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COMPLEX NONLINEAR EVOLUTION
EQUATIONS IN THE CONTEXT OF OPTICAL

FIBERS: NEW WAVE-FORM ANALYSIS

A. Tripathy1, S. Sahoo1, S. Saha Ray2,† and M. A. Abdou3,4

Abstract In this study, the new waveforms of two nonlinear evolution models
are investigated by an analytical method, namely the sigmoid function method.
The considered nonlinear complex models for this are the full nonlinearity
form of the Fokas-Lenells equation and the paraxial wave equation, which
play an important role in the field of fiber optics by balancing the nonlinearity
with the dispersion terms. Under different numeric values of the free terms,
the obtained results represent varieties of wave shapes, specifically anti-kink,
dark, bright, singular soliton, anti-peakon, kink, two-lump propagation during
breather periodic form, single lump, two lump solutions, periodic peakon, and
periodic wave solutions, which have not been obtained in the previous studies.
These dynamical characteristics are discussed in detail with the help of a
pictorial presentation of the derived solutions. These resultants of both the
considered nonlinear equations can be useful in both fiber optics as well as in
other optics-related fields.

Keywords Fokas-Lenells equation, paraxial wave equation, sigmoid function
method, optical solutions, fiber optics.
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1. Introduction

The nonlinear phenomena and the complexities that are arising in the surroundings
can be modeled using partial differential equations particularly nonlinear partial
differential equations (NLPDEs). For this reason, it can be considered as the link
between nonlinearity and its properties. To be specific, these characteristics can be
understood by studying the analytical solutions in different wave shapes of various
mathematical models [3]. These wave shapes include bright, dark [32], breather-
type, triple solitons [29], M-lump solutions [23], and many more. Several nonlinear

†The corresponding author.
1Kalinga Institute of Industrial Technology, Deemed to be University,
Bhubaneswar, Odisha-751024, India

2National Institute of Technology Rourkela, Odisha-769008, India
3Department of Physics, College of Sciences, University of Bisha, Bisha 61922,
P.O Box 344, Saudi Arabia

4Theoretical Research Group, Physics Department, Faculty of Science, Man-
soura University, 35516 Mansoura, Egypt
Email: tripathyananya3@gmail.com(A. Tripathy),
subha.bapi25@gmail.com(S. Sahoo),
santanusaharay@yahoo.com(S. Saha Ray),
m abdou eg@yahoo.com(M. A. Abdou)

http://www.jaac-online.com
http://dx.doi.org/10.11948/20230080


Exact solutions of the complex nonlinear evolution equations 3443

mathematical models describe distinct physical features of nature such as intelligent
sensing [24], fiber optics [11], plasma physics [43], metamaterials [19], long surface
gravity waves [38], fluid dynamics [4], weakly nonlocal competing nonlinear medium
[40], microtubules [2], dusty plasma [41], quantum physics [34] and many more.
Among these features, the Fokas-Lenells equation (FLE) and paraxial wave equation
(PWE) are the models that explain the wave propagation in optical fibers as well
as in other matters of optics [31,35] under the influence of different parameters.

1.1. Fokas-Lenells equation (FLE)

Consider the complex nonlinear evolution equation as

iEt + a1Exx + a2Ext + |E|2(bE + iσEx)

=i[αEx + ν(|E|2mE)x + δ(|E|2m)xE], (1.1)

which is named as the dimensionless form of the Fokas-Lenells equation (FLE)
[7, 11, 22, 31]. Where, E(x, t) is dependent upon x which is treated as the spatial
variable, and t which is treated as the temporal variable indicating the waveform.
The dual dispersion terms, a1 and a2 are the denotations used for the group velocity
dispersion (GVD) and the spatio-temporal dispersion (STD) respectively. Parame-
ter b is the indication for self-phase modulation while the nonlinear dispersive term,
σ is the reason for additional dispersive effects. Besides, the parameters α, ν, and δ
in eq.(1.1) respectively account for inter-modal dispersion, self-steepening impact,
and nonlinear scattering. The inter-modal dispersion accelerates the pulse spread-
ing while the function of the self-steepening effect is to impede the formation of the
shock-type waves that arise during pulse propagation. Here, ν and δ crop up with
full nonlinearity which is indicated by the parameter m.

