1(−Tα1 t)
Eα,1(−Tα2 t)

=
(
T2

T1

)α
, so we obtain:

‖fm(·)− f(·)‖2

≤

( ∞∑
k=1

1

(σ1k − σ2kσ3k/σ4k)2p
f2
k

) 1
p+1

×


( ∞∑
k=1

(
g1,k − g2,kσ3k/σ4k − gδ1,k + gδ2,kσ3k/σ4k

)2) 1
2

+

( ∞∑
k=1

(gδ1,k)2

) 1
2

+

( ∞∑
k=1

(gδ2,k)2(σ3k/σ4k)2

) 1
2


2p
p+1

≤

 λ2p
k f

2
k(

Eα,1(−λ1Tα1 )
Eα,1(−λ1Tα2 ) − 1

)2p


1

P+1 
( ∞∑
k=1

(g1,k − gδ1,k)2

) 1
2
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+

( ∞∑
k=1

(σ3k/σ4k)2(g2,k − gδ2,k)2

) 1
2

+ τ2δ


2p
p+1

≤

 1
Eα,1(−λ1Tα1 )
Eα,1(−λ1Tα2 ) − 1


2p
P+1

E
2
p+1

[
1 +

(
T2

T1

)α
+ τ2

] 2p
p+1

δ
2p
p+1

≤ (C9)
2p
p+1 E

2
p+1 δ

2p
p+1 .

Thus,

‖fm(·)− f(·)‖ ≤ (C9)
p
p+1 E

1
p+1 δ

p
p+1 ,

where C9 =

(
1

Eα,1(−λ1Tα1 )

Eα,1(−λ1Tα2 )
−1

)[
1 +

(
T2

T1

)α
+ τ2

]
.

Therefore, according to (4.16) and the above result we have:

‖fδm(·)− f(·)‖ ≤
(
C8 + (C9)

1
p+1

)
E

1
p+1 δ

p
p+1 .

By the same calculation, we obtain

‖φ(·)− φm(·)‖2

=

∥∥∥∥∥
∞∑
k=1

1

σk
η2,kϕk −

∞∑
k=1

[
1− (1− aσ2

k)m
]γ 1

σk
η2,kϕk

∥∥∥∥∥
2

=

∥∥∥∥∥
∞∑
k=1

1

σk

[
1− [1− (1− aσ2

k)m]γ
]
η2,kϕk

∥∥∥∥∥
2

≤

∥∥∥∥∥
∞∑
k=1

1

σk
(1− aσ2

k)mη2,kϕk

∥∥∥∥∥
2

=

∞∑
k=1

[
(1− aσ2

k)m(g2,k − g1,kσ2k/σ1k)
] 2
p+1

(σ4k − σ2kσ3k/σ1k)2

×

( ∞∑
k=1

[
(1− aσ2

k)m(g2,k − g1,kσ2k/σ1k)
]2) 2p

p+1

≤

( ∞∑
k=1

(g2,k − g1,kσ2k/σ1k)
2

(σ4k − σ2kσ3k/σ1k)2(p+1)

) 1
p+1
( ∞∑
k=1

(g2,k − g1,kσ2k/σ1k)
2

) p
p+1

≤

( ∞∑
k=1

1

(σ4k − σ2kσ3k/σ1k)2p
φ2
k

) 1
p+1

×


( ∞∑
k=1

(
g2,k − g1,kσ2k/σ1k − gδ2,k + gδ1,kσ2k/σ1k

)2) 1
2

+

( ∞∑
k=1

(gδ2,k − gδ1,kσ2k/σ1k)2

) 1
2


2p
p+1

,
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and we have,

| σ4k − σ2kσ3k/σ1k | =
Eα,1(−λkTα1 )− Eα,1(−λkTα2 )

1− Eα,1(−λkTα1 )

=

(
Eα,1(−λkTα1 )

Eα,1(−λkTα2 )
− 1

)
Eα,1(−λkTα2 )

1− Eα,1(−λkTα1 )

≥ C2

λk

(
Eα,1(−λ1T

α
1 )

Eα,1(−λ1Tα2 )
− 1

)
,

so, we can obtain

‖φm(·)− φ(·)‖ ≤ (C10)
p
p+1 E

1
p+2 δ

p
p+1 , (4.17)

where C10 =

(
1

C2

(
Eα,1(−λ1Tα1 )

Eα,1(−λ1Tα2 )
−1

)
)[

1 +
(

1
1−Eα,1(−λ1Tα1 )

)
+ τ2

]
.

