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TRAVELING WAVES OF THE KDV-NKDV
EQUATION∗

Xueqiong Yi1, Yuqian Zhou1,† and Qian Liu2

Abstract In this paper, we use the dynamical system method to investigate
the wave solutions of the KdV-nKdV equation. We prove Wazwaz’s proposal
that the KdV-nKdV equation has continuous periodic wave solutions and give
their exact expressions by elliptic integral theory. We confirm that the KdV-
nKdV equation has no classical solitary wave solution although it can be re-
garded as a fusion of the KdV equation with classical solitary wave and the
nKdV equation. In addition, we obtain some novel traveling wave solutions of
it including trapezoidal wave, inverted ‘N’ wave, and blow-up wave solutions.

Keywords KdV-nKdV equation, bifurcation, dynamical system, trapezoidal
wave, inverted ‘N’ wave.
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1. Introduction

The KdV equation is a distinguished partial differential equation, which was dis-
covered by Korteweg and Vries when they studied the small-amplitude long-wave
motion in shallow water in 1895 [11]. Then, Kruskal [12] found the soliton solution
of the KdV equation by studying Fermi-Passa-Ulam problem. It is well known that
the KdV equation has infinite conservation laws which makes it be widely used to
describe wave phenomena in conservative systems, such as magnetohydrodynamic
waves in cold plasmas, ion acoustic waves in plasmas, nonlinear shallow water waves
with weak restoring forces, oceanic internal waves in density stratification, sound
waves in crystal lattices, nonlinear waves in liquid-bubble mixtures, etc [9].

Particularly, in 1977, Olver [18] proposed a general method for finding evolution
equations with infinitely many symmetries and presented the recursive operator
of the KdV equation. Meanwhile, he derived a series of increasing negative order
equations by using the negative order recursive operator. By studying symmetries
and negative powers of recursion operator of the KdV equation, Verosky [29] gave
the negative-order KdV (nKdV) equation in 1991. Subsequently, Qiao [19–26]
researched the Hamiltonian structures, Lax pairs, conservation laws, and explicit
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multisoliton and multikink wave solutions of the nKdV equation through bilin-
ear Bäcklund transformations. Chen [2] investigated the residual symmetry of
the nKdV equation and got the explicit soliton-cnoidal wave interaction solutions.
These works show that the nKdV equation has many properties similar to the KdV
equation, but there are obvious differences. Rodriguez [27] has pointed out that
the nKdV equation has no classical solitary traveling wave solution, i.e., a single
wave solution [6] whose energy is concentrated at the wave peak and both sides
approaching a constant.

In 2018, by using both the KdV recursive operator and the inverse KdV recursive
operator, Wazwaz [30] constructed a new equation

vt + 6vvx + vxxx + vxxt + 4vvt + 3vx∂
−1
x (vt) = 0,

which is called the KdV-negative-order KdV (KdV-nKdV) equation. Wazwaz in-
troduced the potential v(x, t) = ux(x, t) to eliminate the integral operator ∂−1

x , and
then the above equation becomes the form

uxt + 6uxuxx + uxxxx + uxxxt + 4uxuxt + 2uxxut = 0. (1.1)

As a combination of the KdV equation and the negative order KdV equation, does
equation (1.1) still has classical solitary wave solutions or has more wave phenom-
ena? These points arouse people great interest.

In 2018, Wazwaz [30] showed that the KdV-nKdV equation was integrable since
it passed the Painlevé test well, and gave the multiple soliton solutions and kink
wave solution. In his work, he also proposed a proposal that the equation (1.1) has
continuous periodic solutions. Later, Cheng [3] supplemented the integrability of
the equation by giving its Lax pair. Then, Kumar [13] applied the Lie symmetry
method to study the equation (1.1) and obtained a traveling wave solution set
including multiple soliton solutions. In 2020, Hu [8] applied the Painlevé truncation
method to study the nonlocal symmetry and similarity reduction of the KdV-nKdV
equation, and derived explicit solutions of equation (1.1). Ekici [5] used the double
(G′/G, 1/G)-expansion method to seek the rational solutions, hyperbolic function
solutions and trigonometric function solutions of the KdV-nKdV equation.

