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THE SEIR MODEL WITH PULSE AND
DIFFUSION OF VIRUS IN THE

ENVIRONMENT∗

Yue Tang1, Inkyung Ahn2 and Zhigui Lin1,†

Abstract This paper addresses a reaction-diffusion problem featuring im-
pulsive effects under Neumann boundary conditions. The model simulates
the periodic eradication of viruses in an environment. Initially, we establish
the well-posedness of the reaction-diffusion model. We define the basic repro-
duction number R0 for the problem in the absence of pulsing and compute
the principal eigenvalue of the corresponding elliptic eigenvalue problem. Uti-
lizing Lyapunov functionals and Green’s first identity, we derive the global
threshold dynamics of the system. Specifically, when R0 < 1, the disease-free
equilibrium is globally asymptotically stable; conversely, if R0 > 1, the system
exhibits uniform persistence, and the endemic equilibrium is globally asymp-
totically stable. Additionally, we consider the generalized principal eigenvalues
for the problem with pulsing and provide sufficient conditions for the stability
of both the disease-free equilibrium and the positive periodic solution. Fi-
nally, we corroborate our theoretical findings through numerical simulations,
particularly discussing the impacts of periodic environmental cleaning.

Keywords Infectious disease model, pulse, spatial heterogeneity, basic re-
production number, threshold dynamics.
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1. Introduction

It is widely recognized that certain viruses, including the human immunodeficiency
virus (HIV) and hepatitis B and C viruses (HBV, HCV), possess the ability to
survive and propagate for extended periods in the absence of hosts [4, 5, 8, 9, 29].
This capability amplifies their potential for causing further infections, complicating
efforts to prevent and control viral spread, and posing significant risks to public
health. Given these challenges, there is considerable importance in investigating the
influence of environmental transmission of free-living viruses on the effectiveness of
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viral control measures.

It has been posited that the likelihood of viral infection is often related to spatial
location [10, 28]. The diffusive process essentially represents the random spatial
movement of the virus, which exhibits no preferential direction as indicated in [31].
As a result, reaction-diffusion models serve as reliable mathematical frameworks for
exploring the influence of diffusion and spatial heterogeneity on disease transmission.
For further details and discussions, please refer to [17, 18, 24, 26, 32–34] and the
references cited therein.

Numerous theoretical studies have been conducted on epidemic models incor-
porating diffusion. For example, Allen et al. introduced a classical SIS reaction-
diffusion system with spatial heterogeneity in 2008 [2]. This work was later extended
in 2014, where a HIV viral infection model that accounted for both virus diffusion
and spatial heterogeneity was considered [23]. More recently, Pang and Xiao ex-
amined a SIS-W model aimed at controlling hospital infections and explored the
effects of direct transmission via free-living viruses (W ) on disease progression [15].

Considering individuals in the “exposed”(E) category-who do not exhibit symp-
toms immediately after coming into contact with the virus-research has been con-
ducted on SEIR models both without diffusion [12, 35] and with diffusion [1, 7].
Moreover, transient perturbations in virus levels can be triggered by various fac-
tors, such as climatic changes or human interventions like periodic environmental
disinfection, which result in a rapid decline in environmental viral concentrations
over short periods. The primary objective of this article is to investigate and eluci-
date the dynamics of virus transmission at the population level, specifically in the
context of hospital-acquired infections. In this study, we assume that only the virus
undergoes diffusion, while the populations themselves do not. This leads to a set
of hybrid differential equations: the first three equations are ordinary differential
equations representing the dynamics of the susceptible, exposed, and infected pop-
ulations, while the final equation is a partial differential equation modeling virus
diffusion. Consequently, we propose the following SEIW epidemic model, which
incorporates pulse effects as well as diffusion of the virus within the environment.