By (4.13) and Lemma 4.2,

‖φm(·)− φδm(·)‖ ≤ 2

λ1

√
amδ ≤ C11E

1
p+1 δ

p
p+1 , (4.18)

where C11 = 2
λ1

(
C7

τ2−2

) 1
p+1

.

Thus, from (4.17) and (4.18), we have

‖φδm(·)− φ(·)‖ ≤
(

(C10)
p
p+1 + C11

)
E

1
p+1 δ

p
p+1 .

5. Numerical examples

In this section, we use Matlab software to give several numerical examples to verify
the effectiveness of the fractional Landweber iterative regularization method, and
the specific algorithm is as follows.

Algorithm source term fδm(x) and initial data φδm(x)

Input: α, β, γ, T1, T2, k,m, b, ε .

Output: fδm, φ
δ
m.

1: E3 ⇐ Eα,1(−λkTα1 )−Eα,1(−λkTα2 )

λk
.

2: for i = 1 : length(k), j = 1 : b, do

3: K11(i, j)⇐ (
1−Eα,1(−λkTα1 )

jπ
)2 ·
√

2 sin(jπx(i));K12,K21,K22.

4: fk ⇐ 1
b−1
· f ·
√

2 sin(jπx(i)), φk ⇐ 1
b−1
· φ ·
√

2 sin(jπx(i)).

5: g1 ⇐ fk ·K11 + φk ·K21, g2 ⇐ φk ·K12 + φk ·K22.

6: gδ1 ⇐ g1 + ε · (2 · randn(size(g1)− 1)), gδ2 ⇐ g2 + ε · (2 · randn(size(g2)− 1)).

7: h1 ⇐ trapz(x · g(2δ) ·K21 − gδ1 ·K22), h2 ⇐ trapz(x · g(2δ) ·K11 − gδ1 ·K12).

8: end for

fδm ⇐ f + (1− (1− a · E2
3)m)γ · h1

E3
·
√

2 sin(jπx(i)),

φδm ⇐ φ+ (1− (1− a · E2
3)m)γ · h2

E3
·
√

2 sin(jπx(i)).
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And we give there one-dimensional and two two-dimensional numerical exam-
ples. The main objective of the paper is to analyze the numerical error of the
fractional Landweber method for solving the simultaneous inversion problem. In
the following two one-dimensional examples, when computing the solution to the
regularized solution, we take a truncation number of 15, and truncate 100 and 50
items for x. We then perform computational analysis using the fractional Landwe-
ber iterations.

The noisy data are generated by adding a random perturbation, i.e.

gδi = gi + ε · gi · (2randn(size(gi))− 1). (i = 1, 2.)

In our calculations, for the one-dimensional case, the observation times are se-
lected as T1 = 1/2 and T2 = 1, and m represents the number of iteration steps in
all figures. To measure the accuracy of numerical solution, we use the discrete L2

error as

E (f, ε) = ‖fδm(·)− f(·)‖,
E (φ, ε) = ‖φδm(·)− φ(·)‖,

and the relative error in L2(Ω) norm denoted by

εf = ‖fδm(·)− f(·)‖/‖f(·)‖,
εφ = ‖φδm(·)− φ(·)‖/‖φ(·)‖,

where δ is the noisy level.

Example 1. Consider the smooth heat source and initial value:

f(x) = 2 sinx,

and
φ(x) = sinx.

In this example, the initial value and the source term are sine functions. Then
we give an exact solution via λk = k2 and ϕk =

√
2/π sin(kx),

u(x, t) = (2− Eα,1(−tα)) sinx.

