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Abstract In this article, the (2+1)-dimensional variable coefficients disper-
sive long wave equations (vcDLWs) are studied by the Lie symmetry analysis
method. The infinitesimal generators and geometric vector fields are given.
Optimal system of the (2+1)-dimensional vcDLWs are analyzed by Olver’s
method. Based on the optimal system, the (2+1)-dimensional vcDLW equa-
tions are reduced to (1+1)-dimensional equations. A number of new exact so-
lutions of vcDLW equations are derived. Some kink solutions and 2-soliton so-
lutions are obtained by using (1/G′)-expansion method and (G′/G)-expansion
method. Many different types of exact solutions can be obtained by chang-
ing the coefficient functions. By exploring the evolution of the solutions with
function of the coefficients and time t, the dynamic behaviors of the solutions
are analysed. At last, the conservation laws of the (2+1)-dimensional vcDLWs
are derived based on the nonlinear self-adjointness.
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1. Introduction

Nonlinear partial differential equations (NLPDEs) are important models used to de-
scribe nonlinear phenomena in chemistry, biology, physics, etc [5,20]. With the rapid
development of society, the use of NLPDEs is becoming more and more widespread
and intensive. Therefore, the study of the exact solutions of the NLPDEs is of
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great theoretical importance and research value [1, 4, 26, 33]. Moreover, scholars
have proposed various methods to solve the NLPDEs, such as the Hirota bilin-
ear method [3, 16], the Lie symmetry analysis [6, 12, 13, 21], the Darboux trans-
formation [8, 17], the inverse scattering method and the Bäcklund transforma-
tion [10,14,30]. The Lie symmetry analysis method uses the symmetry of differential
equations and continuous infinitesimal transformations to study the equations. It is
a common method for solving partial differential equations. Due to the limitations
of constant coefficient equations in describing physical phenomena, the study of
variable coefficient equations that introduce some arbitrary functions has become a
hot issue [9].

The (2+1)-dimensional dispersive long wave equations (DLWs) are NLPDEs
[11]. The form of the (2+1)-dimensional DLWs are as follows

uyt+vxx + uyux + uuxy = 0,

vt + ux + uxv + uvx + uxxy = 0,

(1.1)

where u, v are two functions of x, y, t.

In reference [29], Kajal et al. used the similar transformation method obtain
some solutions of physical significance for the (2+1)-dimensional DLWs. In reference
[35], Xia et al. derive the Bäcklund transform and residual symmetry of the (2+1)-
dimensional DLWs from the standard truncated Painlevé expansion. At the same
time Xia succeeded in reducing the residual symmetry to a Lie point symmetry by
introducing an appropriate auxiliary dependent variable. In this article, we will
study the DLW equation using the Lie symmetry analysis. A crucial variety of
exact solutions can be obtained. The dynamical behaviour of the solutions are also
analysed by drawing figures of the solutions [34].

The (2+1)-dimensional vcDLWs are the following form

F1 = uyt+a (t) vxx + b (t) (uyux + uuxy) = 0,

F2 = vt + c (t) (ux + uxv + uvx) + d (t)uxxy = 0,

(1.2)

where a (t) , b (t) , c (t) , d (t) are four arbitrary functions. When a (t) = b (t) =
c (t) = d (t) = 1, Eqs.(1.2) is converted to Eqs.(1.1).

This paper is organised as follows: Infinitely generated small elements of the
independent variables are obtained by constructing third-order extensions and Lie
symmetry analysis method in Section 2. The Lie exchange table and the Lie ac-
companying table are derived in Section 3. The invariants are derived [22, 23].
The optimal system is determined by discussing the invariants. Based on the opti-
mal system, the reduced equations of Eqs.(1.2) are obtained in Section 4. Various
types of exact solutions, which include kink solutions, periodic solutions and 2-
soliton solutions, are obtained using the (G′/G)-expansion and (1/G′)-expansion
method [7, 18, 27, 37]. In addition, the relevant figures of the solution are given for
discussion in section 5. The nonlinear self-adjointness of (2+1)-dimensional vcDLWs
is given. Based on nonlinear self-adjointness, conservation laws are derived in sec-
tion 6. The conclusions of this paper are given in section 7.
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2. Lie symmetry analysis

In this section, the symmetry Lie group of Eqs.(1.2) is determined. First, a set of
one-parameter transformations is assumed as follows

x̃ = x+ ε̃
_

ξ + o
(
ε̃2
)
,

ỹ = y + ε̃
_
η + o

(
ε̃2
)
,

t̃ = t+ ε̃
_
τ + o

(
ε̃2
)
, (2.1)

ũ = u+ ε̃
_
ϕ + o

(
ε̃2
)
,

ṽ = v + ε̃
_

ψ + o
(
ε̃2
)
,

where ε̃ is an infinitesimal parameter and
_

ξ ,
_
τ ,

_
η,

_
ϕ,

_

ψ are the infinitesimal generator

elements.
_

ξ ,
_
τ ,

_
η,

_
ϕ,

_

ψ relate to x, y, t, u, v. The vector field V̂ associated with
Eqs.(1.2) is given as

V̂ =
_

ξ
∂

∂x
+

_
τ
∂

∂t
+

_
η
∂

∂y
+

_
ϕ
∂

∂u
+

_

ψ
∂

∂v
. (2.2)

Subsequently, the Lie symmetry of Eqs.(1.2) will be generated by Eq.(2.1). Also,
we can obtain V̂ of the third-order prolongation