In the field of optical telecommunication systems, the foremost issue is the prop-
agation of pulses due to the balance between the low count of GVD and nonlinear
phenomena. To maintain the balance, the nonlinear dispersive effects must be aug-
mented. The given equation clearly describes this. Therefore, FLE has become the
center of attention among researchers. And this is the main reason that motivated
us to consider the FLE (1.1).

To show the functionality of FLE solution in optical fibers, there are several types
of research in recent years using a number of methods. For example, sine-Gordon
expansion method [7,22], (m+ (G′/G))-expansion method [22], a modified extended
direct algebraic method [8], improved tan(φ(ξ)/2)-expansion method [30], improved
Bernoulli sub-ODE method [30], generalized (G′/G)-expansion method [30], ansatz
function technique [1], He’s variational principle [26], chirped soliton solution tech-
nique [14], traveling wave reduction [28], tanh-coth-function method [25], modified
simple equation method [13], exp(−φ(ξ))-expansion method [10], generalized expo-
nential rational function method [33], auxiliary equation method [5], Lie-symmetry
analysis [12], (G′/G)-expansion method [16], extended Kudryashov method and
Kudryashov method [18], and lastly complex envelope ansatz method [15].

1.2. Paraxial wave equation (PWE)

The paraxial wave equation (PWE) [6,9,17] in the form of Kerr law nonlinearity is
stated as

iEx +
a1
2
Ett +

a2
2
Eyy + a3|E|2E = 0, (1.2)
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where, E = E(y, x, t) is the complex envelope depending upon the transverse of
the spatial parameter represented by y, the longitudinal propagation parameter
given by x, and the temporal co-ordinate denoted as t. Here, a1 is used to define
dispersion, a2 is used for the diffraction and the symbol a3 is considered for the Kerr
law nonlinearity. Additionally, for a1a2 < 0, eq.(1.2) is converted into its hyperbolic
nonlinear form of it, and for a1a2 > 0, eq.(1.2) is converted into its elliptic nonlinear
form of it.

In the field of optics, the PWE explains how diffraction and dispersion affect light
beam interaction as well as light emission outside of fluctuations. These parameters
must be balanced and adjusted to improve outcomes and provide an advanced
understanding of their uses. And to achieve this, it is necessary to derive the
model’s analytical solutions, which attracted the interest of several researchers who
tried to tackle the problem using various analytical methods.

Arshad et al. [9] have utilized the modified extended mapping method to eq.(1.2)
and found varieties of solitary wave solutions. The extended trial equation method
has been applied by Ali et al. [6] to get the elliptic function solutions of the PWE.
Durur and Yokuş [17] analyzed the relations between dispersion and diffraction

factors by using the modified

(
1

G′

)
-expansion method to eq.(1.2). Gao et al. [20]

have studied other varieties of wave shapes of eq.(1.2) by the modified auxiliary
expansion method. In addition, the fractional forms of the PWE are solved by using
the sech–tanh expansion method and extended Kudryashov method [27], modified
simple equation method [42], and extended sinh-Gordon expansion method [21].

Furthermore, the simplified extended tanh-function method [45], modified
Khater method [44], the (G′/G)-expansion method [36] and others can be applied
to find the analytical solutions of the nonlinear phenomena.

The main motivation for considering these models is to derive and show the
relations between dispersion, nonlinearity, and diffraction in the field of optics.
However, it is clear from the literature that much more exploration is needed to
understand these physical features. In addition, this study emphasizes investigating
the new exact solutions of eqs.(1.1) and (1.2) by the sigmoid function (SF) method
[37]. Also, in most of the previous studies, eq.(1.1) has been considered for a
specific value of m, but here we have considered the full-nonlinearity form of (1.1).
Furthermore, the main novelty of this study is the resulting solutions that have
not been achieved earlier by considering the relations between the physical factors
which have been mentioned above. Moreover, the physical characteristics of the
attained solution are presented graphically which will be useful in further study of
the optical fibers [39].