Although so many wave solutions of the KdV-nKdV equation have been given,
we note that the continuous periodic solutions and the classical solitary wave solu-
tions are not reported yet. We guess that some wave solutions may still be lost. So,
in this paper, we try to solve these problems: (i) Answer whether equation (1.1) has
the continuous periodic solutions and the classical solitary wave solutions. If they
exist, we will give their explicit expressions. (ii) Find all possible traveling wave
solutions of equation (1.1) as many as possible. In fact, many scholars have proved
that dynamical the system approach [4] is a powerful method to study wave solutions
of PDEs. Specially for the integrable systems, one can often obtain all single wave
solutions by this method. In 2012, Li [16] obtained more than 26 exact explicit trav-
eling wave solutions of kudryashov-sinelshchikov equation by this method. In 2013,
Samanta [14] established the existence of solitary wave solutions and periodic trav-
eling wave solutions by applying this method to the Zakharov-Kuznetsov equation.
In 2015, Zhang [33] used this method to derive two families of solitary wave solutions
and two families of periodic wave solutions of the fifth-order Kaup-Kuperschmidt
equation. In 2018, Shi [28] uniformly constructed solitary wave solutions, periodic
wave solutions, compactions and kink wave solutions of the Fujimoto-Watanabe
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equation by this method. In 2021, Han [7] obtained Jacobian elliptic and hyper-
bolic function solutions of the time-space coupled fractional nonlinear Schrödinger
equation by this method. For application of this method in other PDEs, one can
see the KdV-Burgers-Kuramoto equation [36], the Green-Naghdi equation [31], a
class of third-order MKdV equations [17], the Ginzburg-Landau equation [32] and
the generalized Burgers-αβ equation [37], etc.

In this paper, by discussing bifurcation of traveling wave solutions, we explore
wave phenomena of system (1.1). Wave velocity c is selected as an important
bifurcation parameter, which allows one to clearly see how waveforms of traveling
waves change with different wave speeds. Due to existence of an integrable 2-
dimensional invariant manifold, we obtain all single wave solutions of system (1.1).
These conclusions enable us to answer all questions raised above in the last section.

2. Bifurcation analysis of traveling wave system

First, we make the following traveling wave transformation

U(x, t) = u(x− ct) = u(ξ)

to convert equation (1.1) into the form

(1− c)u
′′′′
− cu

′′
+ 6(1− c)u

′
u
′′

= 0, (2.1)

where c 6= 0 is the wave velocity and ′ represents d/dξ. Integrating (2.1) once, we
have

(1− c)u
′′′
− cu

′
+ 3(1− c)(u

′
)2 = e, (2.2)

where parameter e is an integral constant. Further, we transform equation (2.2)
into a 3-dimensional system

u
′

= v,

v
′

= y,

y
′

= −3v2 + c
1−cv + e

1−c .

(2.3)

It is not difficult to see that v
′

= y,

y
′

= −3v2 + c
1−cv + e

1−c

(2.4)

defines a 2-dimensional invariant manifold in R3. One can check that system (2.4)
has the energy function

H(v, y) =
1

2
y2 + v3 − 1

2

c

1− c
v2 − e

1− c
v. (2.5)

Next, we give a theorem to discuss the parameter bifurcation sets of system (2.4)
and its phase portraits and types of equilibria under different parameter bifurcation
sets.
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Theorem 2.1. For system (2.4), we have the parameter bifurcation sets (I){(c, e)|c
< 6e−

√
36e2 − 12e or c > 6e+

√
36e2 − 12e}, (II){(c, e)|c = 6e−

√
36e2 − 12e or

c = 6e+
√

36e2 − 12e} and (III){(c, e)|6e−
√

36e2 − 12e < c < 6e+
√

36e2 − 12e},
where e < 0 or e > 1

3 .