Pr(3)V̂ =
_

ξ
∂

∂x
+

_
τ
∂

∂t
+

_
η
∂

∂y
+

_
ϕ
∂

∂u
+

_

ψ
∂

∂v
+

_
ϕ
x ∂

∂ux
+

_
ϕ
y ∂

∂uy
+

_
ϕ
xy ∂

∂uxy

+
_
ϕ
yt ∂

∂uyt
+

_
ϕ
xxy ∂

∂uxxy
+

_

ψ
x ∂

∂vx
+

_

ψ
t ∂

∂vt
+

_

ψ
xx ∂

∂vxx
,

(2.3)
where

_
ϕ
x

= Dx

(
_
ϕ −

_

ξux −
_
ηuy −

_
τ ut

)
+

_

ξuxx +
_
ηuyx +

_
τ utx,

_
ϕ
y

= Dy

(
_
ϕ −

_

ξux −
_
ηuy −

_
τ ut

)
+

_

ξuxy +
_
ηuyy +

_
τ uty,

_
ϕ
xy

= Dxy

(
_
ϕ −

_

ξux −
_
ηuy −

_
τ ut

)
+

_

ξuxxy +
_
ηuyxy +

_
τ utxy,

_
ϕ
yt

= Dyt

(
_
ϕ −

_

ξux −
_
ηuy −

_
τ ut

)
+

_

ξuxyt +
_
ηuyyt +

_
τ utyt,

_
ϕ
xxy

= Dxxy

(
_
ϕ −

_

ξux −
_
ηuy −

_
τ ut

)
+

_

ξuxxxy +
_
ηuyxxy +

_
τ utxxy,

_

ψ
x

= Dx

(
_

ψ −
_

ξ vx −
_
ηvy −

_
τ vt

)
+

_

ξ vxx +
_
ηvxy +

_
τ vxt,

_

ψ
t

= Dt

(
_

ψ −
_

ξ vx −
_
ηvy −

_
τ vt

)
+

_

ξ vxt +
_
ηvyt +

_
τ vtt,

_

ψ
xx

= Dxx

(
_

ψ −
_

ξ vx −
_
ηvy −

_
τ vt

)
+

_

ξ vxxx +
_
ηvyxx +

_
τ vtxx,

(2.4)

where Dx, Dy, Dt are full differential of x, y, t.
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Applying Pr(3)V̂ to Eqs.(1.2) and expanding gives

_
ϕ
yt

+ a (t)
_

ψ
xx

+ b (t)
[
_
ϕ
y
ux + uy

_
ϕ
x

+
_
ϕuyx + u

_
ϕ
yx
]

= 0,

_

ψ
t

+ c (t)

[
_
ϕ
x

+
_
ϕ
x
v + ux

_

ψ +
_
ϕvx + u

_

ψ
x
]

+ d (t)
_
ϕ
xxy

= 0.

(2.5)

Substituting Eqs.(2.4) into Eqs.(2.5) and extracting the derivative coefficients
of each order, a set of decision equations is obtained. Solving it can derive

_

ξ = − (c̄1 + c̄2)x+ c̄3,
_
η = c̄2y + c̄5,

_
τ =

∫
(−2 (c̄1 + c̄2) a (t)) dt+ c̄4

a (t)
,

_
ϕ = (c̄1 + c̄2)u,

_

ψ = (c̄1 + 1) v,

(2.6)

where c̄j(j = 1, 2, 3, 4, 5) are arbitrary constants. Moreover, a (t) , b (t) , c (t) , d (t)
must satisfy

2 (H + L) a (t) +

(
d

dt
a (t)

)
_
τ +

(
∂

∂t
_
τ

)
a (t) = 0,

2 (H + L) b (t) +

(
d

dt
b (t)

)
_
τ +

(
∂

∂t
_
τ

)
b (t) = 0,

2 (H + L) c (t) +

(
d

dt
c (t)

)
_
τ +

(
∂

∂t
_
τ

)
c (t) = 0,

2 (H + L) d (t) +

(
d

dt
d (t)

)
_
τ +

(
∂

∂t
_
τ

)
d (t) = 0.

(2.7)

Assigning different values to c̄j(j = 1, 2, 3, 4, 5), the vector field can be obtained
as follows

V̂1 = −x ∂

∂x
−

2
∫
a (t) dt

a (t)

∂

∂t
+ u

∂

∂u
+ (v + 1)

∂

∂v
,

V̂2 = −x ∂

∂x
−

2
∫
a (t) dt

a (t)

∂

∂t
+ y

∂

∂y
+ u

∂

∂u
,

V̂3 =
∂

∂x
, V̂4 =

1

a (t)

∂

∂t
, V̂5 =

∂

∂y
.

(2.8)

These vector fields V̂i (1 ≤ i ≤ 5) can be expressed as V̂ = c̄1V̂1 + c̄2V̂2 + c̄3V̂3 +
c̄4V̂4 + c̄5V̂5.

Besides, the Lie exchange relation of Eqs.(1.2) is given in Table 1 by using
vector fields V̂i (1 ≤ i ≤ 5).

3. Optimal system of vcDLWs

In this section, the one-dimensional optimal system of Eqs.(1.2) is derived based on
the Lie exchange relation and the Lie accompanying relation [19,24,28,31,32].

First, we can easily verify that the vector fields V̂i (1 ≤ i ≤ 5) is closed in the

Lie bracket operation
[
V̂β , V̂γ

]
= V̂βV̂γ − V̂γ V̂β . Based on the exchange relations of

the vector fields, we can find that the transformed Lie groups constitute an infinite
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Table 1. Commutator table.[
V̂β , V̂γ

]
V̂1 V̂2 V̂3 V̂4 V̂5

V̂1 0 0 V̂3 2V̂4 0

V̂2 0 0 V̂3 2V̂4 −V̂5

V̂3 −V̂3 −V̂3 0 0 0

V̂4 −2V̂4 −2V̂4 0 0 0

V̂5 0 V̂5 0 0 0

dimensional Lie algebra. Meanwhile, Lie accompanying Table 2 can be obtained
from Table 1. The Lie series for determining the Lie algebraic representation is

Ad
(

exp (ε̃) V̂β

)
V̂γ = V̂γ − ε̃

[
V̂β , V̂γ

]
+

1

2
ε̃2
[
V̂β ,
[
V̂β , V̂γ

]]
− . . . . (3.1)

Table 2. Adjoint representation table.

Ad V̂1 V̂2 V̂3 V̂4 V̂5

V̂1 V̂1 V̂2 V̂3e
−ε̃ V̂4e

−2ε̃ V̂5

V̂2 V̂1 V̂2 V̂3e
−ε̃ V̂4e

−2ε̃ V̂5e
ε̃

V̂3 V̂1 + ε̃V̂3 V̂2 + ε̃V̂3 V̂3 V̂4 V̂5

V̂4 V̂1 + 2ε̃V̂4 V̂2 + 2ε̃V̂4 V̂3 V̂4 V̂5

V̂5 V̂1 V̂2 − ε̃V̂5 V̂3 V̂4 V̂5

For vector V̂ =
5∑

β=1

^
gβV̂β , an arbitrary vector Ŵ =

5∑
γ=1

^

hγ V̂γ is chosen and its

accompanying expression is given

Adexp(ε̃Ŵ)

(
V̂
)

= e−ε̃Ŵ V̂ eε̃Ŵ

= V̂ − ε̃
[
Ŵ , V̂

]
+
ε̃2

2!