The remaining sections of the paper are organized in the following order: The
wave analysis of the perturbed FLE and the PWE are addressed in section 2. Sec-
tion 3 covers the sequential steps and application of the SF method to the consid-
ered nonlinear models. After that, the derived solutions are pictorially presented in
section 4 for different numeric values of the free parameters. The physical charac-
teristics of these wave solutions are also discussed in detail in this section. Finally,
this work’s conclusion is addressed in section 5.
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2. Travelling wave analysis of the nonlinear evolu-
tion equations

2.1. Wave analysis of the perturbed FLE

The solution form of eq.(1.1) is presumed as

E(x, t) = V (ξ)eiθ, (2.1)

where, V (ξ) is the amplitude of the wave taking ξ as ξ = x − qt and θ as the
respective phase component where θ = θ(x, t) = −lx + kt + ε. Here, q, l, k, and ε
denote velocity, soliton frequency, wave number, and phase constant respectively.

Substituting eq.(2.1) into (1.1), the separated imaginary and real parts respec-
tively become

V ′ + σV 2V ′ − [ν (2m+ 1) + 2mδ]V 2mV ′ = 0, (2.2)

and(
−k − a1l2 + a2kl − αl

)
V + (b+ σl)V 3 + (a1 − a2q)V ′′ − νlV 2m+1 = 0. (2.3)

Now, from the collected coefficients of the functions of eq.(2.2) and eq.(2.3), we
found

q =
a2k − α− 2a1l

1− a2l
, 1− a2l 6= 0, (2.4)

σ = b = 0, (2.5)

and

ν = − 2mδ

2m+ 1
. (2.6)

Substituting eq.(2.5) and eq.(2.6) in eq.(2.3), we obtain,

(a1 − a2q)V ′′ −
(
k + a1l

2 − a2kl + αl
)
V +

2m

2m+ 1
δlV 2m+1 = 0. (2.7)

The required closed form of solutions can be attained by using the transformation

V = (ψ)

1

2m .
(2.8)

Accordingly, eq.(2.7) decomposes to

(a1 − a2q) [(1− 2m) (ψ′)
2

+ 2mψψ′′]

− 4m2
(
k + a1l

2 − a2kl + αl
)
ψ2 +

8m3

2m+ 1
δlψ3

=0, (2.9)

where, m 6= 0,−1

2
.
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2.2. Wave analysis of the PWE

Assume that the solution of eq.(1.2) can be written as

E(y, x, t) = ψ(ξ)eiθ, (2.10)

where the amplitude of the waveform is ψ(ξ) taken as ξ = y + x − qt. θ is the
respective component of phase having the value θ = θ (y, x, t) = −ly+mx+ kt+ ε.
Here, q is the velocity, while l,m, k, and ε denote soliton frequency, wave number,
and phase constant respectively.

Now, substituting eq.(2.10) into eq.(1.2) and then splitting the real and imagi-
nary parts accordingly we get,

2a3ψ
3 −

(
2m+ a1k

2 + a2l
2
)
ψ +

(
a1q

2 + a2
)
ψ′′ = 0, (2.11)

and
(1− a1kq − a2l)ψ′ = 0,

⇒ a2 =
1− a1kq

l
. [∵ ψ′ 6= 0] .

(2.12)

Thus, putting the value of a2 from eq.(2.12) into eq.(2.11), we have

2a3lψ
3 −

(
2ml + a1lk

2 + l2 − a1l2kq
)
ψ +

(
1− a1kq + a1lq

2
)
ψ′′ = 0. (2.13)

3. Sigmoid function method (SFM)

In this segment, we have detailed the steps and execution of the SFM [37] to get
the required resultants of eqs.(2.9) and (2.13). The main advantages of this method
over other methods are that it is simple to use, straightforward, and gives more
solutions as compared to others means the convergence rate is faster than others.