If c < 6e −
√

36e2 − 12e or c > 6e +
√

36e2 − 12e, system (2.4) has a center

B1( c+
√
c2−12ec+12e
6(1−c) , 0) and a saddle B2( c−

√
c2−12ec+12e
6(1−c) , 0). System (2.4) has a

homoclinic orbit γ connecting saddle B2. In the homoclinic loop γ∪B2 consisting of
the saddle B2 and homoclinic orbit γ , periodic orbit families Γ(h) around the center
B1 forms compact region, where Γ(h) is defined by H(v, y) = h, h ∈ (h(B1), h(B2)),
and h(Bi) (i = 1, 2) denote the energy at the equilibria Bi (i = 1, 2), respectively.
In addition, the rest of the orbits in Fig. 2(a) are unbounded.

If c = 6e −
√

36e2 − 12e or c = 6e +
√

36e2 − 12e, system (2.4) has a unique
cusp B3( c

6(1−c) , 0). Every orbit of system (2.4) are not bounded. In this case, the

saddle in the first case degenerates into a cusp B3, but its stable manifold L2 and
unstable manifold L2 are preserved, as shown in Fig. 2(b).

If 6e−
√

36e2 − 12e < c < 6e+
√

36e2 − 12e, system (2.4) has no equilibrium.
System (2.4) has only one kind of unbounded orbit, as shown in Fig. 2(c).

Figure 1. Transition boundaries on (e− c) plane.

(a) c = 2
3 , e = 1

3 . (b) c = 6
7 , e = − 3

7 . (c) c = 2
3 , e = − 1

3 .

Figure 2. Different phase portraits of system (2.4) .
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Proof. By the theory of dynamic system, we find the Jacobi matrix M(B) at the
equilibrium B of system (2.4)

M(B) =

 0 1

−6v + c
1−c 0

 ,
since the trace of Jacobi matrix M(B) is zero, the type of equilibrium only needs
to consider the sign of determinant M(B).

When c < 6e −
√

36e2 − 12e or c > 6e +
√

36e2 − 12e, system (2.4) has two
equilibria. A direct calculation shows that the M(B1) > 0, M(B2) < 0, which
implies that B1 is a center and B2 is a saddle.

When c = 6e−
√

36e2 − 12e or c = 6e+
√

36e2 − 12e,

M(B3) =

0 1

0 0

 ,
M(B3) is a degenerate Jacobi matrix. At this time, the two eigenvalues of the
corresponding linear equations are zero, but the coefficients of the linear terms are
not all zero. To determine the equilibrium B3 type, we use the transformation

φ = v − c

6(1− c)
, ψ = y,

to convert system (2.4) into its normal formφ
′

= ψ,

ψ
′

= akφ
k[1 + h(φ)] + bnφ

n[1 + g(φ)] + ψ2p(φ, ψ) = −3φ2 + c2−12ce+12e
12 .

According to the corresponding theory in [34], the type of equilibrium B3 are de-
termined by the odevity of k and n and the signs of ak and bn. From the fact that
k = 2, ak = −3, bn = 0, B3 is a cusp.

3. Exact solutions of system (2.4) and traveling
wave solutions of equation (1.1)

In the second section, we have obtained three phase portraits of system (2.4) by
bifurcation analysis. In fact, each orbit in the phase portrait corresponds to a
solution of system (2.4). Therefore, by elliptic integral theory, we first calculate
various solutions of system (2.4), and then get the final traveling wave solutions of
system (1.1).

Before the calculation, we give an illustration of the elliptic integral of the
second kind and three Jacobian basic elliptic functions [1]: E(u) is the Legen-
dre’s incomplete elliptic integral of the second kind, sn(u) is the sine amplitude u,
cn(u) =

√
1− sn2(u), dn(u) =

√
1− k2sn2(u). The other nine Jacobian auxiliary

elliptic functions can be derived from the three Jacobian basic elliptic functions.
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3.1. Bounded solutions of system (2.4) and traveling wave so-
lutions of corresponding system (1.1)

For the parameter bifurcation set (I), the system (2.4) has bounded orbits, which
are homoclinic orbits γ and periodic orbits Γ(h), as shown in phase portrait Fig.
2(a), we first consider its periodic orbits.