[
Ŵ ,
[
Ŵ , V̂

]]
− . . .

=
(
^
g 1V̂1 + · · ·+ ^

g 6V̂6

)
− ε̃

[
^

h1V̂1 + · · ·+
^

h6V̂6,
^
g 1V̂1 + · · ·+ ^

g 6V̂
]

+ o
(
ε̃2
)

=
(
^
g 1V̂1 + · · ·+ ^

g 6V̂6

)
− ε̃

(
ρ̃1V̂1 + · · ·+ ρ̃6V̂6

)
+ o

(
ε̃2
)
,

(3.2)

where ρ̃i (i = 1, 2, 3, 4, 5) is decided by Table 1 and

ρ̃1 = 0,

ρ̃2 = 0,

ρ̃3 =
^

h1
^
g 3 +

^

h2
^
g 3 −

^

h3
^
g 1 −

^

h3
^
g 2,
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ρ̃4 = 2
^

h1
^
g 4 + 2

^

h2
^
g 4 − 2

^

h4
^
g 1 − 2

^

h4
^
g 2,

ρ̃5 = −
^

h2
^
g 5 +

^

h5
^
g 2, (3.3)

where ρ̃i (i = 1, 2, 3, 4, 5) must satisfy

ρ̃1
∂φ̃

∂
^
g 1

+ ρ̃2
∂φ̃

∂
^
g 2

+ ρ̃3
∂φ̃

∂
^
g 3

+ ρ̃4
∂φ̃

∂
^
g 4

+ ρ̃5
∂φ̃

∂
^
g 5

= 0. (3.4)

Expanding Eq.(3.4) and extracting extracting the coefficient of
^
g i (i=1, 2, 3, 4, 5)

can obtain
^

h1 :
^
g 3

∂φ̃

∂
^
g 3

+2
^
g 4

∂φ̃

∂
^
g 4

= 0,

^

h2 :
^
g 3

∂φ̃

∂g3
+2

^
g 4

∂φ̃

∂
^
g 4

− ^
g 5

∂φ̃

∂
^
g 5

= 0,

^

h3 : −^g 1

∂φ̃

∂
^
g 3

− ^
g 2

∂φ̃

∂
^
g 3

= 0,

^

h4 : −2
^
g 1

∂φ̃

∂
^
g 4

− 2
^
g 2

∂φ̃

∂
^
g 4

= 0,

^

h5 :
^
g 2

∂φ̃

∂
^
g 5

= 0.

(3.5)

Solving Eqs.(3.5), we can get the invariant function

φ̃
(
^
g 1, · · · ,

^
g 5

)
= F̂

(
^
g 1,

^
g 2

)
, (3.6)

where F̂ is a free function about
^
g 1,

^
g 2.

Based on Table 2, the accompanying transformation matrix can be constructed.

Applying the accompanying actions of Ŵ to Ṽ =
5∑

β=1

gβṼβ , we can obtain

Adexp(ε̃1V̂1)

(
V̂
)

=
^
g 1Adexp(ε̃1V̂1)

(
V̂1

)
+ · · ·+ ^

g 5Adexp(ε̃1V̂1)

(
V̂5

)
=

^
g 1V̂1 +

^
g 2V̂2 +

^
g 3e
−ε̃V̂3 +

^
g 4e
−2ε̃V̂4 +

^
g 5V̂5

=
(
^
g 1,

^
g 2,

^
g 3,

^
g 4,

^
g 5

)
A1

(
V̂1, V̂2, V̂3, V̂4, V̂5

)T
.

(3.7)

So

A1 =



1 0 0 0 0

0 1 0 0 0

0 0 e−ε̃1 0 0

0 0 0 e−2ε̃1 0

0 0 0 0 1


. (3.8)
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Similarly, we can obtain

A2 =



1 0 0 0 0

0 1 0 0 0

0 0 e−ε̃2 0 0

0 0 0 e−2ε̃2 0

0 0 0 0 eε̃2


, A3 =



1 0 ε̃3 0 0

0 1 ε̃3 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


,

A4 =



1 0 0 2ε̃4 0

0 1 0 2ε̃4 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


, A5 =



1 0 0 0 0

0 1 0 0 −ε̃5

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


.

(3.9)

Thus the general accompanying matrix is A = A1A2A3A4A5. Substituting
Eq.(3.8) and Eqs.(3.9) into A, we get

A =



1 0 ε̃3 2ε̃4 0

0 1 ε̃3 2ε̃4 −ε̃5

0 0 e−ε̃1e−ε̃2 0 0

0 0 0 e−2ε̃1e−2ε̃2 0

0 0 0 0 eε̃2


. (3.10)

The accompanying transformation equation of Eqs.(1.2) can be expressed as(
ĝ1 ĝ2 ĝ3 ĝ4 ĝ5

)
=
(
^
g 1

^
g 2

^
g 3

^
g 4

^
g 5

)
A. (3.11)

Substituting Eq.(3.10) into Eq.(3.11) obtains

ĝ1 =
^
g 1,

ĝ2 =
^
g 2,

ĝ3 =
^
g 1ε̃3 +

^
g 2ε̃3 +

^
g 3e
−ε̃1e−ε̃2 ,

ĝ4 = 2
^
g 1ε̃4 + 2

^
g 2ε̃4 +

^
g 4e
−2ε̃1e−2ε̃2 , (3.12)

ĝ5 = −^g 2ε̃5 +
^
g 5e

ε̃2 .

The optimal system of Eqs.(1.2) is assumed as follows

V̄ = ĝ1V̂1 + ĝ2V̂2 + ĝ3V̂3 + ĝ4V̂4 + ĝ5V̂5. (3.13)

Finally, the several cases of one-dimensional optimal systems are discussed based
on invariant functions.
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Case 1.
^
g 1 6= 0,

^
g 2 6= 0

Supposing
^
g i = 1 (i = 1, 2) , ĝj = 0 (j = 3, 4, 5) and substituting them into

Eq.(3.13), we can obtain ε̃3=
−^g 3e

−ε̃1e−ε̃2
^
g 1 +

^
g 2

, ε̃4=
−^g 4e

−2ε̃1e−2ε̃2

2
(
^
g 1 +

^
g 2

) , ε̃5 =
^
g 5e

ε̃2

^
g 2

. The

representative element of the one-dimensional subalgebraic optimal system is V̄ =
V̂1 + V̂2.

