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Abstract We are concerned with the nonlinear Schrödinger equation

−∆u+ λu = g(u) in RN , λ ∈ R,

with prescribed L2-norm
∫
RN u

2dx = ρ2. Under general assumptions about the
nonlinearity which allows at least mass critical growth, we prove the existence
of a ground state solution to the problem via a clear constrained minimization
method.
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1. Introduction

In this paper, we consider the following nonlinear Schrödinger equation
−∆u+ λu = g(u) in RN ,∫
RN
|u|2 dx = ρ2, u ∈ H1(RN ),

(1.1)

where ρ > 0 is a prescribed constant, N ≥ 3 and λ ∈ R will appear as Lagrange
multiplier.

Such problems are motivated in particular by searching for solitary waves or
stationary states in nonlinear equations of the Schrödinger or Klein-Gordon type.
For physical reasons, it is natural to study the existence of solutions with prescribed
L2-norm.

Let

S := Sρ = {u ∈ H1(RN ) : |u|2 = ρ} and Dρ = {u ∈ H1(RN ) : |u|2 ≤ ρ}

where H1(RN ) is endowed with the usual norm ‖u‖ = (|∇u|22 + |u|22)1/2 and | · |q
stands for the Lq-norm. Under suitable assumptions provided below, solutions to
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(1.1) are critical points of J : H1(RN )→ R given by

J(u) :=
1

2

∫
RN
|∇u|2dx−

∫
RN

G(u)dx,

where G(u) =
∫ u
0
g(s)ds, on the constraint S with λ ∈ R being the Lagrange

multiplier. Set
M := {u ∈ H1(RN )\{0} : M(u) = 0}

where

M(u) :=

∫
RN
|∇u|2dx− N

2

∫
RN

H(u)dx

with H(u) := g(u)u − 2G(u). Let h(u) := H ′(u). It is known that, thanks to the
Pohozaev identity in [4], any solution to (1.1) stays in M. For f1, f2 : R → R, as
in [5, Lemma 2.1], we write f1(s) � f2(s) for s ∈ R if f1(s) ≤ f2(s) and for any
γ > 0 there is |s| < γ such that f1(s) < f2(s).

In this paper, we make the following assumptions.

(G0) g ∈ C1(R) and there exists C > 0 such that g(u)u ≥ 0 and

|g′(u)| ≤ C(1 + |u|2
∗−2), for u ∈ R,

where 2∗ = (2N)/(N − 2).

(G1) η := lim sup|u|→0 g(u)u/|u|2+4/N < +∞.

(G2) lim|u|→+∞ g(u)u/|u|2+4/N = +∞.

(G3) lim|u|→+∞ g(u)u/|u|2∗ = 0.

(G4) (2 + 4/N)H(u) ≤ h(u)u, for u ∈ R.

(G5) (2 + 4/N)G(u) � g(u)u, for u ∈ R.
(G6) −∆u− g(u) = 0 has no solutions in Dρ\{0}.

Let CN,p be the optimal constant of the Gagliardo-Nirenberg inequality

|u|p ≤ CN,p|∇u|δ2|u|1−δ2 for u ∈ H1(RN ),

where δ = N( 1
2 −

1
p ). Since G can have L2-critical growth at the origin by (G1),

we need the assumption

(P0) N
2 ηC

2+4/N
N,2+4/Nρ

4
N < 1,

which implies that ρ or η is small.
In recent years, the existence of normalized solutions for nonlinear Schrödinger

equations has been studied widely under variant assumptions about g for instance
in [1, 2, 5, 7–9, 11–13, 15, 17, 18] and the references therein. Let 2N = 2 + 4

N . In
the L2-subcritical case, i.e. G(u) ∼ |u|p with 2 < p < 2N , one can obtain the
existence of a global minimizer of J directly on S, see [16]. In the L2-supercritical
and Sobolev subcritical (2N < p < 2∗) case, the energy functional J is unbounded
from above and from below and minimization does not work. For this case, using
a mountain-pass argument developed on S, Jeanjean [12] showed the existence of
one normalized solution. A different mini-max approach based on the σ-homotopy
stable family of compact subsets ofM has been applied in [2,3]. Note that in [2,3,
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12] the nonlinearity was assumed to satisfy the following condition of Ambrosetti-
Rabinowitz type: there exist 2N < α ≤ β < 2∗ such that

0 < αG(u) ≤ g(u)u ≤ βG(u), for u ∈ R\{0}.

