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FRACTIONAL LANGEVIN EQUATIONS WITH
INFINITE-POINT BOUNDARY CONDITION:

APPLICATION TO FRACTIONAL HARMONIC
OSCILLATOR

Lamya Almaghamsi1 and Ahmed Salem2,†

Abstract The current study is concerned with the existence and uniqueness
of the solution to the Langevin equation of two separate fractional orders.
With the infinite-point boundary condition, the boundary value problem is
studied. The Banach contraction principle, Leray-nonlinear Schauder’s alter-
native, and Leray-Schauder degree theorems are all implemented. A numerical
example is presented to demonstrate the accuracy of our results. In addition,
as an application of our results, the mean and variance of a fractional har-
monic oscillator with the undamped angular frequency of the oscillator under
the effect of a random force described as Gaussian colored noise are calculated.
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MSC(2010) 26A33, 34A08, 34A12.

1. Introduction
Given that it lacks a clear geometrical explanation, the concept of fractional calculus
is not entirely apparent. In the realm of [6], a need for order has emerged as a result
of the appearance of several unique forms. Even more problematic is the wide range
of possible implementations. The benefits that fractional derivatives might add to
the model must be carefully considered. Typically, fractional derivatives are used
to represent mass transport, optical, diffusion, and other processes [8, 11, 24, 27].
Fractional-order models’ benefits in simulating supercapacitor capacitances [15],
temperature controllers [7], DC motors [34], and RC, LC, and RLC electric circuits
[1] have been detailed with the addition of these derivatives.

When the random fluctuation force is assumed to be white noise, the Brownian
motion drags the Langevin equation through to an extreme degree. The generalized
Langevin equation, [28], describes the motion of the item if the random oscillation
force is not white noise. Overall, the fractional order differential equation models
are widely utilized nowadays as an alternative to conventional differential equations
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because they can more accurately represent experimental data and area measure-
ment [22,30,33,36]. A crucial differential equation in applied mathematics, physics,
and other branches of science and engineering is the generalized Langevin equa-
tion. Mainardi and Pironi [18] have created and presented it. The significance of
their technique is that it models the Brownian motion more accurately than the
traditional one based on the classical Langevin equation, because it includes the
retarding effects owing to hydrodynamic back-flow, i.e. the additional mass and the
Basset memory drag. The two fluctuation-dissipation theorems and fractional cal-
culus methods were used to produce analytical formulas for the correlation functions
(both for the random force and the particle velocity).

The contributions [2, 25, 26, 31] and else have studied several properties and
results to the solution of the fractional Langevin equation using multi-point and
multi-strip boundary conditions. The uniqueness of solution and other features for
boundary value problems of generalized Langevin equation have attracted a great
deal of attention from many writers over the last several decades, as evidenced by
epitome [23,29,32,35,37] and the extensive list of references offered therein.

The generalized Langevin equation GLE can be used to analyze anomalous dif-
fusive phenomena connected with physical or biological processes. Some recent
articles on anomalous diffusion may be found in the literature [4] and a huge num-
ber of references given therein. We recall that anomalous diffusion is the phenomena
that occurs most commonly in disordered or fractal media and in which the mean
squared displacement (the variance) is proportional to a power of fractional order
rather than linear in time (as in standard diffusion) [17].

Inspired of the previous studies, the following nonlinear fractional Langevin
equation of two fractional orders is considered

cDγ(cDα + λ)u(t) = f(t, u(t)), t ∈ [0, 1] (1.1)
supplemented with the infinite-point boundary conditions

u(0) = 0,c Dαu(0) = 0, u(1)−
∞∑
i=1

βiu(ξi) = u0 (1.2)

where u(t) represents the position of a particle of mass m = 1 at time t ∈ [0, 1], λ ∈ R
is frictional memory kernel, cDα and cDγ are the Caputo’s fractional derivatives
of orders 0 < α ≤ 1 and 1 < γ ≤ 2, 0 < ξ1 < ξ2 < · · · < ξi < · · · < 1; i ∈ N and
f : [0, 1]× R → R is a continuous function.

Although numerous research have been conducted on fractional Langevin equa-
tions under multi-point boundary conditions, as far as we are aware, just Li et
al [16] has investigated it under an infinite-point boundary conditions and provided
various novel existence results of solution utilizing Leray-nonlinear Schauder’s alter-
native and Leray-Schauder degree theory. However, it has been proved that their
given outcomes count on solution form incorporates boundary values. It suggests
that their method need more conclusive results in order to be more useful.

In more details, we note that their unique solution of the linear boundary value
problem of fractional Langevin differential equation

cDγ(cDα + λ)u(t) = h(t), t ∈ [0, 1]

subject to the infinite-point boundary conditions (1.2) was given as

u(t) =

∫ t

0

(t− s)α+γ−1

Γ(α+ γ)
h(s)ds− λ

∫ t

0

(t− s)α−1

Γ(α)
u(s)ds
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+
tα+1

Γ(α+ 2)

(
1−

∞∑
i=1

βiξi

) ( ∞∑
i=1

βi

∫ ξi

0

(ξi − s)γ−1

Γ(γ)
h(s)ds

−
∫ 1

0

(1− s)γ−1

Γ(γ)
h(s)ds+ λu(1)− λ

∞∑
i=1

βiu(ξi)

)

with λ > 0, βi > 0, i ∈ N and 1−
∞∑
i=1

βiξi > 0, which contains the boundary values

u(1) and u(ξi), i ∈ N, even though we can insert the values of these boundary values
after obtaining the form of u(t). This means that the solution above is not in the
final form.