Case 2.
^
g 1 6= 0,

^
g 2 = 0

Making
^
g i = 1 (i = 1) , ĝj = 0 (j = 2, 3, 4) , ĝ5 = 1, we can get ε̃2 = ln

1
^
g 5

,

ε̃3=
−^g 3e

−ε̃1e−ε̃2
^
g 1

, ε̃4=
−^g 4e

−2ε̃1e−2ε̃2

2
^
g 1

. The optimal system is V̄ = V̂1 + V̂5.

Case 3.
^
g 1 = 0,

^
g 2 6= 0

Letting
^
g i = 1 (i = 2) , ĝj = 0 (j = 1, 3, 4, 5) and substituting into Eq.(3.13), we

can obtain ε̃3=
−^g 3e

−ε̃1e−ε̃2
^
g 2

, ε̃4=
−^g 4e

−2ε̃1e−2ε̃2

2
^
g 2

, ε̃5 =
^
g 5e

ε̃2

^
g 2

. The representative

element of the one-dimensional subalgebraic optimal system is V̄ = V̂2.

Case 4.
^
g 1 = 0,

^
g 2 = 0

In this case, new invariants φ̃
(
^
g 1, · · · ,

^
g 5

)
= F̂

(
^
g 4

^
g 3

2

)
have to be found. Ob-

viously the new invariants are
^
g 3,

^
g 4. Next we will discuss the optimal system

according to the new invariants.

Case 4.1.
^
g 3 6= 0,

^
g 4 6= 0

Supposing
^
g i = 1 (i = 3, 4) , ĝj = 0 (j = 1, 2) , ĝ5 = 1, the optimal system is

V̄ = V̂3 + V̂4 + V̂5.

Case 4.2.
^
g 3 6= 0,

^
g 4 = 0

Making ĝi = 0 (i = 1, 2, 4) , ĝ3 = α1, ĝ5 = α2, the optimal system is V̄ = α1V̂3 +
α2V̂5.

Case 4.3.
^
g 3 = 0,

^
g 4 6= 0

Letting ĝi = 0 (i = 1, 2, 3) , ĝj = 1 (j = 4, 5), the optimal system is V̄ = V̂4 + V̂5.

Case 4.4.
^
g 3 = 0,

^
g 4 = 0

Supposing ĝi = 0 (i = 1, 2, 3, 4) , ĝj = 1 (j = 5), the representative element of the

one-dimensional subalgebraic optimal system is V̄ = V̂5.
In summary, the optimal system of Eqs.(1.2) should be the following{

V̂1 + V̂2, V̂1 + V̂5, V̂2, V̂3 + V̂4 + V̂5, α1V̂3 + α2V̂5, V̂4 + V̂5, V̂5

}
. (3.14)

4. Similarity reduction of the vcDLW

In this section, Eqs.(1.2) are reduced based on the optimal system. The Table 3
shows the reduced equations and Table 4 shows the expressions for the coefficient
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functions where α1, α2 are none zero constants. Obviously the reduced partial
differential equations only relate to κ and ς.

Table 3. Similarity variables.

Case Similarity variables. Reduced PDEs

(1) : V̂1 + V̂2 κ = xe
2

∫ 1
_
τ (t)

dt


, ς = ye

−

∫ 1
_
τ (t)

dt


, u = E (κ, ς) e

∫ 2
_
τ (t)

dt

, v = −1 + F (κ, ς) e

∫ 1
_
τ (t)

dt

.
EκEς + EEκς + Fκκ + 2κEκς − ςEςς + Eς = 0,

FκE + FEκ + Eκκς + 2κFκ − ςFς + F = 0.

(2) : V̂1 + V̂5 κ = xe

∫ 1
_
τ (t)

dt

, ς = y −
∫ 1

_
τ (t)

dt, u = E (κ, ς) e

∫
1

_
τ (t)

dt
, v = −1 + F (κ, ς) e

∫ 1
_
τ (t)

dt

.
EκEς + EEκς + Fκκ + κEκς + Eςς + Eς = 0,

FκE + FEκ + Eκκς + ςFς + F − Fς = 0.

(3) : V̂2
κ = xe

∫ 1
_
τ (t)

dt

, ς = ye
−

∫ 1
_
τ (t)

dt


, u = E (κ, ς) e

∫ 1
_
τ (t)

dt

, v = F (κ, ς) .

EκEς + EEκς + Fκκ + κEκς + Eςςς = 0,

FκE + FEκ + Eκκς + κFκ + Eκ − Fςς = 0.

(4) : V̂3 + V̂4 + V̂5 κ = x−
∫ 1

_
τ (t)

dt, ς = y −
∫ 1

_
τ (t)

dt, u = E (κ, ς) , v = F (κ, ς) .
EκEς + EEκς + Fκκ − Eκς − Eςς = 0,

FκE + FEκ + Eκκς − Fκ + Eκ − Fς = 0.

(5) : V̂4 + V̂5 κ = x, ς = y −
∫ 1

_
τ (t)

dt, u = E (κ, ς) , v = F (κ, ς) .
EκEς + EEκς + Fκκ − Eςς = 0,

FκE + FEκ + Eκκς + Eκ − Fς = 0.

(6) : α1V̂3 + α2V̂5 κ = x, ς =
−tα2 + yα1

α1
, u = E (κ, ς) , v = F (κ, ς) .

−α1α2EEςς − α1α2Eς
2 + Fςςα2

2 + Eκςα1
2 = 0,

−α1α2FEς − α1α2EFς + α2
2Eςςς − α1α2Eς + α1

2Eκ = 0.

(7) : V̂5 κ = x, ς = y, u = E (κ, ς) , v = F (κ, ς) .
Fςς = 0,

FςE + FEς + Eς − Fκ = 0.

Table 4. The expressions of the coefficient functions.