B1. For the phase portrait (a), by reference [35], any closed orbit in the periodic
orbit family Γ(h) has the form

y = ±
√

2
√

(v − v1)(v − v2)(v3 − v), (3.1)

where the constraint condition v1 < v2 < v < v3 holds. If the period is set to 2T
and v(0) = v2 is chosen as the initial value, we get∫ v

v2

dv√
2
√

(v − v1)(v − v2)(v3 − v)
= |ξ|, − T < ξ < T.

We can simplify the above equation by the following elliptic integral formula∫ v

v2

dv√
(v − v1)(v − v2)(v3 − v)

= g · sn−1(

√
(v3 − v1)(v − v2)

(v3 − v2)(v − v1)
, k),

where g = 2√
v3−v1

, k2 = v3−v2
v3−v1 . Then the periodic solution of system (2.4) is

expressed by

vb1(ξ) = v1 +
(v2 − v1)(v3 − v1)

(v3 − v1)− (v3 − v2)sn2(
√

v3−v1
2 ξ)

, − T < ξ < T.

Noting that ∫
dη

1± k · sn(η)
=

1

k′2
[E(η) + k(1∓ k · sn(η))cd(η)],

where k
′

=
√

1− k2. By using the above elliptic integral formula, the first kind of
traveling wave solution of (1.1) is derived

u1(ξ) =

∫
vb1(ξ)dξ

= v1 · ξ +
√

2(v3 − v1)[E(

√
v3 − v1

2
ξ) +

√
v3 − v2

v3 − v1
· cd(

√
v3 − v1

2
ξ)] + C1,

where −T < ξ < T and C1 is a constant.
B2. Similarly, using the method of reference [35], the homoclinic orbit γ has

the following forms
y = ±

√
2
√

(v − v4)2(v5 − v), (3.2)

where v4 = c−
√
c2−12ec+12e
6(1−c) and v5 = c+2

√
c2−12ec+12e
6(1−c) satisfy the condition v4 <

v < v5, we select the initial value v(0) = v5, and then get∫ v

v5

dv√
2(v − v4)

√
(v5 − v)

= −|ξ|, −∞ < ξ <∞.
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Noting that∫ v

v5

dv

(v − v4)
√

(v5 − v)
=

1√
v5 − v4

ln

√
v5 − v4 −

√
v5 − v√

v5 − v4 +
√
v5 − v

.

Using the above two formulas, we obtain corresponding solution of system (2.4),
which is looked like a bell

vb2(ξ) = v5 −
(v5 − v4)(1− exp(

√
2(v5 − v4)ξ))2

(1 + exp(
√

2(v5 − v4)ξ))2
, −∞ < ξ <∞.

By direct computation, the second kind of traveling wave solutions of the equation
(1.1) is obtained

u2(ξ) =

∫
vb2(ξ)dξ

= v5 · ξ −
√
v5 − v4

2
[
4 + (1 + exp(

√
2(v5 − v4)ξ)

√
2(v5 − v4)ξ

1 + exp(
√

2(v5 − v4)ξ)
] + C2,

where −∞ < ξ <∞ and C2 is a constant.

3.2. Unbounded solutions of system (2.4) and traveling wave
solutions of corresponding system (1.1)

In this section, we will give the traveling wave solutions corresponding to all un-
bounded orbits of system (2.4) .

I. Firstly, we consider all unbounded orbits in phase portrait (a). Actually, these
orbits can be divided into five types, i.e., the first kind of unbounded orbits are equal
to the energy of the saddle, such as Γ2 and Γ2; the second kind of unbounded orbits
are higher than the energy of the center but lower than the energy of the saddle,
such as Γ3; the third kind of unbounded orbit is equal to the energy of the center,
such as Γ4; the fourth kind of unbounded orbits are lower than the energy of center,
such as Γ5; the fifth kind of unbounded orbits are higher than the energy of the
saddle, such as Γ6.