3.1. The procedure of the SFM

In this part, we have discussed the sequential steps of the considered method for
getting FLE and PWE solutions.
Step-1:
Suppose eqs.(2.9) and (2.13)’s solution can be stated as

ψ(ξ) = c0 +

N∑
i=1

ciφ
i(ξ), (3.1)

where, φ(ξ) satisfies
φ′(ξ) = φ(ξ)− φ2(ξ), (3.2)

with the unknown parameters c0, ci, which will be found later. Then, by equalizing
the degrees of the nonlinear and the derivative terms of eqs.(2.9) and (2.13), the
value of N can be found.
Step-2:
The solution form of eq.(3.2) is

φ(ξ) =
eξ

1 + eξ
. (3.3)
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Also, the reason for choosing this function is to find the exact solutions of nonlinear
differential equations as it is the general solution of the first order Riccati eq.(3.2),
which gives more solutions to the equations. And to find the highest order singu-
larity of the given nonlinear equations, it can be used. If N is an integer, then only
this method can be applied else, by again using transformation, this method can be
repeated.
Step-3:

Now, equations having the term φi(ξ) can be derived by plugging eqs.(3.1) and
(3.2) into eqs.(2.9) and (2.13). After that, by collecting the coefficients of likely
exponents of φ(ξ) and equating them to zero, a set of simultaneous equations can
be achieved.
Step-4:
Consequently, by solving the obtained equations, the necessary exact solutions of
eqs.(2.9) and (2.13) can be reached.

3.2. Application of the SFM

In this part, to have new varieties of solitary wave solutions, we have implemented
the considered method into the reduced eqs.(2.9) and (2.13).

3.2.1. Application of the SFM to the FLE

After equalizing the degree of ψψ′′ with ψ3 of eq.(2.9), we get N = 2. Consequently,
eq.(3.1) is transformed to,

ψ(ξ) = c0 + c1φ(ξ) + c2φ
2(ξ). (3.4)

Now putting eqs.(3.4) and (3.2) into eq.(2.9) and amounting the coefficients of equal
power of φ(ξ) to zero, we find a system of equations. Then, by solving these, we
get the resultants:
Set-1:

c0 = −3 (a1 − qa2)

4lδ
, c1 =

3 (a1 − qa2)

lδ
,

c2 = −3 (a1 − qa2)

lδ
, k =

2lα+ a1 + 2l2a1 − qa2
2 (−1 + la2)

, m = 1,

and the corresponding solution is

ψ1(ξ) = −3 (a1 − qa2)

4lδ
+

3 (a1 − qa2)

lδ

(
eξ

1 + eξ

)
− 3 (a1 − qa2)

lδ

(
eξ

1 + eξ

)2

.

(3.5)
Set-2:

c0 = −2 (a1 − qa2)

lδ
, c1 =

12 (a1 − qa2)

lδ
,

c2 = −12 (a1 − qa2)

lδ
, k =

lα+ a1 + l2a1 − qa2
−1 + la2

, m =
1

2
,

therefore, the resultant solution is

ψ2(ξ) = −2 (a1 − qa2)

lδ
+

12 (a1 − qa2)

lδ

(
eξ

1 + eξ

)
− 12 (a1 − qa2)

lδ

(
eξ

1 + eξ

)2

.

(3.6)



3448 A. Tripathy, S. Sahoo, S. Saha Ray & M. A. Abdou

Set-3:

c0 = 0, c1 = −3 (a1 − qa2)

16lδ
, c2 =

3 (a1 − qa2)

16lδ
,

k =
16lα− a1 + 16l2a1 + qa2

16 (−1 + la2)
, m = −2,

and hence the solution is represented as

ψ3(ξ) = −3 (a1 − qa2)

16lδ

(
eξ

1 + eξ

)
+

3 (a1 − qa2)

16lδ

(
eξ

1 + eξ

)2

. (3.7)

Set-4:

c0 =
3 (a1 − qa2)

16lδ
, c1 = −3 (a1 − qa2)

8lδ
,

c2 =
3 (a1 − qa2)

16lδ
, k =

−4lα+ a1 − 4l2a1 − qa2
4− 4la2

, m = −2,

with the corresponding solution structure as

ψ4(ξ) =
3 (a1 − qa2)