∂S

∂t
= α(x)− µ1(x)SW − µ2(x)SI

− γ1(x)S, x ∈ Ω, t ∈
(
(nT )+, (n+ 1)T

]
,

∂E

∂t
= δµ1(x)SW + δµ2(x)SI − a(x)E

− γ2(x)E, x ∈ Ω, t ∈
(
(nT )+, (n+ 1)T

]
,

∂I

∂t
= (1− δ)µ1(x)SW + (1− δ)µ2(x)SI

+ a(x)E − γ3(x)I, x ∈ Ω, t ∈
(
(nT )+, (n+ 1)T

]
,

∂W

∂t
= d∆W + b(x)I − γ4(x)W, x ∈ Ω, t ∈

(
(nT )+, (n+ 1)T

]
,

W (x, (nT )+) = cW (x, nT ), x ∈ Ω, n = 0, 1, 2, ...,

V (x, (nT )+) = V (x, nT ), x ∈ Ω, V = S,E, I,

∂W

∂η
= 0, x ∈ ∂Ω, t > 0,

(S(x, 0), E(x, 0), I(x, 0),W (x, 0))

= (S0(x), E0(x), I0(x),W0(x)) ≥ 0, x ∈ Ω,

(1.1)
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where t ∈ ((nT )+, (n+ 1)T ] means the equations hold for t ∈ (nT, (n+ 1)T ], while
the initial value of the unknown takes its right-hand limit at t = nT . S(x, t), E(x, t),
I(x, t) and W (x, t) represent the density of susceptible patients, exposed patients,
infected patients, free viruses in the environment, respectively. α(x) is the location-
dependent growth rate of the susceptible patients, µ1(x) means the transmission
rate between the susceptible and the environmental virus. µ2(x) expresses the
transmission rate between the susceptible and the infectious individuals, γ1(x) is
the death rate of the susceptible patients. δ represents the proportion of individuals
who progress from susceptible to exposed, and a(x) is the rate of exposed turn into
infectious individuals. γ2(x) and γ3(x) are the death rate of the exposed patients and
the infected patients, respectively. d expresses the diffusion coefficient of the virus,
b(x) is the rate of virus production and 1/γ4(x) is the average survival time of free
viruses without hosts. Owing to regular cleaning at each time t = nT , some of free
viruses remain in the environment, we assume that its ratio is c(0 < c ≤ 1), while
all patients do not change significantly in a short time. Apparently, c = 1 means no
cleaning and c = 0 implies that there is no virus existing in the environment after
thorough cleaning. We assume all location-dependent parameters are continuous
and strictly positive.

This paper is arranged as follows. Section 2 deals with the well-posedness of
the problem. In Section 3, we first establish the basic reproduction number and the
threshold dynamics for a corresponding linearized system when c = 1, and then the
generalized eigenvalue is defined to obtain the sufficient conditions for the stability
of the disease-free equilibrium and the positive periodic solution when 0 < c < 1.
Numerical simulations in Section 4 are devoted to discussing the impacts of spatial
heterogeneity and diffusion rate d on the basic reproduction number, and the role
of the cleaning ratio c on the control of virus. A brief discussion is finally presented
in Section 5.

2. Analysis of the model

Some basic properties of the solution to problem (1.1) is firstly analysed in this
section.

Let X = C(Ω̄,R4) be a Banach space with the supremum norm || · ||X . Define
X+ = C(Ω̄,R4

+) is a positive cone of X, then (X,X+) is an ordered Banach Space.
For any initial function φ = (S0(x), E0(x), I0(x),W0(x))T ∈ X+, we next define

(T1(t)S0)(x) = e−γ1(x)tS0(x),

(T2(t)E0)(x) = e−(a(x)+γ2(x))tE0(x),

(T3(t)I0)(x) = e−γ3(x)tI0(x).

Let T4(t) : C(Ω̄,R)→ C(Ω̄,R) be a C0-semigroup corresponding to d∆−γ4(x),
which satisfies the Neumann boundary condition, that is,

(T4(t)W0)(x) =

∫
Ω

G(x, y, t)W0(y)dy, t ≥ 0,

where G is a Green function related to d∆−γ4(x) subject to the Neumann boundary
condition. It follows from Corollary 7.2.3 in [21] that T4(t) : C(Ω̄,R)→ C(Ω̄,R) is
compact and strongly positive for any t > 0.
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In the following, we define a linear operator A