To be out of these criticisms, we resolve the boundary value problem (1.1)-(1.2)
without the appearance of the boundary values u(1) and u(ξi), i ∈ N in the unique
solution u(t). Also, we extend some restrictions on λ, βi, i ∈ N and

∞∑
i=1

βiξi.

Our analysis is carried out using three important fixed point theorems: the Ba-
nach contraction principle, Leray-nonlinear Schauder’s alternative, and the Leray-
Schauder degree theorems.

Furthermore, as an application, the fractional harmonic oscillator with the un-
damped angular frequency of the oscillator under the influence of a random force
described as Gaussian colored noise was examined. The mean and variance, the two
most often used statistical measures of transportation, are evaluated and plotted.

2. Preliminaries and relevant lemmas
In this part, we introduce certain fractional calculus notations and terminology, as
well as preliminary findings that will be used later in our proofs. We are grateful
for the terminology utilized in the books [13,20].

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 for a
continuous function f is defined as

Iαf(t) =

∫ t

0

(t− s)α−1

Γ(α)
f(s)ds

provided that the right-hand-side integral exists, where Γ(α) denotes the Gamma
function is the Euler gamma function defined by

Γ(α) =

∫ ∞

0

tα−1e−tdt, α > 0.

Definition 2.2. Let n ∈ N be a positive integer and α be a positive real such that
n− 1 < α ≤ n, then the fractional derivative of a function f in the Caputo sense is
defined as

cDαf(t) =

∫ t

0

(t− s)n−α−1

Γ(n− α)
f (n)(s)ds

provided that the right-hand-side integral exists and is finite. We notice that the
Caputo derivative of a constant is zero.



Fractional Langevin equations and harmonic oscillator 3507

Lemma 2.1. Let α and β be positive reals. If f is a continuous function, then we
have

IαIβf(t) = Iα+βf(t),
cDαIβf(t) = Iβ−αf(t), β ≥ α.

Lemma 2.2. Let α be positive real. Then we have

Iαtρ =
Γ(ρ+ 1)

Γ(ρ+ α+ 1)
tρ+α, ρ > −1,

cDαtρ =
Γ(ρ+ 1)

Γ(ρ− α+ 1)
tρ−α, ρ > −1, ρ ̸= m ∈ N0, m < n,

cDαtm = 0, m ∈ N0, m < n.

Lemma 2.3. Let n ∈ N and n− 1 < α ≤ n. If u is a continuous function, then we
have

Iα cDαu(t) = u(t) + c0 + c1t+ · · ·+ cn−1t
n−1.

Let us now consider the nonlinear fractional Langevin differential equation (1.1)
supplemented with the infinite-point boundary conditions (1.2), then we can state
the following lemma:

Lemma 2.4. The unique representation of the solution of the boundary value prob-
lem (1.1) and (1.2) is given by

u(t) = g(u, t) +
tα+1

∆

(
u0 − g(u, 1) +

∞∑
i=1

βig(u, ξi)

)

where

g(u, t) =

∫ t

0

(t− s)α+γ−1

Γ(α+ γ)
f(s, u(s))ds− λ

∫ t

0

(t− s)α−1

Γ(α)
u(s)ds,

∆ = 1−
∞∑
i=1

βiξ
α+1
i ̸= 0.

Proof. From Lemmas 2.1, 2.2 and 2.3 and the Definition 2.1, it follows that

cDαu(t) =

∫ t

0

(t− s)γ−1

Γ(γ)
h(s)ds+ c0 + c1t− λu(t) (2.1)

followed by operating Iα on both sides, we find that

u(t) = g(u, t) +
c0

Γ(α+ 1)
tα +

c1
Γ(α+ 2)

tα+1 + c2. (2.2)

By inserting the boundary condition u(0) = 0 in (2.2) gives c2 = 0 and also by
inserting the boundary condition cDu(0) = 0 in (2.1) gives c0 = 0. Using the third
boundary condition in (1.2), gives

c1
Γ(α+ 2)

=
1

∆

(
u0 − g(u, 1) +

∞∑
i=1

βig(u, ξi)

)
.
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Substituting the above values in (2.2) to obtain the desired results. Conversely,
inserting the formula of u(t) into the left hand side of (1.1) with using the second
relation of Lemma 2.1 and the second and third relations of Lemma 2.2 to obtain
the right hand side of (1.1). Also, it is not difficult to see that the solution u(t)
satisfies all conditions of (1.2).

In the proofs of our main results for problem (1.1)-(1.2), we use the Banach
contraction principle for providing sufficient conditions to the uniqueness of solu-
tion and Leray-Schauder degree theorem and nonlinear alternative Leray-Schauder
theorem for providing sufficient conditions to the existence of solution.