Case The forms of corresponding coefficient functions

(1) : V̂1 + V̂2 a (t) =

e
(∫ 1

_
τ (t)

)
−4

_
τ (t)

, b (t) =

e
(∫ 1

_
τ (t)

)
−4

_
τ (t)

, c (t) =

e
(∫ 1

_
τ (t)

)
−4

_
τ (t)

, d (t) =

e
(∫ 1

_
τ (t)

)
−4

_
τ (t)

(2) : V̂1 + V̂5
a (t) =

e
(∫ 1

_
τ (t)

)
−2

_
τ (t)

, b (t) =

e
(∫ 1

_
τ (t)

)
−2

_
τ (t)

, c (t) =

e
(∫ 1

_
τ (t)

)
−2

_
τ (t)

, d (t) =

e
(∫ 1

_
τ (t)

)
−2

_
τ (t)

.

(3) : V̂2
a (t) =

e
(∫ 1

_
τ (t)

)
−2

_
τ (t)

, b (t) =

e
(∫ 1

_
τ (t)

)
−2

_
τ (t)

, c (t) =

e
(∫ 1

_
τ (t)

)
−2

_
τ (t)

, d (t) =

e
(∫ 1

_
τ (t)

)
−2

_
τ (t)

.

(4) : V̂3 + V̂4 + V̂5 a (t) =
1

_
τ (t)

, b (t) =
1

_
τ (t)

, c (t) =
1

_
τ (t)

, d (t) =
1

_
τ (t)

.

(5) : V̂4 + V̂5 a (t) =
1

_
τ (t)

, b (t) =
1

_
τ (t)

, c (t) =
1

_
τ (t)

, d (t) =
1

_
τ (t)

.

(6) : α1V̂3 + α2V̂5 a (t) , b (t) , c (t) , d (t) are arbitrary functions.

(7) : V̂5 a (t) , b (t) , c (t) , d (t) are arbitrary functions.

5. Exact solutions of the (2+1)-dimensional
vcDLWs

In this section, the solutions of Eqs.(1.2) are solved by using (1/G′)-expansion
method and (G′/G)-expansion method.

Firstly, the solutions of Case 4.1 reduced equations in the optimal system are
solved by the (1/G′)-expansion method.

Case 4.1. V̂3 + V̂4 + V̂5

At this point, the reduced equations are

EκEς + EEκς + Fκκ − Eκς − Eςς = 0,

FκE + FEκ + Eκκς − Fκ + Eκ − Fς = 0.

(5.1)
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At first, the travelling wave transform is assumed to be as follows

E (κ, ς) = R (σ̂) , F (κ, ς) = S (σ̂) , σ̂ = κ− υς, (5.2)

where υ is the travelling wave speed. Substituting Eqs.(5.2) into Eqs.(5.1) obtains
the following ordinary differential equations (ODEs)

−EE′′υ − (E′)
2
υ + F ′′ + E′′υ − E′′υ2 = 0,

FE′ + EF ′ + E′ − E′′′υ − F ′ + F ′υ = 0.

(5.3)

The traveling wave solution of Eqs.(5.3) is assumed to be

E (σ̂) = a0 +
∞∑
m=1

am

(
1

G′

)m
, F (σ̂) = b0 +

∞∑
n=1

bn

(
1

G′

)n
, (5.4)

where G = G (σ̂) satisfies

G′′ + kG′ + µ = 0. (5.5)

From the homogeneous balance of Eqs.(5.3)£¬ we can get that the value of m
is 1 and the value of n from 1 to 2. So Eqs.(5.4) are

E = a0 +
a1

G′
, F = b0 +

b1
G′

+
b2

(G′)
2 . (5.6)

Substituting Eq.(5.5) and Eqs.(5.6) into Eqs.(5.3) and extracting the coefficients
of all terms of the same power of G′, a set of polynomials is obtained. Letting these
polynomials equal zero, a set of associative algebraic equations for υ, a0, a1, b0, b1, b2
is obtained as follows

−2υµ2 + b2 = 0,

−υa1
2 + 2a2 = 0,

a1υ (1− υ − a0) + b1 = 0,

a1

(
1 + b0 − υk2

)
− b1 (1− a0 − υ) = 0,

υa1 (−2υµ− 5ka1 − 2µa0 + 2µ) + 10kb2 + 2µb1 = 0,

υa1 (3υµ− 2ka1 − 3µa0 + 3µ) + k (4b2 + 3µb1) = 0,

2µ (υb2 + a0b2 + a1b1 − b2 − 6υkµa1) + 3ka1b2 = 0,

a1

(
µ+ µb0 + 2kb1 − 7υk2µ

)
+ (b1µ+ 2kb2) (υ + a0 − 1) = 0.

(5.7)

Solving Eqs.(5.7) can get

υ = k − a0 + 1, a1 = 2µ, b0 = −1,

b1 = 2 (k − a0 + 1) kµ, (5.8)
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b2 = 2 (k − a0 + 1)µ2,

where a0, µ, k are arbitrary constants.
Substituting Eqs.(5.8) into Eqs.(5.6), we can get the solutions of Eqs.(5.3) as

follow

E = a0 +
2µ

G′
,

F = −1 +
2 (k − a0 + 1)µ

G′

(
k +

µ

G′

)
,

(5.9)

where υ = k − a0 + 1 and G = G (σ̂) satisfies Eq.(5.5).
Finally, substituting the general solution of Eq.(5.5) into Eqs.(5.9), the traveling

wave solutions of Eqs.(1.2) are obtained

F = −
2ĉ1µ

(
k4 − k3a0 + k + k3

)
(sinh (kσ̂)− cosh (kσ̂)) + ĉ21k

2(sinh (kσ̂)− cosh (kσ̂))2 + µ2

(sinh (kσ̂) ĉ1k − cosh (kσ̂) ĉ1k + µ)2
,

E =
sinh (kσ̂) ĉ1ka0 − cosh (kσ̂) ĉ1ka0 − 2kµ+ µa0

sinh (kσ̂) ĉ1k − cosh (kσ̂) ĉ1k + µ
.

(5.10)

Figure 1 is evolution of the kink solutions and the 2-soliton solutions determined
by Eqs.(5.10) at t = 1. When

_
τ (t) is respectively taken as

_
τ (t) = 1,

_
τ (t) =

sinh (t) ,
_
τ (t) = cosh (t), (a), (b) and (c) are 3D plots for k = 1, µ = 1, a0 = 2, ĉ1 =

1. The corresponding coefficient functions are a (t) =
1

_
τ (t)

, b (t) =
1

_
τ (t)

, c (t) =

1
_
τ (t)

, d (t) =
1

_
τ (t)

.