Recently, Bieganowski and Mederski in [5] considered general growth conditions
on G in the spirit of Berestycki and Lions [4] and obtained ground states by a direct
minimization method. The delicate approach in [5] consists of minimizing J on the
constraint Dρ ∩M. Among other results, they obtained a normalized ground state
solution for (1.1) under assumptions (G0)− (G5), (P0) and

(G̃6) g(u)u � 2∗G(u) for u ∈ R.

Moreover, if N ∈ {3, 4}, g is odd, it is sufficient to assume that g(u)u ≤ 2∗G(u) for
u ∈ R.

In this paper, we investigate the existence of ground state solutions for (1.1)
and deal with general nonlinearities in a version slightly different from the ones
in [5]. We weaken some assumptions about g and refine some key ingredients of
the arguments in [5], such as the determination of the sign of the corresponding
Lagrange multipliers and the nonexistence of nontrivial solutions for the associated
elliptic equation. Precisely, we prove the following theorem.

Theorem 1.1. Assume (G0) − (G6) and (P0) hold. Then (1.1) has a normalized
ground state solution (u, λ) ∈ H1(RN )× R with λ > 0.

Remark 1.1. (G6) is an abstract assumption. As shown in [5], (G6) holds under

the assumptions (G0)− (G5) and (G̃6) for u ∈ R. In fact, if ũ ∈ Dρ\{0} is a weak
solution to −∆ũ = g(ũ), then by regularity, ũ is continuous. Moreover,∫

RN
|∇ũ|2dx =

∫
RN

g(ũ)ũdx and

∫
RN
|∇ũ|2dx = 2∗

∫
RN

G(ũ)dx.

Then it follows that ∫
RN

(g(ũ)ũ− 2∗G(ũ)) dx = 0,

which implies
g(ũ(x))ũ(x)− 2∗G(ũ(x)) = 0 for x ∈ RN .

Since ũ ∈ H1(RN ), there is an open interval I ⊂ R such that 0 ∈ I and g(u)u −
2∗G(u) = 0 for u ∈ I. Then we deduce that G(u) = C|u|2∗ for some C > 0 and u ∈
I, contradicting the definition of �. As an immediate corollary of this observation,
we obtain a normalized ground state solution of (1.1) under assumptions (G0) −
(G5), (P0) and (G̃6). Therefore, Theorem 1.1 can be regarded as a generalization
of the existence result in [5, Theorem 1.1]. Moreover, inspired by [10], we know
in advance the sign of the corresponding Lagrange multiplier λ > 0 by Clark’s
Theorem [6,10].

Under (G0) − (G5) and (P0), we can prove (G6) if N ∈ {3, 4} and g is odd.
Therefore, the following corollary is a generalization of the result in [5, Theorem
1.1(b)] where additional assumption g(u)u ≤ 2∗G(u) for u ∈ R was assumed.

Corollary 1.1. Suppose N ∈ {3, 4} and g is odd. Then under assumptions (G0)−
(G5) and (P0), (1.1) has a normalized ground state solution (u, λ) ∈ H1(RN ) × R
with u > 0 and λ > 0.
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Next, we replace (G6) by the following assumption which is simpler to check.

(G7) There exists C0 > 0 such that

g(u)u− (2 + 4/N)G(u) ≤ C0|u|2+4/N , for u ∈ R.

We introduce the following additional assumption about ρ.