Definition 2.3. Let (E, d) be a Banach space. Then a map T : E → E is called a
contraction mapping on E if there exists r ∈ [0, 1) such that d(T(t),T(s)) ≤ rd(t, s)
for all t, s ∈ E.

Lemma 2.5 (Banach contraction principle [10]). Let (E, d) be a non-empty com-
plete metric space with a contraction mapping T : E → E. Then T admits a unique
fixed-point t∗ in E (i.e. T(t∗) = t∗).

Lemma 2.6 (Nonlinear alternative Leray-Schauder theorem [9]). Let E be a Banach
space, C be a closed and convex subset of E, U be an open subset of C and 0 ∈ U .
Suppose that the operator T : U → C is a continuous and compact map (that is,
T(U) is a relatively compact subset of C). Then either

(i) T has a fixed point in x∗ ∈ U , or
(ii) there is x ∈ ∂U (boundary of U in C) and δ ∈ (0, 1) such that δT(x) = x.

Lemma 2.7 (Leray-Schauder degree theorem [5, 19]). Assume that E is a real
Banach space, Ω is a bounded, open subset of E and Φ: [a, b] × Ω → E is given by
Φ(λ, u) = u−T(λ, u) with T a compact map. Suppose also that

Φ(λ, u) = u−T(λ, u) ̸= 0, ∀λ, u ∈ [a, b]× ∂Ω.

If deg(Φ(a, ·),Ω, 0) ̸= 0, then the equation Φ(λ, u) = u−T(λ, u) = 0 has a solution
in Ω for every a ≤ λ ≤ b.

3. Existence and uniqueness results
Let E = C([0, 1],R) be the Banach space of all continuous functions from [0, 1] −→ R
endowed the norm defined by

∥u∥ = sup {|u(t)|, t ∈ [0, 1]}.

Before stating and proving the main results, we introduce the following hypotheses:
Assume that

(H1) The function f : [0, 1]× R → R is a jointly continuous.
(H2) The function f satisfies

|f(t, u)− f(t, v)| ≤ L|u− v|, ∀t ∈ [0, 1], u, v ∈ R

where L is the Lipschitz constant.
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(H3) There exists a positive function ω ∈ C([0, 1],R+) and a nondecreasing func-
tion φ : R+ → R+ such that

|f(t, u)| ≤ ω(t)φ(∥u∥), ∀(t, u) ∈ ([0, 1],R).

(H4) There exist two positive constants η and L such that

|f(t, u)| ≤ η|u|+ L, ∀(t, u) ∈ ([0, 1],R).

For computational convenience, we set

A = Sγ

(
1 +

1

|∆|

)
+ S′

γ , (3.1)

B = |λ|S0

(
1 +

1

|∆|

)
+ |λ|S′

0 (3.2)

where
Sγ =

1

Γ(α+ γ + 1)
, S′

γ =
Sγ

|∆|

∞∑
i=1

|βi|ξα+γ
i .

Lemma 3.1. Under the assumption (H1), the function g(·, ·) satisfies the following

|g(u, t)| ≤ ∥f∥Sγt
α+γ + |λ|∥u∥S0t

α,

|g(u, t2)− g(u, t1)| ≤ ∥f∥Sγ

(
tα+γ
2 − tα+γ

1

)
+ 2|λ|∥u∥S0(t2 − t1)

α

for all u ∈ E and t, t1, t2 ∈ [0, 1] such that t1 < t2. Furthermore, under the
assumptions (H1) and (H2), it satisfies

|g(u, t)− g(v, t)| ≤
(
LSγt

α+γ + |λ|S0t
α
)
∥u− v∥

for all u, v ∈ E and t ∈ [0, 1].

Proof. From the definition of the function g in Lemma 2.4, we have

|g(u, t)| ≤
∫ t

0

(t− s)α+γ−1

Γ(α+ γ)
|f(s, u(s))|ds+ |λ|

∫ t

0

(t− s)α−1

Γ(α)
|u(s)|ds

≤ ∥f∥
∫ t

0

(t− s)α+γ−1

Γ(α+ γ)
ds+ |λ|∥u∥

∫ t

0

(t− s)α−1

Γ(α)
ds

≤ ∥f∥ tα+γ

Γ(α+ γ + 1)
+ |λ|∥u∥ tα

Γ(α+ 1)

= ∥f∥Sγt
α+γ + |λ|∥u∥S0t

α.

Suppose that t1, t2 ∈ [0, 1] such that t1 < t2, we get

|g(u, t2)− g(u, t1)|

≤
∫ t1

0

(t2 − s)α+γ−1 − (t1 − s)α+γ−1

Γ(α+ γ)
|f(s, u(s))|ds

+

∫ t2

t1

(t2 − s)α+γ−1

Γ(α+ γ)
|f(s, u(s))|ds

+ |λ|
∫ t1

0

(t1 − s)α−1 − (t2 − s)α−1

Γ(α)
|u(s)|ds+ |λ|

∫ t2

t1

(t2 − s)α−1

Γ(α)
|u(s)|ds
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≤ ∥f∥
Γ(α+ γ)

[∫ t1

0

(
(t2 − s)α+γ−1 − (t1 − s)α+γ−1ds

)
+

∫ t2

t1

(t2 − s)α+γ−1ds

]
+

|λ|∥u∥
Γ(α)

[∫ t1

0

(
(t1 − s)α−1 − (t2 − s)α−1

)
ds+

∫ t2

t1

(t2 − s)α−1ds

]
=

∥f∥
Γ(α+ γ + 1)

[
tα+γ
2 − tα+γ

2

]
+

2|λ|∥u∥
Γ(α+ 1)

(t2 − t1)
α

=∥f∥Sγ

(
tα+γ
2 − tα+γ

1

)
+ 2|λ|∥u∥S0(t2 − t1)

α.