Secondly, the solutions of Case 4.3 reduced equations in the optimal system
are solved by the (G′/G)-expansion method.

Case 4.3. V̂4 + V̂5

At this point, the reduced equations are

EκEς + EEκς + Fκκ − Eςς = 0,

FκE + FEκ + Eκκς + Eκ − Fς = 0.

(5.11)

First of all, the traveling wave transform is assumed the same form of Eqs.(5.2).
Substituting Eqs.(5.2) into Eqs.(5.11) can get ODEs as

−(E′)
2
υ − EE′′υ + F ′′ − E′′υ2 = 0,

FE′ + EF ′ + E′ − E′′′υ + F ′υ = 0.

(5.12)

The traveling wave solutions of Eqs.(5.12) are assumed to be

E (σ̂) =
∞∑
m=0

cm

(
G′

G

)m
, F (σ̂) =

∞∑
n=0

dn

(
G′

G

)n
, (5.13)

where G = G (σ̂) satisfies

G′′ + λG′ + µG = 0. (5.14)
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(a) (b)

(c)

Figure 1. Evolution of kink solutions and 2-soliton solutions when (a) is
_
τ (t) = 1, (b) is

_
τ (t) = sinh (t)

and (c) is
_
τ (t) = cosh (t).

Owing to homogeneous balance, the values of m of Eqs.(5.13) is from 0 to 1 and
the values of n of Eqs.(5.13) is from 0 to 2. So Eqs.(5.13) become

E = c0 + c1
G′

G
,

F = d0 + d1
G′

G
+ d2

(
G′

G

)2

.

(5.15)

Substituting Eq.(5.14) and Eqs.(5.15) into Eqs.(5.12) and extracting the coeffi-
cients of all terms of the same power of (G′/G), a set of polynomials is obtained.
Letting these polynomials equal zero, a set of associative algebraic equations for
υ, c0, c1, d0, d1, d2 is obtained as follows

3υ − d2 = 0,

− υc12 + 3d2 = 0,

3λc1 (4υ − d2)− 2d2 (υ + c0)− 2c1d1 = 0,

υc1 (υλ− λc0 − µc1) + λd1 + 2µd2 = 0,

υc1 (−5υλc1 − 2υ − 2c0) + 10λd2 + 2d1 = 0,

c1
(
υλ2 + 2υµ− 1

)
− d1 (υ + c0)− c1d0 = 0,

υλc1 (−2λc1 − 3υ − 3c0) + 4µ
(
2d2 − υc12

)
+ λ (4λd2 + 3d1) = 0,

υλc1 (−υλ− λc0 − 3µc1)− 2υµc1 (υ + c1) + d1

(
λ2 + 2µ

)
+ 6λµd2 = 0,

υ
(
λ3c1 + 8λµc1 − λd1 − 2µd2

)
− c0 (λd1 + 2µd2)− c1 (λd0 + 2µd1 + λ) = 0,
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λ (7υλc1 − 2υd2 − 2c0d2 − 2c1d1) + µ (8υc1 − 3c1d2)− υd1 − c0d1 − c1d0 − c1 = 0.
(5.16)

Solving Eqs.(5.16) can obtain

c0 = −υ − λ, c1 = −2, d0 = 2υµ− 1,

d1 = 2υλ, d2 = 2υ,

(5.17)

where υ, λ, µ are arbitrary constants. Substituting Eqs.(5.12) into Eqs.(5.15), the
solutions of Eqs.(5.12) is derived as follow

E = −υ − λ− 2G′

G
,

F = 2υµ− 1 +
2υλG′

G
+

2υ(G′)
2

G
,

(5.18)

where σ̂ = κ− υς and G = G (σ̂) satisfies Eq.(5.14).
At last, the three traveling wave solutions of Eqs.(1.2) are obtained by substi-

tuting the general solution of Eq.(5.14) into Eqs.(5.18).
When λ2 − 4µ > 0,

E = −

√
λ2 − 4µ

(
C1 sinh

(
1

2
σ̂
√
λ2 − 4µ

)
+ C2 cosh

(
1

2
σ̂
√
λ2 − 4µ

))
C1 cosh

(
1

2
σ̂
√
λ2 − 4µ

)
+ C2 sinh

(
1

2
σ̂
√
λ2 − 4µ

) − υ,

F =
υ

2

(
λ2 − 4µ

)(
C1 sinh

(
1

2
σ̂
√
λ2 − 4µ

)
+ C2 cosh

(
1

2
σ̂
√
λ2 − 4µ

))
C1 cosh

(
1

2
σ̂
√
λ2 − 4µ

)
+ C2 sinh

(
1

2
σ̂
√
λ2 − 4µ

)
− υλ2

2
+ 2υµ− 1, (5.19)

where σ̂ = κ− υς and C1, C2, b0, λ, µ, υ are arbitrary constants.
Figure 2 is evolution of the periodic solutions determined by Eqs.(5.19) at

t = 2. (a) and (d) are 3D plots, (b) and (e) are 2D plots and (c) and (f) are
dimensional plots for λ = 3.2055, µ = 2, υ = 2I,

_
τ (t) = sin (t) , C1 = 2, C2 = 1, b0 =

1. The coefficient corresponding functions are a (t) =
1

_
τ (t)

, b (t) =
1

_
τ (t)

, c (t) =

1
_
τ (t)

, d (t) =
1

_
τ (t)

.

When λ2 − 4µ < 0,

E = −

√
4µ− λ2

(
−C1 sin

(
1

2
σ̂
√

4µ− λ2

)
+ C2 cos

(
1

2
σ̂
√

4µ− λ2

))
C1 cos

(
1

2
σ̂
√

4µ− λ2

)
+ C2 sin

(
1

2
σ̂
√

4µ− λ2

) − υ,

F =
υ

2

(
4µ− λ2

)(
−C1 sin

(
1

2
σ̂
√

4µ− λ2

)
+ C2 cos

(
1

2
σ̂
√

4µ− λ2

))
C1 cos

(
1

2
σ̂
√

4µ− λ2

)
+ C2 sin

(
1

2
σ̂
√

4µ− λ2

)
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(a) (b)

(c)

(d) (e)

(f)

Figure 2. Evolution of the periodic solutions.
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− υλ2

2
+ 2υµ− 1, (5.20)

where σ̂ = κ− υς and C1, C2, b0, λ, µ, υ are arbitrary constants.