(U1) For the first kind of unbounded orbits , according to reference [35], it can be
directly expressed as the following form

y = ±
√

2
√

(v4 − v)2(v5 − v), (3.3)

where −∞ < v < v4 < v5. In this subcase, we only consider Γ2 since the calculation
is similar for Γ2. For a prescribed initial value v(0) = −∞, we have∫ v

−∞

dv√
2(v4 − v)

√
v5 − v

=

∫ ξ

0

dξ, ξ > 0.

Noting that∫ v

−∞

dv

(v4 − v)
√
v5 − v

= − 1√
v5 − v4

ln

√
v5 − v −

√
v5 − v4√

v5 − v +
√
v5 − v4

.



3468 X. Yi, Y. Zhou & Q. Liu

Similar to the calculation of B2, the first kind of unbounded solution of system
(2.4) is deduced

vu1(ξ) = v5 −
(v5 − v4)(1 + exp(

√
2(v5 − v4)ξ))2

(1− exp(
√

2(v5 − v4)ξ))2
, ξ > 0.

By direct calculation, it is easy to see the third kind of traveling wave solutions of
equation (1.1)

u3(ξ) =

∫
vu1(ξ)dξ

= v5 · ξ −
√
v5 − v4

2
[
4 + (1− exp(

√
2(v5 − v4)ξ)

√
2(v5 − v4)ξ

1− exp(
√

2(v5 − v4)ξ)
] + C3,

where ξ > 0 and C3 is a constant.

(U2) For the second kind of unbounded orbits, it can be written as

y = ±
√

2
√

(v6 − v)(v7 − v)(v8 − v), (3.4)

where v6, v7, v8 are reals and relationship −∞ < v < v6 < v7 < v8 holds. Referring
to (U1), we only discuss the upper branch of Γ3. Let v(0) = −∞, we have∫ v

−∞

dv√
(v6 − v)(v7 − v)(v8 − v))

=

∫ ξ

0

dξ, ξ > 0.

With elliptic integral formula∫ v

−∞

dv√
(v6 − v)(v7 − v)(v8 − v))

= g · sn−1(

√
v8 − v6

v8 − v
, k),

where g = 2√
v8−v6

, k2 = v8−v7
v8−v6 , similar calculation shows that the second kind of

unbounded solution of system (2.4) has the form

vu2(ξ) = v8 −
v8 − v6

sn2(
√

v8−v6
2 ξ)

, 0 < ξ < ξ1,

where ξ1 = 2
√

2√
v8−v6

·
∫ π

2

0
dθ√

1− v8−v7v8−v6
·sin2 θ

, from the fact that

∫
dη

sn2(η)
=

∫
ns2(η)du = η − E(η)− dn(η) · cs(η),

by the above two formulas, we obtain the fourth kind of traveling wave solution of
equation (1.1)

u4(ξ) = v6 ·ξ+
√

2(v8 − v6)[E(

√
v8 − v6

2
ξ)+dn(

√
v8 − v6

2
ξ) ·cs(

√
v8 − v6

2
ξ)]+C4,

where 0 < ξ < ξ1 and C4 is a constant.

(U3) For the third kind of unbounded orbits, it can be written as

y = ±
√

2
√

(v10 − v)2(v9 − v), (3.5)



Traveling waves of the KdV-nKdV equation 3469

where v9 = c−2
√
c2−12ec+12e
6(1−c) and v10 = c+

√
c2−12ec+12e
6(1−c) are reals and relationship

−∞ < v9 < v10 holds. Likewise, we only analyze the upper branch of Γ4 and give
the initial condition v(0) = −∞∫ v

−∞

dv√
2(v10 − v)

√
v9 − v

=

∫ ξ

0

dξ, ξ > 0.

Noting that∫ v

−∞

dv

(v10 − v)
√
v9 − v

=
1√

v10 − v9
(π − 2 arctan

√
v9 − v
v10 − v9

),

thus we find the third kind of unbounded solution of system (2.4)

vu3 = v9 − (v10 − v9) cot2(

√
v10 − v9

2
ξ), 0 < ξ < ξ2,

where ξ2 = π√
2(v10−v9)

. Integrating the above formula directly, we can easily achieve

the fifth kind of traveling wave solution of equation (1.1)

u5(ξ) =

∫
vu3(ξ)dξ

= v9 · ξ −
√

2(v10 − v9)(−cot(
√

(v10 − v9)

2
ξ) +

π

2
−

√
(v10 − v9)

2
ξ) + C5,

where 0 < ξ < ξ2 and C5 is a constant.