Also, by using assumption (H2) with letting u, v ∈ E and t ∈ [0, 1], we can deduce
that

|g(u, t)− g(v, t)|

≤
∫ t

0

(t− s)α+γ−1

Γ(α+ γ)
|f(s, u(s))− f(s, v(s))|ds+ |λ|

∫ t

0

(t− s)α−1

Γ(α)
|u(s)− v(s)|ds

≤L∥u− v∥
∫ t

0

(t− s)α+γ−1

Γ(α+ γ)
ds+ |λ|∥u− v∥

∫ t

0

(t− s)α−1

Γ(α)
ds

=
(
LSγt

α+γ + |λ|S0t
α
)
∥u− v∥

which completes the proof.
In view of Lemma 2.4, we transform problem (1.1)-(1.2) as

u = T (u) (3.3)

where the operator T : E −→ E is defined by

(Tu)(t) = g(u, t) +
tα+1

∆

(
u0 − g(u, 1) +

∞∑
i=1

βig(u, ξi)

)

where g(·, ·) is defined in Lemma 2.4.
The following theorem is devoted to provide the conditions that satisfy the

assumptions of Banach contraction mapping principle to give a unique solution of
the boundary value problem (1.1)-(1.2).

Theorem 3.1. Assume that the assumptions (H1) and (H2) hold. Then the
boundary value problem (1.1)-(1.2) has a unique solution if Q < 1, where Q =
LA+B and A and B are given by (3.1) and (3.2), respectively.

Proof. Let
Br = {u ∈ E : ∥u∥ ≤ r}

be a closed ball with the radius r ≥ (MA+ u1)/(1−Q) where

M = sup
t∈[0,1]

|f(t, 0)| and u1 =
|u0|
|∆|

.

Then, for u ∈ Br, we have

∥f∥ = sup
t∈[0,1]

|f(t, u(t))|

= sup
t∈[0,1]

|f(t, u(t))− f(t, 0) + f(t, 0)|
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≤ sup
t∈[0,1]

|f(t, u(t))− f(t, 0)|+ sup
t∈[0,1]

|f(t, 0)|

≤ L∥u∥+M
≤ Lr +M.

By employing Lemma 3.1, we have

∥Tu(t)∥ = sup
t∈[0,1]

∣∣∣∣∣g(u, t) + tα+1

∆

(
u0 − g(u, 1) +

∞∑
i=1

βig(u, ξi)

)∣∣∣∣∣
≤ sup

t∈[0,1]

|g(u, t)|+ 1

|∆|

(
|u0|+ |g(u, 1)|+

∞∑
i=1

|βi||g(u, ξi)|

)
sup

t∈[0,1]

tα+1

≤ ((Lr +M)Sγ + |λ|rS0)

(
1 +

1

|∆|

)
+ u1 + (Lr +M)S′

γ + |λ|rS′
0

= (LA+B)r +MA+ u1

= Qr +MA+ u1 ≤ r

which leads to Tu ⊂ Br. Now, let u, v ∈ Br, then we have

∥(Tu)(t)− (Tv)(t)∥

≤ sup
t∈[0,1]

(
|g(u, t)− g(v, t)|

+
tα+1

|∆|

(
|g(u, 1)− g(v, 1)|+

∞∑
i=1

βi|g(u, ξi)− g(v, ξi)|

))

≤
[
(LSγ + |λ|S0)

(
1 +

1

|∆|

)
+ LS′

γ + |λ|S′
0

]
∥u− v∥

=(LA+B)∥u− v∥ = Q∥u− v∥.

By the hypothesis Q < 1, it follows that the operator T defined in (3.3) is a
contraction. Therefore, with Banach contraction mapping principle ( see Lemma
2.5), we deduce that the operator T has a fixed point, which equivalently implies
that the boundary value problem (1.1)-(1.2) has a unique solution on [0, 1].

Theorem 3.2. Assume that the assumptions (H1) and (H3) hold. Then the bound-
ary value problem (1.1)-(1.2) has at least one solution if there exists a constant
M > 0 such that K > 1 where K is given

K =
M

∥ω∥φ(M)A+MB+ u1
.