16lδ
− 3 (a1 − qa2)

8lδ

(
eξ

1 + eξ

)
+

3 (a1 − qa2)

16lδ

(
eξ

1 + eξ

)2

. (3.8)

Set-5:

c0 = 0, c1 = 0, c2 =
3 (a1 − qa2)

16lδ
, k =

4lα− a1 + 4l2a1 + qa2
4 (−1 + la2)

, m = −2,

and

ψ5(ξ) =
3 (a1 − qa2)

16lδ

(
eξ

1 + eξ

)2

. (3.9)

Set-6:

c0 = 0, c1 =

(
1 + 3m+ 2m2

)
(a1 − qa2)

2lm3δ
,

c2 = −
(
1 + 3m+ 2m2

)
(a1 − qa2)

2lm3δ
, k =

4lm2α− a1 + 4l2m2a1 + qa2
4m2 (−1 + la2)

,

and the retrived solution is

ψ6(ξ) =

((
1 + 3m+ 2m2

)
(a1 − qa2)

2lm3δ

)[(
eξ

1 + eξ

)
−
(

eξ

1 + eξ

)2
]
. (3.10)

3.2.2. Application of the SFM to the PWE

After equalizing the degree of ψ′′ with ψ3 of eq.(2.13), we find N = 1. Consequently,
eq.(3.1) is transformed to,

ψ(ξ) = c0 + c1φ(ξ). (3.11)

Now putting eqs.(3.4) and (3.2) into eq.(2.13) and amounting the coefficients of
equal power of φ(ξ) to zero, we find a system of equations. Then, solving these, we
get the solutions:
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Set-1:

c0 = −

√
−4l − 2l2q2a1 + q (qa1 −A)

l2

4
√
a3

, c1 = −2c0, k =
q
(
a1 + 2l2a1

)
−A

4la1
,

and the corresponding solution is

ψ1(ξ) =

(
−1 + eξ

)√−4l − 2l2q2a1 + q (qa1 −A)

l2

4 (1 + eξ)
√
a3

.
(3.12)

Set-2:

c0 =

√
−4l − 2l2q2a1 + q (qa1 −A)

l2

4
√
a3

, c1 = −2c0, k =
q
(
a1 + 2l2a1

)
−A

4la1
.

Set-3:

c0 = −

√
−4l − 2l2q2a1 + q (qa1 +A)

l2

4
√
a3

, c1 = −2c0, k =
q
(
a1 + 2l2a1

)
+A

4la1
.

Set-4:

c0 =

√
−4l − 2l2q2a1 + q (qa1 +A)

l2

4
√
a3

, c1 = −2c0, k =
q
(
a1 + 2l2a1

)
+A

4la1
.

Set-5:

c0 = −
i

√
(l +m)

(
1 + 6l2 + 8lm

)
a1 +B

l2 (l +m)
2
a1

4
√

2
√
a3

, c1 = −2c0,

k = −
−
(
1 + 2l2

)
(l +m) a1 −B

4
√

2l (− (l +m) a1)
3
2

, q = − 1√
2
√
− (l +m) a1

,

and the respected solution is

ψ5(ξ) =

i
(
−1 + eξ

)√ (l +m)
(
1 + 6l2 + 8lm

)
a1 +B

l2 (l +m)
2
a1

4
√

2 (1 + eξ)
√
a3

.
(3.13)

Set-6:

c0 =

i

√
(l +m)

(
1 + 6l2 + 8lm

)
a1 +B

l2 (l +m)
2
a1

4
√

2
√
a3

, c1 = −2c0,
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k = −
−
(
1 + 2l2

)
(l +m) a1 −B

4
√

2l (− (l +m) a1)
3
2

, q = − 1√
2
√
− (l +m) a1

.