(U4) For the fourth kind of unbounded orbits, we have

y = ±
√

2

√
(v11 − v)[v2 + (v11 −

1

2

c

1− c
)v + (v2

11 −
1

2

c

1− c
v11 −

e

1− c
)], (3.6)

where −∞ < v < v11 < v9. Taking v(0) = −∞, we have∫ v

−∞

dv
√

2
√

(v11 − v)[v2 + (v11 − 1
2

c
1−c )v + (v2

11 − 1
2

c
1−cv11 − e

1−c )]
=

∫ ξ

0

dξ, ξ > 0.

By calculating the elliptic integral∫ v

−∞

dv√
(v11 − v)[v2 + (v11 − 1

2
c

1−c )v + (v2
11 − 1

2
c

1−cv11 − e
1−c )]

=g · cn−1(
v11 −B11 − v
v11 +B11 − v

, k),

where B2
11 = 3v2

11 − c
1−cv11 − e

1−c , g = 1√
B11

and k2 =
4B11+6v11− c

1−c
8B11

. We can get

the fourth kind of unbounded solution of system (2.4)

vu4(ξ) = v11 +
√
B2

11 −
2
√
B2

11

1− cn( 4
√

4B2
11ξ)

,



3470 X. Yi, Y. Zhou & Q. Liu

where 0 < ξ < ξ3, ξ3 = 4
4
√

4B2
11

·
∫ π

2

0
dθ√√√√1−

4
√
B2

11+6v11−
c

1−c

8
√
B2

11

·sin2 θ

. Noting that

∫
dη

1− cn(η)
= η − E(η)− dn(η) · sn(η)

1− cn(η)
,

by direct calculation, the sixth kind of traveling wave solution of equation (1.1) is
derived

u6(ξ) =(v11 −
√
B2

11) · ξ + 4

√
4B2

11 · [E( 4

√
4B2

11ξ) +
dn( 4

√
4B2

11ξ) · sn( 4
√

4B2
11ξ)

1− cn( 4
√

4B2
11ξ)

]

+ C6,

where 0 < ξ < ξ3 and C6 is a constant.

(U5) For the fifth type of unbounded orbits, it can be described as

y = ±
√

2

√
(v12 − v)[v2 + (v12 −

1

2

c

1− c
)v + (v2

12 −
1

2

c

1− c
v12 −

e

1− c
)], (3.7)

where v12 > c+2
√
c2−12ec+12e
6(1−c) and relationship −∞ < v < v12 holds. Choosing

v(0) = −∞, the calculation process of u7(ξ) is similar to u6(ξ).

u7(ξ) =(v12 −
√
B2

12) · ξ + 4

√
4B2

12 · [E( 4

√
4B2

12ξ) +
dn( 4

√
4B2

12ξ) · sn( 4
√

4B2
12ξ)

1− cn( 4
√

4B2
12ξ)

]

+ C7,

where 0 < ξ < ξ4 , C7 is a constant, B2
12 = 3v2

12 − c
1−cv12 − e

1−c , g = 1√
B12

and

k2 =
4B12+6v12− c

1−c
8B12

.

II. Secondly, we consider the orbits in phase portrait (b), which are unbounded.
Based on the energy of the cusp, we divide them into two cases. The first type of
orbits has the same energy as the cusp, for example, L2 and L2. The remaining
orbits fall into the second type, for example, L1 and L3.
(U6) For the first type of orbits, by reference [35], they have the following forms

y = ±
√

2(
c

6(1− c)
− v)

√
c

6(1− c)
− v, (3.8)

where −∞ < v < c
6(1−c) . Similarly, letting v(0) = −∞ leads to

∫ v

−∞

dv
√

2( c
6(1−c) − v)

√
c

6(1−c) − v
=

∫ ξ

0

dξ, ξ > 0.