Proof. The continuity of the function f implies that the operator T : E → E
defined by (3.3) is continuous. Assume that Br = {u ∈ E : ∥u∥ < r} be an open
subset of the Banach space E with radius r > 0. First, we are in a position to prove
that the operator T : E → E is completely continuous. Assume that u ∈ Br. Then,
as in the proof of Theorem 3.1, we have

∥Tu(t)∥ = sup
t∈[0,1]

∣∣∣∣∣g(u, t) + tα+1

∆

(
u0 − g(u, 1) +

∞∑
i=1

βig(u, ξi)

)∣∣∣∣∣



3512 L. Almaghamsi & A. Salem

≤ (∥ω∥φ(r)Sγ + |λ|rS0)

(
1 +

1

|∆|

)
+ u1 + ∥ω∥φ(r)S′

γ + |λ|rS′
0

= ∥ω∥φ(r)A+ rB+ u1

which concludes the boundedness of the operator T . Suppose that t1, t2 ∈ [0, 1]
such that t1 < t2, it follows that

|Tu(t2)− Tu(t1)|

=

∣∣∣∣∣g(u, t2)− g(u, t1) +
tα+1
2 − tα+1

1

∆

(
u0 − g(u, 1) +

∞∑
i=1

βig(u, ξi)

)∣∣∣∣∣
≤|g(u, t2)− g(u, t1)|+

tα+1
2 − tα+1

1

|∆|

∣∣∣∣∣u0 − g(u, 1) +

∞∑
i=1

βig(u, ξi)

∣∣∣∣∣
which implies, by using Lemma 3.1, that

|Tu(t2)− Tu(t1)| ≤∥ω∥φ(r)Sγ

(
tα+γ
2 − tα+γ

1

)
+ 2|λ|∥u∥S0(t2 − t1)

α

+
tα+1
2 − tα+1

1

|∆|

∣∣∣∣∣u0 − g(u, 1) +

∞∑
i=1

βig(u, ξi)

∣∣∣∣∣ .
It is clear that the right-hand side of the above inequality approaches zero as t1 → t2.
Since the operator T satisfies the above assumptions, it follows by the Arzela-Ascoli
theorem that T : E → E is completely continuous.

According to the Leray-Schauder nonlinear alternative Lemma 2.6, the result
will follow once we prove the boundedness of the set of all solution to equations
u = δTu for some δ ∈ [0, 1]. Let u is a solution of the equation u = δTu for some
δ ∈ [0, 1], then for all t ∈ [0, 1], from the boundedness of the operator T , we have

∥u∥ = sup
t∈[0,1]

|u(t)| = sup
t∈[0,1]

|δ(Tu)(t)| ≤ ∥ω∥φ(∥u∥)A+ ∥u∥B+ u1

which implies that
∥u∥

∥ω∥φ(∥u∥)A+ ∥u∥B+ u1
≤ 1.

By the assumption K > 1, then there exists a constant M > 0 such that ∥u∥ ̸= M .
Setting the open set

Ω = {u ∈ E : ∥u∥ < M}.

Based on the form of Ω, there is no u ∈ ∂Ω such that u = δT (u) for some δ ∈ (0, 1).
Since the operator T : Ω → E is continuous and completely continuous, then by the
nonlinear alternative of Leray-Schauder type Lemma 3.1, we deduce that T has a
fixed point u ∈ Ω which is a solution of problem (1.1)-(1.2). This ends the proof.

Theorem 3.3. Assume that the assumptions (H1) and (H4) hold. Then the bound-
ary value problem (1.1)-(1.2) has at least one solution if

0 < η < (1−B)/A

where A and B are given by (3.1) and (3.2), respectively.
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Proof. Let us define the open ball Br ⊂ E with radius r > 0 as

Br = {u ∈ E : ∥u∥ < r},

where r will be determined later. It is adequate to prove that the operator T : Br →
E satisfies

u ̸= λTu, ∀u ∈ ∂Br, σ ∈ [0, 1]. (3.4)

To do this, assume that u = σTu for some σ ∈ [0, 1]. Then, as in the preceding
results, we have

∥u∥ ≤ (ηA+B)∥u∥+ LA+ u1

which implies that
∥u∥ ≤ LA+ u1

1− (ηA+B)

provided that ηA+B < 1 which leads to η < (1−B)/A. Now, suppose that there
exists ϵ > 0 such that

r =
LA+ u1

1− (ηA+B)
+ ϵ.

By the analysis above, it follows that (3.4) holds. Let us now define the continuous
operator

hσ(u) = u− σTu, u ∈ E, σ ∈ [0, 1].

In view of the results in Theorems above, it is clear that the operator hσ : E → E is
completely continuous. By the homotopy invariance of topological degree, it follows
that

deg(hσ,Br, 0) = deg(h1,Br, 0) = deg(h0,Br, 0) = deg(I,Br, 0) = 1 ̸= 0

where I denotes the unit operator. By the nonzero property of Leray–Schauder
degree (see Lemma 2.7), the equation h1(u) = uTu = 0 has at least one solution in
Br, that is, the boundary value problem (1.1)-(1.2) has at least one solution.