(P1) N2

4 C0C
2+4/N
N,2+4/Nρ

4
N < 1 with C0 as in (G7).

As a corollary of Theorem 1.1, we obtain

Corollary 1.2. Assume (G0) − (G5), (G7) and (P0) − (P1) hold. Then (1.1) has
a normalized ground state solution (u, λ) ∈ H1(RN )× R with λ > 0.

Remark 1.2. An example of such a nonlinearity satisfying (G0)− (G5) and (G7)
is given by

G(u) = |u|2+ 4
N log(1 + |u|).

Then g satisfies (G7) with C0 = 1, (G1) with η = 0 and (G2)− (G5). Therefore,−∆u+ λu = (2 + 4
N )|u| 4N u log(1 + |u|) + |u|1+

4
N u

1+|u| in RN ,∫
RN |u|

2
dx = ρ2,

has a normalized ground state solution if ρ < ρ∗ with ρ∗ =

(
4

N2C
2+4/N

N,2+4/N

)N
4

.

Here and in the sequel, C denotes a generic positive constant which may vary
from one equation to another. In the next section, we give the proof of the main
results.

2. Proof of main results

First, we recall the property on the notion f1 � f2 in [5, Lemma 2.1].

Lemma 2.1. Let f1, f2 ∈ C(R) and assume there exists C > 0 such that |f1(u)|+
|f2(u)| ≤ C(|u|2 + |u|2∗) for every u ∈ R. Then f1 � f2 if and only if f1 ≤ f2 and∫

RN
f1(u)− f2(u)dx < 0, for every u ∈ H1(RN ).

Lemma 2.2. Assume (G0), (G1), (G3), (G5) and (P0) hold. Then

inf
u∈Dρ∩M

|∇u|2 > 0.

Proof. By (G0), (G1) and (G3), for any ε > 0 there exists Rε > 0 such that

g(u)u ≤ ε|u|2
∗

for |u| ≥ Rε and g(u)u ≤ (ε+ η)|u|2+ 4
N for |u| ≤ R−1ε . (2.1)

By (2.1), we deduce that for some p ∈ (2 + 4/N, 2∗), there exists cε > 0 such that

H(u) ≤ g(u)u ≤ ε|u|2
∗

+ cε|u|p + (ε+ η)|u|2+ 4
N for u ∈ R.
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This implies that for u ∈ Dρ ∩M,

|∇u|22 =
N

2

∫
RN

H(u)dx ≤ N

2

∫
RN

ε|u|2
∗

+ cε|u|p + (ε+ η)|u|2+ 4
N dx.

Then the Gagliardo-Nirenberg inequality and the Sobolev embedding inequality
imply that

|∇u|22 ≤ εC|∇u|2
∗

2 + εC|∇u|22 + cεC|∇u|δp2 + N
2 ηC

2+4/N
N,2+4/Nρ

4
N |∇u|22 (2.2)

where δp := N(p − 2)/2 > 2 and C is a positive constant. Therefore, we see that

|∇u|22 stays away from 0 on Dρ ∩M if N
2 ηC

2+4/N
N,2+4/Nρ

4
N < 1.

Next, let λ > 0 and consider the function

ϕ(λ) := J(λ
N
2 u(λ·)).

Note that (G1), (G3) and (G5) yield that for any ε > 0 there is cε > 0 such that

g(u)u ≤ (ε+ η)|u|2+ 4
N + cε|u|2

∗
,

and

G(u) ≤ N

2N + 4

(
(ε+ η)|u|2+ 4

N + cε|u|2
∗)
. (2.3)

For u ∈ H1(RN )\{0} satisfying

ηC
2+ 4

N

N,2+ 4
N

|u|
4
N
2 < 1 +

2

N
, (2.4)

we have the following result by using of a slight modification of the proof of [5,
Lemma 2.3].