Thus the sixth kind of unbounded solutions of system (2.4) has the form

vu6(ξ) =
c

6(1− c)
− 2

ξ2
, ξ > 0,
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and corresponding the eighth traveling wave solution of equation (1.1) can be
written as

u8(ξ) =

∫
vu6(ξ)dξ =

∫
(

c

6(1− c)
− 2

ξ2
)dξ =

c

6(1− c)
· ξ +

2

ξ
+ C8,

where ξ > 0 and C8 is a constant.

(U7) The remaining orbits have the unified form

y = ±
√

2

√
(v13 − v)[v2 + (v13 −

1

2

c

1− c
)v + (v2

13 −
1

2

c

1− c
v13 −

e

1− c
)], (3.9)

where −∞ < v < v13 choosing v(0) = −∞, the calculation process of u9(ξ) is
similar to u6(ξ).

u9(ξ) =(v13 −
√
B2

13) · ξ + 4

√
4B2

13 · [E( 4

√
4B2

13ξ) +
dn( 4

√
4B2

13ξ) · sn( 4
√

4B2
13ξ)

1− cn( 4
√

4B2
13ξ)

]

+ C9,

where 0 < ξ < ξ5 , C9 is a constant, B2
13 = 3v2

13 − c
1−cv13 − e

1−c , g = 1√
B13

and

k2 =
4B13+6v13− c

1−c
8B13

.

III. Finally, we consider the orbits in phase portrait (c).

(U8) In fact, all orbits have the unified form

y = ±
√

2

√
(v14 − v)[v2 + (v14 −

1

2

c

1− c
)v + (v2

14 −
1

2

c

1− c
v14 −

e

1− c
)], (3.10)

where −∞ < v < v14, choosing v(0) = −∞, the calculation process of u10(ξ) is
similar to u6(ξ).

u10(ξ) =(v14 −
√
B2

14) · ξ + 4

√
4B2

14 · [E( 4

√
4B2

14ξ) +
dn( 4

√
4B2

14ξ) · sn( 4
√

4B2
14ξ)

1− cn( 4
√

4B2
14ξ)

]

+ C10,

where 0 < ξ < ξ6 , C10 is a constant, B2
14 = 3v2

14 − c
1−cv14 − e

1−c , g = 1√
B14

and

k2 =
4B14+6v14− c

1−c
8B14

.

4. Discussion and conclusion

In this paper, for the KdV-nKdV equation, we obtained all single wave solutions by
phase plane analysis method and elliptic integral theory. According to the property
of these solutions, we divide them into four types below:

(1) Classical bounded traveling wave solutions

(2) Trapezoidal wave solution

(3) Inverted ‘N’ wave solution

(4) Blow-up wave solutions

From the facts above, we come to three conclusions:



3472 X. Yi, Y. Zhou & Q. Liu

(a) Kink wave solution. (b) Periodic wave solution.

Figure 3. Two kinds of classical wave solutions.

Figure 4. Trapezoidal wave solution.

Figure 5. Inverted ‘N’ wave solution.

1. The KdV-nKdV equation has continuous periodic wave solution as follows

up(ξ) =
√

2v3[E(

√
v3

2
ξ) +

√
v3 − v2

v3
· cd(

√
v3

2
ξ)] + C.

2. The KdV-nKdV equation has no classical solitary wave solution.

3. The KdV-nKdV equation do possess novel traveling wave solutions, such as the
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(a) u3(ξ). (b) u4(ξ). (c) u5(ξ).

(d) u6(ξ). (e) u7(ξ). (f) u8(ξ).

(g) u9(ξ). (h) u10(ξ).

Figure 6. Blow-up wave solutions.

trapezoidal wave solution, inverted ‘N’ wave solution, and some blow-up wave
solutions.

These solutions help us to explore the new phenomena of the KdV-nKdV equa-
tion. In addition, the strategy adopted in this paper can also be applied to the
traveling wave solutions and dynamic behaviors of other nonlinear equations. For-
tunately the KdV-nKdV equation is integrable, otherwise, it will be very complex
to find and calculate the exact solution of the system.
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