4. Fractional harmonic oscillator
In actual oscillators, damping or friction slows the system’s motion. The velocity
falls in proportion to the frictional force applied. While in a basic undriven harmonic
oscillator the only force operating on the mass is the restoring force, in a damped
harmonic oscillator there is also a frictional force acting in the opposite direction
of the motion. The dynamic of a fractional treatment of a harmonic oscillator [3]
with the undamped angular frequency of the oscillator ω under the influence of a
random force modeled as Gaussian colored noise, whose corresponding fractional
differential equation, associated with the displacement, can be written as

cDγ(cDα + λ)u(t) + ω2u(t) = ρ(t), 0 ≤ t ≤ 1, (4.1)

where u(t) indicates the location of a particle with mass m = 1 at time t ∈ [0, 1],
λ ∈ R is frictional memory kernel and the internal noise ρ(t) is a random force
satisfying the fluctuation-dissipation theorem of a zero-mean ⟨ρ(t)⟩ = 0 and with
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an arbitrary correlation function C(t′ − t) = ⟨ρ(t)ρ(t′)⟩. The correlation function
for a free Brownian particle in one dimension can be taken as [14]

C(t) = Kδ(t)

where K = kT , k is a Boltzmann constant, T is the absolute temperature of the
heat bath and δ(·) is a dirac delta function.

The equation (4.1) is supplemented with the infinite-point conditions (1.2). It
is clear that the function f(t, u(t)) = −ω2u(t) + ρ(t) satisfies the assumptions (H1)
and (H2) with L = ω2. According to our main results in Theorems 3.1 provided
that Q < 1, the problem (4.1) has a unique solution which can be evaluate through
applying Laplace transform as follows

u(t) =

∞∑
n=0

(−1)nω2nL−1

{
s−γn−2

(sα + λ)n+1

}
C

+
∞∑

n=0

(−1)nω2nL−1

{
s−γ(n+1)

(sα + λ)n+1

}
∗ ρ(t)

=gλ,ω(t)C + hλ,ω ∗ ρ(t)

which has the mean ⟨x(t)⟩ = gλ,ωC where

gλ,ω(t) =

∞∑
n=0

(−1)nω2ntα(n+1)+γn+1En+1
α,α(n+1)+γn+2 (−λtα) ,

hλ,ω(t) =

∞∑
n=0

(−1)nω2nt(α+γ)(n+1)−1En+1
α,(α+γ)(n+1) (−λtα) .

C is a constant can be evaluated easily by using the last condition in (1.2) as

C =
u0

gλ,ω(1)−
∞∑
i=1

βigλ,ω(ξi)

provided that gλ,ω(1) ̸=
∞∑
i=1

βigλ,ω(ξi), and Eµ
α,γ(·) is the generalized of the Mittag-

Leffler function [12,21]

Eµ
α,γ(z) =

∞∑
k=0

(µ)kz
k

k!Γ(αk + γ)
, ℜ(α) > 0, γ ∈ C,

where (µ)k = µ(µ+ 1) · · · (µ+ k − 1); k ∈ N, (µ)0 = 1.
The two most commonly used statistical measures of transport are the mean,

µ(t), and the variance, σ2(t), defined as

µ(t) = ⟨δu⟩, σ2(t) = ⟨[δu− ⟨δu⟩]2⟩ and δu = u(t)− u(0).

Thus, the mean of displacement can be provided as

µ(t) = ⟨u(t)⟩ = u0

gλ,ω(1)−
∞∑
i=1

βigλ,ω(ξi)
gλ,ω(t)
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and the displacement can be given as

u(t) = ⟨u(t)⟩+ hλ,ω(t) ∗ ρ(t) = ⟨u(t)⟩+
∫ t

0

hλ,ω(t− s)ρ(s)ds.

We can also evaluate the mean square displacement which provides an indication
of the most likely displacement that one can expect a particle to have in a certain
time. In the free particle case, the mean square displacement can be calculate by

⟨x2(t)⟩ =
(
⟨x(t)⟩+

∫ t

0

hλ,ω(t− s)ρ(s)ds

)2

=⟨x(t)⟩2 + 2⟨x(t)⟩
∫ t

0

hλ,ω(t− s)⟨ρ(s)⟩ds

+

∫ t

0

∫ t

0

hλ,ω(t− s)hλ,ω(t− r)⟨ρ(s)ρ(r)⟩dsdr

=⟨x(t)⟩2 +K

∫ t

0

hλ,ω(t− s)

(∫ t

0

hλ,ω(t− r)δ(r − s)⟩dr
)
ds

=⟨x(t)⟩2 +K

∫ t

0

h2
λ,ω(t− s)ds

which leads to the variance of the process is given as

σ2(t) = ⟨x2(t)⟩ − ⟨x(t)⟩2 = K

∫ t

0

h2
λ,ω(t− s)ds.

The fractional derivative results from the shear stress-induced collective behavior of
the liquid. Some of the limiting examples can be related to the fractional harmonic
oscillator Langevin equation. We have two interesting constraints here. Setting the
liquid’s shear stress to zero (λ = 0), we can find the basic harmonic oscillator. If
we exclude the oscillator’s undamped angular frequency (ω = 0), we get a special
super-diffusive instance of the fractional Langevin equation.