Figure 3 is evolution of the kink solutions and the soliton solutions determined
by Eqs.(5.20) at t = 1. (a) and (d) are 3D plots, (b) and (e) are 2D plots and (c) and
(f) are dimensional plots for b0 = 2I, λ = 3, µ = 2, υ = 1,

_
τ (t) = tanh (t) , C1 =

−2I, C2 = 1. The coefficient corresponding functions are a (t) =
1

_
τ (t)

, b (t) =

1
_
τ (t)

, c (t) =
1

_
τ (t)

, d (t) =
1

_
τ (t)

.

When λ2 − 4µ = 0,

E = −υC4σ̂ + υC3 + 2C4/C4σ̂ + C3,

F = −
(
υC4

2λ2σ̂2 + 2υC3C4λ
2σ̂ − 4υC4

2µσ̂2 + υC3
2λ2 − 8υC3C4µσ̂ − 4υC3

2µ

+2C4
2σ̂2 − 4υC4

2 + 4C3C4σ̂ + 2C3
2
)
/2(C4σ̂ + C3)

2
, (5.21)

where σ̂ = κ− υς and C1, C2, b0, λ, µ, υ are arbitrary constants.

6. Nonlinear self-adjointness and conservation laws
of vcDLW

Conservation laws play an essential role in the studies of mathematical physical
equations. Firstly, the conservation laws can reflect the characteristics of the change
of motion of the mathematical physical equations. Secondly, having an infinite
number of conservation laws is one of the primary indicators of integrability of dif-
ferential equations. Finally, the conservation laws can also be used to prove the
existence and uniqueness of solutions. There are many ways to solve the conser-
vation laws of equations, such as Nöether theorem, eigenvalue method and adjoint
equation method, etc [2,15,25,32,36]. In this section, the nonlinear self-adjoint and
conservation laws of Eqs.(1.2) are discussed using adjoint equation method.

6.1. Nonlinear self-adjointness

The Lagrange form of Eqs.(1.2) is

L = ū [uyt + a (t) vxx + b (t) (uyux + uuxy)]

+v̄ [vt + c (t) (ux + uxv + uvx) + d (t)uxxy] ,

(6.1)

where ū, v̄ are two new independent variables about x, y, t.

The adjoint equations of Eqs.(1.2) are as follows

f1
∗ =

δL

δu
= 0,

f2
∗ =

δL

δv
= 0,

(6.2)



3550 M. Jin, J. Yang, J. Liu & X. Xin

(a) (b)

(c)

(d) (e)

(f)

Figure 3. Evolution of the kink solutions and the soliton solutions.
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where

δL

δu
=
∂L

∂u
−Dx

∂L

∂ux
−Dy

∂L

∂uy
+Dxy

∂L

∂uxy
+Dyt

∂L

∂uyt
−Dxxy

∂L

∂uxxy
,

δL

δv
=
∂L

∂v
−Dx

∂L

∂vx
−Dt

∂L

∂vt
+Dxx

∂L

∂vxx
.

(6.3)

Substituting Eq.(6.1) and Eqs.(6.3) into Eqs.(6.2), the accompanying system of
Eqs.(1.2) can be derived as follows

f1
∗ = ūyt + b (t)uūxy − c (t) (1 + v) v̄x − d (t) v̄xxy,

f2
∗ = −v̄t + a (t) ūxx − c (t) v̄x.

(6.4)

The (2+1)-dimensional vcDLWs are said to be a nonlinear self-adjointness sys-
tem if Eq.(6.4) satisfies the following conditions

f1
∗ ∣∣
ū=φ1(x,y,t,u,v),v̄=φ2(x,y,t,u,v) = λ̄11F1 + λ̄12F2,

f2
∗ ∣∣
ū=φ1(x,y,t,u,v),v̄=φ2(x,y,t,u,v) = λ̄21F1 + λ̄22F2,

(6.5)

where φ1 (x, y, t, u, v) 6= 0, φ2 (x, y, t, u, v) 6= 0 and λ̄ij (i, j = 1, 2) are undetermined
coefficients.

Substituting Eqs.(1.2) and Eqs.(6.4) into Eqs.(6.5) and extracting the coeffi-
cients of u, v, we can obtain

λ̄11 = λ̄12 = λ̄21 = λ̄22 = 0,

φ1u = 0, φ1v = 0, φ2u = 0, φ2v = 0,

φ1yt + b (t)uφ1xy − c (t) (φ2x + vφ2x)− d (t)φ2xxy = 0,

−φ2t + a (t)φ1x − c (t)uφ2x = 0.

(6.6)

Solving Eqs.(6.6) can obtain

φ1 (x, y, t, u, v) =
x2F1t (t)

2a (t)
+ F3 (t)x+ F5 (y) + F4 (t) ,

φ2 (x, y, t, u, v) = F2 (y) + F1 (t) ,

(6.7)

where F1 (t) , F2 (y) , F3 (t) , F4 (t) , F5 (y) are arbitrary functions.
Obviously φ1 (x, y, t, u, v) 6= 0, φ2 (x, y, t, u, v) 6= 0, we can obtain that Eqs.(1.2)

are nonlinear self-adjointness. We also can learn

L = ū [uyt + a (t) vxx + b (t) (uyux + uuxy)]

+v̄ [vt + c (t) (ux + uxv + uvx) + d (t)uxxy] ,
(6.8)

where ū, v̄ are arbitrary functions.
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6.2. Conservation laws

Next we will construct the conservation laws for Eqs.(1.2). For simplicity, we let
ū = φ1 = γ1, v̄ = φ2 = γ2, where γ1, γ2 are arbitrary constants. At this point
Eq.(6.8) becomes

L = γ1 [uyt + a (t) vxx + b (t) (uyux + uuxy)]

+γ2 [vt + c (t) (ux + uxv + uvx) + d (t)uxxy] .
(6.9)

It is well known that the conservation laws are formulated as

∂

∂x

(
Ĉx

)
+

∂

∂y

(
Ĉy

)
+
∂

∂t

(
Ĉt

)
= 0, (6.10)

with different Ĉx, Ĉy, Ĉt based on Eqs.(2.8). Depending on the different vector fields

and Ĉx, Ĉy, Ĉt, we discuss the following:

Case 1. For vector field V̂1 = −x ∂

∂x
−

2
∫
a (t) dt

a (t)

∂

∂t
+ u

∂

∂u
+ (v + 1)

∂

∂v
, we can

get

Ŵ1 = u+ uxx+ 2ut

∫
a (t) dt

a (t)
,

Ŵ2 = v + 1 + vxx+ 2vt

∫
a (t) dt

a (t)
.