Lemma 2.3. Assume (G0) − (G5) hold. Then for u ∈ H1(RN )\{0} satisfying
(2.4), there is an interval [a, b] ⊂ (0,+∞) such that each λ ∈ [a, b] is a global
maximizer for ϕ and ϕ is increasing on (0, a) and decreasing on (b,∞). Moreover,

M(λ
N
2 u(λ·)) = 0 if and only if λ ∈ [a, b], M(λ

N
2 u(λ·)) > 0 if and only if λ ∈ (0, a),

M(λ
N
2 u(λ·)) < 0 if and only if λ > b.

Remark 2.1. We observe that for u ∈ H1(RN )\{0} satisfying (P0), ϕ′(λ0) = 0

means λ0 ∗ u := λ
N
2
0 u(λ0·) ∈ M. Then from (2.3) and Lemma 2.3, a similar

argument to [5, Lemma 2.5] leads to

cρ := inf
u∈Dρ∩M

J(u) > 0. (2.5)

By using similar arguments as in the proof of [5, Lemma 2.4], we deduce that any
minimizing sequence {un} ⊂ Dρ ∩M for cρ is bounded. Moreover, along the lines
of the proof of [5, Lemma 2.7], one can easily establish that J |Dρ∩M attains its
infimum cρ at some point u0 ∈ Dρ ∩M.

Lemma 2.4. Assume (G0)− (G6) hold. Then Sρ ∩M contains all minimizers of
J on Dρ ∩M.
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Proof. We modify the proof of [5, Lemma 2.8]. Suppose on the contrary that
ũ 6= 0 is a minimizer of J on Dρ ∩M with ũ ∈ Dρ\Sρ, which implies that ũ is a
minimizer of J on (Dρ\Sρ) ∩M. Therefore there is a Lagrange multiplier µ ∈ R
such that

J ′(ũ)v + µ

∫
RN

(
∇ũ∇v − N

4
h(ũ)v

)
dx = 0

for every v ∈ H1(RN ). Then ũ solves

− (1 + µ)∆ũ = g(ũ) +
N

4
µh(ũ). (2.6)

Next, we distinguish three cases to deduce contradictions.

Case 1 (µ = −1). Then we have∫
RN

g(ũ)ũ− N

4
h(ũ)ũdx = 0. (2.7)

On the other hand, it follows from (G5) and Lemma 2.1 that∫
RN

g(ũ)ũ− (2 +
4

N
)G(ũ)dx > 0.

This together with (G4), we have∫
RN

g(ũ)ũdx < (1 +
N

2
)

∫
RN

H(ũ)dx ≤
∫
RN

N

4
h(ũ)ũdx,

which contradicts (2.7).

Case 2 (µ = 0). Then ũ is a nontrivial weak solution to

−∆ũ = g(ũ),

which contradicts (G6).

Case 3 (µ 6= −1 and µ 6= 0). Then we have the Nehari-type identity

(1 + µ)

∫
RN
|∇ũ|2dx =

∫
RN

g(ũ)ũ+
N

4
µh(ũ)ũdx

and the Pohoz̆aev-type identity

N − 2

2
(1 + µ)

∫
RN
|∇ũ|2dx = N

∫
RN

G(ũ) +
N

4
µH(ũ)dx.

Combining the above equalities with ũ ∈M yields

(1 + µ)
N

2

∫
RN

H(ũ)dx =
N

2

∫
RN

H(ũ) +
N

4
µ(h(ũ)ũ− 2H(ũ))dx,

that is,

µ

∫
RN

H(ũ)dx =
N

4
µ

∫
RN

h(ũ)ũ− 2H(ũ)dx.

Since µ 6= 0, we have ∫
RN

h(ũ)ũ− (2 +
4

N
)H(ũ)dx = 0.
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Notice that, by regularity, any weak solution of (2.6) is continuous. Then by (G4)
we have

h(ũ(x))ũ(x)− (2 +
4

N
)H(ũ(x)) = 0, for x ∈ RN .