Case I: In the case of the absence of frictional memory kernel (λ = 0), we have

g0,ω(t) = tα+1Eα+γ,α+2

(
−ω2tα+γ

)
,

h0,ω(t) = tα+γ−1Eα+γ,α+γ

(
−ω2tα+γ

)
where Eα,γ(·) = E1

α,γ(·) is the Mittag-Leffler function of two parameters.
Consider α = 1/2, γ = 3/2. Then, we get

g0,ω(t) = t
3
2E2, 52

(
−ω2t2

)
=

sin(ωt)

ω2

∫ t

0

cos(ωs)√
πs

ds− cos(ωt)

ω2

∫ t

0

sin(ωs)√
πs

ds,

h0,ω(t) = tE2,2

(
−ω2t2

)
=

1

ω
sin(ωt)

which implies that

σ2(t) = K

∫ t

0

h2
0,ω(t− s)ds =

K

4ω3
(2ω + sin(2ωt)).
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Figure 1. The expected value when λ = 0.

Figure 2. The variance when λ = 0.

The second statement comes immediately from properties of Mittag-Leffler
function and the first comes by solving the equation

g′′0,ω(t) + ω2g0,ω(t) =
1√
πt

with initial conditions g0,ω(0) = g′0,ω(0) = 0.
Case II: In the case of the absence of the frequency of the oscillator (ω = 0), we

have

gλ,0(t) = tα+1Eα,α+2 (−λtα) ,

hλ,0(t) = tα+γ−1Eα,α+γ (−λtα) .

Consider α = 1/2, γ = 3/2. Then, we get

gλ,0(t) = t
3
2E 1

2 ,
5
2

(
−λ

√
t
)
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Figure 3. The expected value when ω = 0.

Figure 4. The variance when ω = 0.

=
1

λ3
√
π

[√
πeλ

2terf(λ
√
t)− 2λ

√
t
]
− 1

λ

[
eλ

2t − 1− λ2t
]
,

hλ,0(t) = tE 1
2 ,2

(
−λ

√
t
)
=

1

λ2
√
π

[√
πeλ

2terfc(λ
√
t)−

√
π + 2λ

√
t
]

which implies that

σ2(t) = K

∫ t

0

h2
λ,0(t− s)ds.

The previous results come from the well-known formula

E 1
2 ,1

(z) = ez
2

erfc(−z)

where erfc(z) = 1− erf(z) is the complementary error function with

erf(z) = 2√
π

∫ z

0

e−t2dt.
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5. Numerical example
Consider the example in the previous section with α = 1/2, γ = 3/2, λ = 1/3
and ω =

√
3/48. Note that, we choose those values to simplify our calculations.

Also, we take ξi = 1/2 and βi = (1/3)i (or βi = −(5/6)i) which imply that ∆ ∼
0.823223

∨
2.76777, S(3/2) = 1/2, S(0) = 2/

√
π, S′(3/2) ∼ 0.0759211

∨
0.225814

and S′(0) ∼ 0.906465
∨
1.44139. These conclude that A ∼ 1.18329

∨
0.906465 and

B ∼ 0.994558
∨
0.992484 which implies that Q = ω2A+B ∼ 0.996099

∨
0.993664 <

1. According to Theorem 3.1, there exists a unique solution for our problem in both
cases. To evaluate the mean and variance, apply Laplace transform to obtain

u(t) = L−1

{
s−

1
2

s2 + 1
3s

3
2 + 1

768

}
C + L−1

{
1

s2 + 1
3s

3
2 + 1

768

}
∗ ρ(t)

≜ g(t)C + h(t) ∗ ρ(t).

These lead us to formulate the mean and the variance of the displacement as follow

µ(t) =
u0

g(1)−
∞∑
i=1

βig(ξi)
g(t),

σ2(t) = K

∫ t

0

h2(t− s)ds.

Because there is no unknown constant in this case, we use a different strategy to
determine the exact solution. The denominator can be factorized as

s2 +
1

3
s

3
2 +

1

768
=

(√
s+

1

4

)2

(
√
s− a−)(

√
s− a+)

where
a± =

1

12
(1± i

√
2) ≜ a1 ± a2.

Then,

g(t) =
8

3
L−1

{
16s−

1
2

√
s+ 1

4

+
3s−

1
2

(
√
s+ 1

4 )
2
− cs−

1
2

√
s− a+

− ds−
1
2

√
s− a−

}
where

c± = 8± 7
√
2i ≜ c1 ± c2i.

By applying inverse Laplace transform, we get

g(t) =
8

3

(
16E 1

2 ,1

(
−1

4

√
t

)
+ 6

√
tE 1

2 ,
1
2

(
−1

4

√
t

)
− c+E 1

2 ,1

(
a+

√
t
)

−c−E 1
2 ,1

(
a−

√
t
))

.

The second term comes from

L−1

{
s−

1
2

(s
1
2 + 1

4 )
2

}
= −2L−1

{
d

ds

[
1

s
1
2 + 1

4

]}
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= 2tL−1

{
1

s
1
2 + 1

4

}

= 2
√
tE 1

2 ,
1
2

(
−1

4

√
t

)
.