(6.11)

In this case, the corresponding conservation vectors are

Ĉx =
1

a (t)
[2a (t) (b (t)uyuĉ1 + uc (t) ĉ2 (v + 1) + a (t) vxĉ1)

−a (t)x (d (t)uxxy ĉ2 + uytĉ1 + vtĉ2)

+2

∫
a (t) dt (b (t) ĉ1 (uyut + uuyt) + c (t) ĉ2 (uvt + vut + ut) + a (t) vxtĉ1)

]
,

Ĉy =

3ut + uxtx− 2

∫
a (t) dtut

d

dt
a (t)

(a (t))
2 + 2

∫
a (t) dtutt
a (t)

 ĉ1,

+

(
3uxx + uxxxx+ 2

∫
a (t) dtuxxt
a (t)

)
d (t) ĉ2,

Ĉt =
1

a (t)

[
2

∫
a (t) dt (b (t) ĉ1 (uyux + uuxy) + c (t) ĉ2 (uxv + uvx + ux)

+vxxĉ1a (t) + d (t)uxxy ĉ2 + (uytĉ1 + 2vtĉ2)) + ĉ2a (t) (vxx+ v + 1)] .

(6.12)

Case 2. For vector field V̂2 = −x ∂

∂x
−

2
∫
a (t) dt

a (t)

∂

∂t
+ y

∂

∂y
+ u

∂

∂u
, we can obtain

Ŵ1 = u+ uxx− uyy + 2ut

∫
a (t) dt

a (t)
,

Ŵ2 = vxx− yvy + 2vt

∫
a (t) dt

a (t)
.

(6.13)



The Lie symmetry analysis, optimal system, ... 3553

In this case, the corresponding conservation vectors are

Ĉx =
1

a (t)
[2a (t) (b (t)uyuĉ1 + uc (t) vĉ2 + uc (t) ĉ2 + a (t) vxĉ1)

−a (t)x (d (t)uxxy ĉ2 + uytĉ1 + vtĉ2)

+2

∫
a (t) dt (b (t) ĉ1 (uyut + uuyt) + c (t) ĉ2 (uvt + vut + ut) + a (t) vxtĉ1)

]
,

Ĉy = y (b (t) ĉ1 (uyux + uuxy) + c (t) ĉ2 (uxv + uvx) + a (t) vxxĉ1 + uxc (t) ĉ2

+d (t)uxxy ĉ2 + uytĉ1 + vtĉ2)

+

3ut + uxtx− 2ut

∫
a (t) dt

d

dt
a (t)

(a (t))
2 + 2utt

∫
a (t) dt

a (t)

 ĉ1

+

(
3uxx + uxxxx+ 2uxxt

∫
a (t) dt

a (t)

)
d (t) ĉ2,

Ĉt =
1

a (t)

[
2

∫
a (t) dt (b (t) ĉ1 (uyux + uuxy) + c (t) ĉ2 (uxv + uvx) + vxxĉ1a (t)

+uxc (t) ĉ2 + d (t)uxxy ĉ2 + (uytĉ1 + 2vtĉ2)) + ĉ2a (t) (vxx+ v + 1)] . (6.14)

Case 3. For vector field V̂3 =
∂

∂x
, we can gain

Ŵ1 = −ux,

Ŵ2 = −vx.
(6.15)

In this case, the corresponding conservation vectors are

Ĉx = ĉ2d (t)uxxy + ĉ1uyt + ĉ2vt,

Ĉy = −ĉ1uxt − ĉ2d (t)uxxx,

Ĉt = −ĉ2vx.

(6.16)

Case 4. For vector field V̂4 =
1

a (t)

∂

∂t
, we can get

Ŵ1 = − ut
a (t)

,

Ŵ2 = − vt
a (t)

.

(6.17)

In this case, the corresponding conservation vectors are

Ĉx = − ĉ1b (t) (uyut + uuyt) + ĉ2c (t) (utv + uvt + ut) + vxta (t) ĉ1
a (t)

,



3554 M. Jin, J. Yang, J. Liu & X. Xin

Ĉy = −
uxxtd (t) ĉ2a (t) + ĉ1utta (t) − ĉ1ut

d

dt
a (t)

(a (t))2
,

Ĉt =
ĉ1b (t) (uyux + uuxy) + ĉ2c (t) (uxv + uvx + ux) + a (t) vxxĉ1 + d (t)uxxy ĉ2 + uytĉ1

a (t)
.

(6.18)

Case 5. For vector field V̂5 =
∂

∂y
, we can obtain

Ŵ1 = −uy,

Ŵ2 = −vy.
(6.19)

In this case, the corresponding conservation vectors are

Ĉx = −ĉ1b (t)
(
uy

2 + uyyu
)
− ĉ2c (t) (uyv + uy + vyu)− vxya (t) ĉ1,

Ĉy = ĉ1b (t) (uyux + uuxy) + ĉ2c (t) (vux + uvx + ux) + a (t) vxxĉ1 + vtĉ2,

Ĉt = −ĉ2vy.

(6.20)

Substituting Ĉx, Ĉy, Ĉt in the above five cases into Eq.(6.10), we can discover
that the conditions are satisfied. So the conservation laws of vcDLWs are obtained.

7. Conclusion

In this paper, the exact solutions of (2+1)-dimensional vcDLWs have been inves-
tigated by using the Lie symmetry analysis method. The infinitesimal genera-
tors and vector fields of vcDLWs have been firstly obtained by the Lie symmetry
analysis method. Based on the vector fields, the representative elements of the
one-dimensional subalgebra of the optimal system have been calculated by Olver’s
method. And reducing vcDLWs obtained the ODEs. The reduced equations have
been solved in different methods to obtain the exact solutions of analysis. Some
of these exact solutions have physical significance, such as kink solutions, periodic
solutions and 2-soliton solutions. The evolution of the solutions in the figures have
been used to illustrate the dynamic behaviors of the solutions. Finally adjoint equa-
tion method was used to find that analysis is the nonlinear self-adjointness. The
conservation laws of analysis have been obtained.
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