Set-7:

c0 = −
i

√
(l +m)

(
1 + 6l2 + 8lm

)
a1 −B

l2 (l +m)
2
a1

4
√

2
√
a3

, c1 = −2c0,

k = −
−
(
1 + 2l2

)
(l +m) a1 +B

4
√

2l (− (l +m) a1)
3
2

, q = − 1√
2
√
− (l +m) a1

,

and the respected solution is

ψ7(ξ) =

i
(
−1 + eξ

)√ (l +m)
(
1 + 6l2 + 8lm

)
a1 −B

l2 (l +m)
2
a1

4
√

2 (1 + eξ)
√
a3

.
(3.14)

Set-8:

c0 =

i

√
(l +m)

(
1 + 6l2 + 8lm

)
a1 −B

l2 (l +m)
2
a1

4
√

2
√
a3

, c1 = −2c0,

k = −
−
(
1 + 2l2

)
(l +m) a1 +B

4
√

2l (− (l +m) a1)
3
2

, q = − 1√
2
√
− (l +m) a1

.

Set-9:

c0 = −
i

√
(l +m)

(
1 + 6l2 + 8lm

)
a1 −B

l2 (l +m)
2
a1

4
√

2
√
a3

, c1 = −2c0,

k = −
(
1 + 2l2

)
(l +m) a1 +B

4
√

2l (− (l +m) a1)
3
2

, q =
1√

2
√
− (l +m) a1

.

Set-10:

c0 =

i

√
(l +m)

(
1 + 6l2 + 8lm

)
a1 −B

l2 (l +m)
2
a1

4
√

2
√
a3

, c1 = −2c0,

k = −
(
1 + 2l2

)
(l +m) a1 −B

4
√

2l (− (l +m) a1)
3
2

, q =
1√

2
√
− (l +m) a1

.

Set-11:

c0 = −
i

√
(l +m)

(
1 + 6l2 + 8lm

)
a1 +B

l2 (l +m)
2
a1

4
√

2
√
a3

, c1 = −2c0,
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k = −
(
1 + 2l2

)
(l +m) a1 +B

4
√

2l (− (l +m) a1)
3
2

, q =
1√

2
√
− (l +m) a1

.

Set-12:

c0 =

i

√
(l +m)

(
1 + 6l2 + 8lm

)
a1 +B

l2 (l +m)
2
a1

4
√

2
√
a3

, c1 = −2c0,

k = −
(
1 + 2l2

)
(l +m) a1 +B

4
√

2l (− (l +m) a1)
3
2

, q =
1√

2
√
− (l +m) a1

,

and the respected solution is

ψ12(ξ) = −
i
(
−1 + eξ

)√ (l +m)
(
1 + 6l2 + 8lm

)
a1 +B

l2 (l +m)
2
a1

4
√

2 (1 + eξ)
√
a3

,
(3.15)

where, A =

√
a1

(
−8l (1 + 2l (l + 2m)) + (1− 2l2)

2
q2a1

)
and

B =

√
(l +m)

2
(1 + 6l2 + 8lm)

2
a21.

4. Numerical simulation

It is important to address the dynamical behaviour of the FLE and PWE with the
help of graphical representation because of the presence of the complex nonlinear
phenomena in it, which have been discussed in this section. The two and three-
dimensional figures explain the dynamics of the derived solutions.

4.1. Graphical views of the wave solutions

In this part, the wave solutions for eqs.(3.5), (3.7), (3.9), (3.10) and (3.12)-(3.15)
are graphically displayed.

4.1.1. Graphical views of the wave solutions of the FLE

Here, eqs.(3.5), (3.7), (3.9) and (3.10) of FLE are presented graphically.

4.1.2. Graphical views of the wave solutions of the PWE

Here, eqs.(3.12) to (3.15) of PWE are pictorially presented.

4.2. Properties of the obtained wave solutions

In this segment, the physical features of the derived wave solutions of the FLE and
the PWE are analyzed.
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Figure 1. Wave solutions of eq.(3.5) for a1 = −1.2, a2 = 0.3, α = 2, l = 0.2, δ = −1.5 and q = −0.01
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Figure 2. Wave solutions of eq.(3.7) for a1 = 1.2, a2 = 0.3, α = 2, l = 0.2, δ = 0.5 and q = −1
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Figure 3. Wave solutions of eq.(3.9) for a1 = −1.2, a2 = 0.3, α = 2, l = 0.2, δ = 0.5 and q = −1