The reconstructed solutions φ(x) and f(x) with exact input data are shown in
Figs. 1-2, where α = 0.7, β = 1. When δ = 0.1%, δ = 1% and δ = 2%, we consider
input data with different noise levels to test the stability of our algorithm. The
reconstructed solutions under the a-priori and the a-posteriori conditions are shown
in Fig. 1 and Fig. 2, where a satisfactory estimated solutions was obtained using
the noise data. From Fig. 1 and Fig. 2, it can be seen that the data error has little
effect on the source term and the initial value.

Example 2. Consider the respective smooth heat source and the non-smooth initial
value:

f(x) = 2x(1− x),

and

φ(x) =

x, 0 ≤ x < 1
2 ,

(1− x), 1
2 ≤ x ≤ 1.
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Figure 1. Numerical results for source term in Example 1
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Figure 2. Numerical results for initial term in Example 1

In this case, it is easy to see that the source term is a quadratic function, and
the initial value is a continuous but not smooth function at x = 1/2. Because there
is a sharp point at x = 1/2, it is usually difficult to reconstruct.

The exact solution and reconstructed solution of f(x) and φ(x) are obtained
from the noisy data gδ1(x) and gδ2(x) under a-priori and a-posteriori conditions, as
shown in Fig. 3 and Fig. 4, where α = 0.9, β = 1, and the noise level δ is taken as
0.1%, 0.2% and 1% respectively. We can see that the under the a-priori condition
and a-posteriori conditions, the heat source recovers very well, but the shape of the
unknown initial temperature value does not recovered well, and the given results
are reasonable considering the non-smooth and the ill-posedness of the problem.

Example 3. Consider the respective non-smooth heat source and the smooth initial
value:

f(x) =

x, 0 ≤ x < 1
2 ,

(1− x), 1
2 ≤ x ≤ 1,

and

φ(x) = 2x(1− x).

Example 4. Choose the exact source term and initial data

f(x, y) = e2−x−y sin(πx) sin(πy),
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Figure 3. Numerical results for source term in Example 2
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Figure 4. Numerical results for initial term in Example 2
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Figure 5. Numerical results for source term in Example 3
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Figure 6. Numerical results for initial term in Example 3
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Figure 7. Numerical results for source term in Example 4

and
φ(x, y) = xy(1− x)(1− y)e4−x−y.

In this example, we truncate 32 terms for x and y respectively, 80 terms for the
sum term k. Fig. 7 and Fig. 8 present the exact solution and the regularization
solution for various noise levels δ = 1%, 2%, 5% in case of α = 0.8, T1 = 1/2,
T2 = 1.

Example 5. Choose the exact source term and initial data f(x, y) = 16xy(1 −
x)(1− y), φ(x, y) = sin(πx) sin(πy), respectively. The results are shown in Figs. 9
and 10 for the relative noise levels 1%, 2% and 5%.

Based on the numerical experiments of Example 1−5, we can see that the smaller
δ, the better the fitting effect between the exact solution and the regularization
solution. Moveover, one-dimensional cases and two-dimensional numerical examples
verify the effectiveness and accuracy of the proposed method.

6. Conclusion

The inverse problem investigated in this paper involves simultaneously identifying
the time-independent source function and initial data for a time-fractional diffusion
equation. We obtained measurements from the additional temperature of the obser-
vation time at both terminals. Based on the Fourier method, the inverse problem
was reformulated as a first kind of operator equations. The fractional Landweber
iteration regularization method was used to construct the solutions of the proposed
inverse problem by decoupling the operator equations. The error estimates between
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Figure 8. Numerical results for source term in Example 4
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Figure 9. Numerical results for source term in Example 5
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(a) exact solution
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Figure 10. Numerical results for initial term in Example 5

the exact solution and the regularization solution were given. The numerical exper-
iments for several examples showed the effectiveness and accuracy of our proposed
method.

This article only considered the case of 0 < α < 1, and the case of 1 < α < 2
can be considered later, which will be our future work.
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