It is easy to see that

E 1
2 ,

1
2

(
ℓ
√
t
)
=

1√
π
+ ℓ

√
tE 1

2 ,1

(
ℓ
√
t
)
=

1√
π
+ ℓ

√
teℓ

2terfc
(
−ℓ

√
t
)

which concludes that

g(t) =

(
128

3
− 4t

)
e

1
16 terfc

(
1

4

√
t

)
+

16
√
t√

π

− 8

3

(
c+e

a2
+terfc(−a+

√
t) + c−e

a2
−terfc(−a−

√
t)
)

=

(
128

3
− 4t

)
e

1
16 terfc

(
1

4

√
t

)
+

16
√
t√

π

− 8

3

(
c+e

a2
+t + c−e

a2
−t + c+e

a2
+terf(a+

√
t) + c−e

a2
−terf(a−

√
t)
)
.

It is easy to see that

c+e
a2
+t + c−e

a2
−t = e(a

2
1−a2

2)t[c1(e
2ia1a2t + e−2ia1a2t) + ic2(e

2ia1a2t − e−2ia1a2t)]

= 2e(a
2
1−a2

2)t[c1 cos(2a1a2t)− c2 sin(2a1a2t)].

and

c+e
a2
+terf(a+

√
t) + c−e

a2
−terf(a−

√
t)

=
2√
π
e(a

2
1−a2

2)t

(
c+e

2ia1a2t

∫ a+

√
t

0

e−s2ds+ c−e
−2ia1a2t

∫ a−
√
t

0

e−s2ds

)

=
2
√
t√
π
e(a

2
1−a2

2)t

(
c+a+e

2ia1a2t

∫ 1

0

e−a2
+ts2ds+ c−a−e

−2ia1a2t

∫ 1

0

e−a2
−ts2ds

)
=
2
√
t√
π
e(a

2
1−a2

2)t

∫ 1

0

e−(a2
1−a2

2)ts
2
(
c+a+e

2ia1a2t(1−s2) + c−a−e
−2ia1a2t(1−s2)

)
ds

=
4
√
t√
π
e(a

2
1−a2

2)t

∫ 1

0

e−(a2
1−a2

2)ts
2 (

(c1a1 − c2a2) cos(2a1a2t(1− s2))

−(c1a2 + c2a1) sin(2a1a2t(1− s2))
)
ds.

Therefore, we have

g(t) =

(
128

3
− 4t

)
e

1
16 terfc

(
1

4

√
t

)
+

16
√
t√

π

− 16

3
e−

1
144 t

[
8 cos

(√
2

72
t

)
− 7

√
2 sin

(√
2

72
t

)]

+
2
√
t

3
√
π
e−

1
144 t

∫ 1

0

e
1

144 ts
2

(
2 cos

(√
2

72
t(1− s2)

)
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+5
√
2 sin

(√
2

72
t(1− s2)

))
ds.

From the definitions of the functions g(t) and h(t), we find that

L{g(t)} = s−
1
2L{h(t)}

which implies that g(t) = I
1
2h(t) or equivalently to h(t) = cD

1
2 g(t). By using the

relation (1.82) in [20], we get

h(t) =
128

3
t−

1
2E 1

2 ,
1
2

(
−1

4

√
t

)
+

1

2
tE 1

2 ,1

(
−1

4

√
t

)
+ 4E 1

2 ,1

(
−1

4

√
t

)
− 2

√
t√
π

− 8

3
c+t

− 1
2E 1

2 ,
1
2

(
a+

√
t
)
− 8

3
c−t

− 1
2E 1

2 ,
1
2

(
a−

√
t
)

=
1

6
(3t− 40)e

1
16 terfc

(
1

4

√
t

)
− 2

√
t√
π

− 8

3
c+t

− 1
2E 1

2 ,
1
2

(
a+

√
t
)

− 8

3
c−t

− 1
2E 1

2 ,
1
2

(
a−

√
t
)
.

Thus, by using the same method used to construct the function g(t), we may reach
at

h(t) =
1

6
(3t− 40)e

1
16 terfc

(
1

4

√
t

)
− 2

√
t√
π

+
4

3
e−

1
144 t

(
2 cos

(√
2

72
t

)
+ 5

√
2 sin

(√
2

72
t

))

+
2
√
t

3
√
π
e−

1
144 t

∫ 1

0

e
1

144 ts
2

(
4 cos

(√
2

72
t(1− s2)

)

+
√
2 sin

(√
2

72
t(1− s2)

))
ds.

6. Conclusion
The existence and uniqueness of solution for nonlinear Langevin equations involv-
ing two fractional orders (1.1) with infinite-point boundary condition (1.2) have
been discussed. We applied the concepts of fractional calculus together with major
fixed point theorems to establish the existence and uniqueness results. To inves-
tigate our problem, we used Banach contraction principle, nonlinear alternative
Leray-Schauder theorem and Leray-Schauder degree theorem. Our technique was
straightforward and applicable to a variety of real world problems. In addition,
as an application of our results, the mean and variance of a fractional harmonic
oscillator with the undamped angular frequency of the oscillator under the effect
of a random force described as Gaussian colored noise were calculated. Two of
the limiting examples have been investigated to the fractional harmonic oscillator
Langevin equation: We stated the liquid’s shear stress to zero (λ = 0) and found
the basic harmonic oscillator. Also, when excluding the oscillator’s undamped an-
gular frequency (ω = 0), we got a special super-diffusive instance of the fractional
Langevin equation. Finally, a numerical example was offered to demonstrate the
fulfillment of our results.
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