4.2.1. Analysis of the wave solutions of the FLE

From the graphs presented in sec.4.1.1, the bright soliton of eq.(3.5) has been de-
picted in fig.1 while the dark soliton of eq.(3.7) has been shown in fig.2. Here, the
bright soliton of eq.(3.5) is propagating in the anomalous GVD and normal STD
regions with q = −0.01 within the limits −10 ≤ x ≤ 10 and −8 ≤ t ≤ 8. The dark
soliton of eq.(3.7) is propagating in the normal GVD and STD regions with q = −1
within the range −10 ≤ x ≤ 10 and −2 ≤ t ≤ 2.

In fig.3, the anti-kink waveform of eq.(3.9) has been presented. Here, this wave
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Figure 4. Wave solutions of eq.(3.10) for a1 = −0.2, a2 = −0.3, m = 2, α = −2, l = −0.2, δ = 0.05
and q = 0.01
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Figure 5. Wave solutions of eq.(3.12) for the values of a1 = 1.2, m = −0.3, a3 = −2, l = −0.2, q =
−0.1 and y = −0.5
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Figure 6. Wave solutions of eq.(3.12) for the values of a1 = −1.2, m = −0.3, a3 = −1.38, l = 0.2, q =
0.65 and y = −0.5

shape is generated in the anomalous GVD and normal STD regions with q = −1
between the range −15 ≤ x ≤ 15 and 0 ≤ t ≤ 1. Fig.4 shows the pattern of singular
soliton solution of eq.(3.10). Here, it is propagating in the anomalous GVD and STD
regions with q = 0.01 between the limits −15 ≤ x ≤ 15 and −1 ≤ t ≤ 6. Singular
solutions are another type of solitary wave having singularity that means infinite
discontinuity which can be taken as the imaginary space in the middle connected
to solitary waves so as fig.4 does.
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Figure 7. Wave solutions of eq.(3.13) for the values of a1 = −1.2, m = −0.3, a3 = 1.38, l = 0.2 and
y = 0.5
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Figure 8. Wave solutions of eq.(3.13) for the values of a1 = −1.9, m = −0.3, a3 = −1.38, l = −2.2
and y = −1.5

-4 -2 2 4 6
x

20

40

60

80

 ΨHx, 9.6L¤

Figure 9. Wave solutions of eq.(3.13) for the values of a1 = −1.9, m = −0.3, a3 = −0.38, l = 0.2 and
y = −0.5

4.2.2. Analysis of the wave solutions of the PWE

The dynamical properties of the PWE that have been pictorially presented in
sec.4.1.2 are discussed in detail here. The distinct behaviours of eq.(3.12) under
different free parameters have been delineated graphically in fig.s 5 and 6. The anti-
peakon behaviour of eq.(3.12) has been displayed in fig.5 while the kink behaviour
of eq.(3.12) has been shown in fig.6. Here, the anti-peakon wave is propagating for
q = −0.1 and y = −0.5 within the limits −10 ≤ x ≤ 10 and −18 ≤ t ≤ 18 while
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Figure 10. Wave solutions of eq.(3.14) for the values of a1 = 1.9, m = −0.3, a3 = 1.38, l = −2.2 and
y = −1.5
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Figure 11. Wave solutions of eq.(3.14) for the values of a1 = −1.9, m = −0.3, a3 = −0.38, l = −1.82
and y = −1.5
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Figure 12. Wave solutions of eq.(3.15) for the values of a1 = −1.9, m = −0.3, a3 = −1.38, l = −2.2
and y = −0.5

the kink wave is propagating for the values q = 0.65 and y = −0.5 within the range
−15 ≤ x ≤ 15 and −8 ≤ t ≤ 8.