Since ũ ∈ H1(RN ), there is an open interval I ⊂ R such that 0 ∈ I and h(u)u −
(2 + 4

N )H(u) = 0 for u ∈ I. Thus from (G0) we deduce that

H(u) = C|u|2+ 4
N and G(u) = C|u|2+ 4

N

for some C > 0 and u ∈ I, in contradiction with (G5).
If u0 is a minimizer of J on Dρ ∩M. Then under the assumptions of Lemma

2.4, every minimizer u ∈ Dρ ∩ M of J |Dρ∩M is a minimizer of J |Sρ∩M. Then
u0 ∈ Sρ ∩M and J(u0) = infu∈Sρ∩M J(u). Therefore, by the Lagrange multiplier
rule, there exists λ, µ ∈ R such that

−∆u0 − g(u0) + λu0 + µ(−∆u0 −
N

4
h(u0)) = 0. (2.8)

We need the following proposition which is related with Clarke’s [6, Theorem
1]. The proof can be found in [10, Proposition A.1].

Proposition 2.1. Let H be a real Hilbert space and f, φi, ψj ∈ C1(H),
i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}. Suppose that for every

x ∈
m⋂
i=1

φ−1i (0) ∩
n⋂
j=1

ψ−1j (0)

the differential (
φ′i(x), ψ′j(x)

)
1≤i≤m,1≤j≤n : H → Rm+n

is surjective. If x̄ ∈ H minimizes f over

{x ∈ H : φi(x) ≤ 0 for every i = 1, . . . ,m and ψj(x) = 0 for every j = 1, . . . , n} ,

then there exist (λi)
m
i=1 ∈ [0,∞)m and (σj)

n
j=1 ∈ Rn such that

f ′(x̄) +

m∑
i=1

λiφ
′
i(x̄) +

n∑
j=1

σiψ
′
j(x̄) = 0.

Using Proposition 2.1, we obtain the following estimate on the sign of λ, which
plays an important role in the proceeding arguments.

Lemma 2.5. Let (P0), (G0)−(G6) be satisfied, and λ, µ be the Lagrange multipliers
associated to (2.8). Then λ > 0.

Proof. First observe that for u ∈ Sρ ∩M, φ and ψ are of class C1 where

φ(u) :=

∫
RN

u2dx− ρ2 and ψ(u) := |∇u|22 −
N

2

∫
RN

H(u)dx.

To apply Proposition 2.1, we claim that d(φ, ψ) : H1(RN )→ R2 is surjective. It is
sufficient to show that dφ(u), dψ(u) are linearly independent to prove the claim. If
not, then there exist γ 6= 0 such that u is a solution to

γu = −∆u− N

4
h(u).
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Then the Nehari-type identity and the Pohozaev-type identity read∫
RN
|∇u|2dx = γ

∫
RN
|u|2dx+

∫
RN

N

4
h(u)udx

and

(N − 2)

∫
RN
|∇u|2dx = γN

∫
RN
|u|2dx+

N2

2

∫
RN

H(u)dx.

Combining the above equalities with u ∈M yields∫
RN

h(u)u− (2 +
4

N
)H(u)dx = 0.

Arguing as in Lemma 2.4, we obtain a contradiction. Then by Proposition A.1
of [10], we get λ ≥ 0. Using again Lemma 2.4 we deduce also that λ = 0 is
impossible.

Proof. [Proof of Theorem 1.1] Under assumptions (G0)− (G6), from Lemma 2.4
and Lemma 2.5 it follows that u0 ∈ Sρ ∩M is a minimizer of J on Dρ ∩M and for
some λ > 0 and µ ∈ R,

− (1 + µ)∆u0 + λu0 = g(u0) +
N

4
µh(u0). (2.9)

Next we claim that µ 6= −1. If not, then we have

λρ2 =

∫
RN

g(u0)u0 −
N

4
h(u0)u0dx.

Together with (G4), we obtain

λρ2 ≤ N

2

∫
RN

(2 +
4

N
)G(u0)− g(u0)u0dx.