The different dynamical behaviour of eq.(3.13) is depicted in fig.s 7 to 9. The two
lump waves arising during the propagation of the breather periodic solution have
been displayed in fig.7 while the single lump solution has depicted in fig.8. The two
lump wave propagation is generated for y = 0.5 between the limits −10 ≤ x ≤ 10
and −18 ≤ t ≤ 18 while the single lump propagation is generated for y = −1.5
between the limits 1.2 ≤ x ≤ 1.7 and 9.2 ≤ t ≤ 10.2. The periodic peakon pattern
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Figure 13. Wave solutions of eq.(3.15) for the values of a1 = −1.9, m = −0.3, a3 = 1.38, l = −2.2
and y = 1.5

of eq.(3.13) has been delineated in fig.9 for the y value −0.5 within the limits
−5 ≤ x ≤ 6 and −18 ≤ t ≤ 18.

Fig. 10 shows the anti-kink solution of eq.(3.14) while fig.11 shows the periodic
wave solution of eq.(3.14) in the time domain. Here, the anti-kink solution is trans-
mitting for y = −1.5 between the range −12.2 ≤ x ≤ 15.7 and −9.2 ≤ t ≤ 10.2
while the periodic wave is transmitting for y = −1.5 between the limits 0 ≤ x ≤ 0.5
and −26 ≤ t ≤ 28. Fig.12 delineates the two lump propagation of eq.(3.15) while
the bright wave propagation of eq.(3.15) has been viewed in fig.13. The two lump
solution is for y = −0.5 within the range −10 ≤ x ≤ 10 and −18 ≤ t ≤ 18 while
the bright wave is for y = 1.5 within the range −3.2 ≤ x ≤ 0.4 and 9.2 ≤ t ≤ 9.4.

The bright-shaped soliton shows an increase in amplitude, while the dark-shaped
soliton shows a decrease in amplitude with a uniform-intensity background. These
waveforms are responsible for the data transferring from one end to another without
any loss. The kink and anti-kink solutions transfer energy from one core to another
during propagation. The periodic solutions transmit with a uniform-intensity back-
ground. These types of wave solutions have been derived by properly balancing the
physical factors with nonlinear terms which are responsible for data transmission
without causing any harm to them.

5. Conclusion

In this work, new waveform solutions of two nonlinear evolution equations are de-
rived by an analytical method, namely the sigmoid function method. The consid-
ered nonlinear models for this work are the full nonlinearity form of the perturbed
FLE and the PWE. Under different numerical values of the free parameters, the
obtained solutions depict varieties of wave shapes such as anti-kink, dark, bright,
singular soliton, anti-peakon, kink, two lump propagation during breather periodic
form, single lump, two lump solutions, periodic peakon, and periodic wave solutions.
These physical characteristics of the derived solutions are discussed in detail with
the help of three- and two-dimensional graphical views. These solutions show how
the physical factors are properly balanced with each other, along with nonlinearity
terms that have not been achieved before. These resultants of the FLE and PWE
can be useful in the field of fiber optics as well as in other matters of optics.

From the future scope of this study, one can determine the analytical solution to
the different fractional derivative forms of the given nonlinear evolution equations
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(NLEEs) and analyze their solutions. Other physical elements that can affect the
system can also be considered. Furthermore, the modulation instability analysis of
various kinds of the given NLEEs with various parameters may be found.

Conflicts of interest and funding

Conflict of interest: There is no conflict of interest from the author’s side.
Funding: In addition, no financial assistance is available for the development of

this paper.

Data availability statement

The current manuscript’s developed and/or used datasets are available upon justi-
fiable request from the corresponding author.

Acknowledgements

The authors are grateful to the anonymous referees for their useful comments and
suggestions.

References

[1] I. Ahmed, A. R. Seadawy and D. Lu, M-shaped rational solitons and their
interaction with kink waves in the Fokas-lenells equation, Physica Scripta, 2019,
94(5), 055205.

[2] M. A. Akbar, A. M. Wazwaz, F. Mahmud, et al., Dynamical behavior of solitons
of the perturbed nonlinear Schrödinger equation and microtubules through the
generalized Kudryashov scheme, Results in Physics, 2022, 43, 106079.

[3] L. Akinyemi and E. Morazara, Integrability, multi-solitons, breathers, lumps
and wave interactions for generalized extended Kadomtsev–Petviashvili equa-
tion, Nonlinear Dynamics, 2023, 111(5), 4683–4707.
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