Hence (G5) and Lemma 2.1 imply that λ < 0, a contradiction. Then for (2.9), we
have

(1 + µ)

∫
RN
|∇u0|2 + λ|u0|2dx =

∫
RN

g(u0)u0 +
N

4
µh(u0)u0dx

and

(1 + µ)

∫
RN
|∇u0|2 +

2∗

2
λ|u0|2dx = 2∗

∫
RN

G(u0) +
N

4
µH(u0)dx,

which imply that

(1 + µ)

∫
RN
|∇u0|2dx =

N

2

∫
RN

H(u0) +
N

4
µ(h(u0)u0 − 2H(u0))dx.

Then it follows from u0 ∈M that

µ

∫
RN

h(u0)u0 − (2 +
4

N
)H(u0)dx = 0.

Also, arguing as in Lemma 2.4, we deduce that∫
RN

h(u0)u0 − (2 +
4

N
)H(u0)dx > 0.

This means that µ = 0 and u0 ∈ Sρ is a solution of −∆u0 +λu0 = g(u0) with λ > 0.

To prove Corollary 1.1, we recall a Liouville type result due to [11, Lemma A.2].
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Lemma 2.6. Suppose 0 < p ≤ N/(N − 2) when N ≥ 3 and 0 < p < ∞ when
N = 1, 2. Let u ∈ Lp(RN ) be a smooth nonnegative function and satisfy −∆u ≥ 0
in RN . Then u ≡ 0 holds.

Proof. [Proof of Corollary 1.1] From Lemma 2.2, Lemma 2.3 and Remark 2.1, we
deduce the existence of a bounded minimizing sequence {un} ⊂ Dρ ∩M for cρ. We
also obtain a point u0 ∈ Dρ∩M which is a minimizer of J on Dρ∩M. To conclude
the proof of Lemma 2.4, it remains to consider Case 2 where µ = 0. If ũ ∈ M is
a nontrivial weak solution to −∆ũ = g(ũ). Since we suppose that g is odd. Then
G and H are even, so that G(|u|) = G(u) and H(|u|) = H(u) for all u ∈ H1(RN ).
Moreover, ∫

RN
|∇|u||2dx ≤

∫
RN
|∇u|2dx,

for all u ∈ H1(RN ). Therefore, |ũ| is also a minimizer of J |Dρ∩M. Then ũ can be
chosen to be a nonnegative function. Then if N ∈ {3, 4}, 2 ≤ N/(N − 2). Since
ũ ∈ L2(RN ) it follows from Lemma 2.6 that ũ ≡ 0, a contradiction. Then the
existence of the normalized ground state solution can be proved along the lines of
the proof of Lemma 2.5 and Theorem 1.1.

Proof. [Proof of Corollary 1.2] Since G satisfies (G0)−(G5), Lemma 2.4 still holds
in the case µ 6= 0. For the case µ = 0, it follows from ũ ∈M that∫

RN
G(ũ) dx =

1

2

∫
RN

g(ũ)ũ dx− 1

N

∫
RN
|∇ũ|2 dx. (2.10)

Observing that
∫
RN |∇ũ|

2dx =
∫
RN g(ũ)ũdx, by (2.10) and direct calculation, we

obtain ∫
RN
|∇ũ|2dx− N2

4

∫
RN

g(ũ)ũ− (2 +
4

N
)G(ũ)dx

=
(
−N2

) ∫
RN
|∇ũ|2 − g(ũ)ũdx

= 0.

Then together with (G7) and the Gagliardo–Nirenberg inequality, we obtain

0 ≥
∫
RN
|∇ũ|2dx− N2

4
C0

∫
RN
|ũ|2+ 4

N dx

≥ (1− N2

4
C0C

2+4/N
N,2+4/Nρ

4
N )

∫
RN
|∇ũ|2dx

which is a contradiction to the fact that ũ 6= 0 and the assumption (P1). The rest
of the proof proceeds exactly as in Theorem 1.1.
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