A(u) =


−γ1(x)S

−(a(x) + γ2(x))E

−γ3(x)I

d∆W − γ4(x)W


and a nonlinear operator F

F (u) =


α(x)− µ1(x)SW − µ2(x)SI

δ (µ1(x)SW + µ2(x)SI)

(1− δ)(µ1(x)SW + µ2(x)SI) + a(x)E

b(x)I


of problem (1.1), respectively. Then equation in problem (1.1) can be rewritten as
an integral equation

u(t) = T (t)φ+

∫ t

0

T (t− s)F (u(s))ds,

where u(t)=(S(x, t), E(x, t), I(x, t),W (x, t))
T
, T (t)=diag(T1(t), T2(t), T3(t), T4(t))

and φ = (S0(x), E0(x), I0(x),W0(x))T ∈ X+.

Lemma 2.1. Problem (1.1) admits a unique positive solution u(·, 0) ∈ Ω̄ × [0, τφ)
for any initial function φ ∈ X+ with 0 < τφ ≤ +∞. Especially, if τφ < +∞, then
||u(t)||X → +∞ for t→ τ−φ .

Proof. For any φ ∈ X+, let

φ0(x) = u(x, 0+) = (S(x, 0), E(x, 0), I(x, 0), cW (x, 0))
T

be the new initial value. Hence, it is clear that

φ0(x) + hF (φ0)(x)

=


S0(x) + h (α(x)− cµ1(x)S0(x)W0(x)− µ2(x)S0(x)I0(x))

E0(x) + h [δ (cµ1(x)S0(x)W0(x) + µ2(x)S0(x)I0(x))]

I0(x) + h [(1− δ) (cµ1(x)S0(x)W0(x) + µ2(x)S0(x)I0(x)) + a(x)E0(x)]

cW0(x) + hb(x)I0(x)



>


S0(x) (1− hcµ̄1W0(x)− hµ̄2I0(x))

E0(x)

I0(x)

cW0(x)


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for t ∈ (0, T ], where
µ̄1 = max

x∈Ω̄
µ1(x), µ̄2 = max

x∈Ω̄
µ2(x).

A sufficiently small constant h > 0 can be taken such that φ0 + hF (φ0) ∈ X+,
and then

lim
h→0+

1

h
dist(φ0 + hF (φ0),X+) = 0, ∀φ0 ∈ X+.

Considering the pulse, we first study the solution in [0, T ]. It then follows from
Theorem 7.3.1 in [21] that problem (1.1) admits a unique positive solution u(·, t) in
Ω̄ × [0, τφ). If τφ ≤ T , then ||u(t)||X → +∞ for t → τ−φ . Otherwise, we have the
solution for t ∈ [0, T ].

When t ∈ (T, 2T ], let φ1(x) be a new initial value in t ∈ (T+, 2T ], where

φ1(x) = u(x, T+) = (S(x, T ), E(x, T ), I(x, T ), cW (x, T ))
T
,

and subsequently we have the solution u(·, t) ∈ Ω̄ × [T, τφ1 ]. If τφ1 ≤ 2T , then
||u(t)||X → +∞ for t → τ−φ1

. Otherwise, we have the solution for t ∈ [T, 2T ]. By

uniqueness of the solution, u(·, t) ∈ Ω̄× [0, 2T ].
Step by step, the solution to problem (1.1) satisfies u(·, t) ∈ Ω̄ × [0, τφ) with

0 < τφ ≤ +∞. In addition, if τφ < +∞, then limt→τ−
φ
||u(t)||X = +∞.

Lemma 2.2. For any initial value φ ∈ X+, problem (1.1) admits a unique positive
solution u(·, t) in [0,+∞), which is bounded in X+.

Proof. Let P (x, t) = S(x, t) + E(x, t) + I(x, t). Adding the first three equations
of problem (1.1) yields

∂P (x, t)

∂t
≤ ᾱ− γ0P (x, t), x ∈ Ω, t ∈ [0, τφ), (2.1)

where ᾱ = max
x∈Ω̄

α(x) and γ0 = min{min
x∈Ω̄
{γ1(x)},min

x∈Ω̄
{γ2(x)},min

x∈Ω̄
{γ3(x)}}.

It can be derived from (2.1) that

P (x, t) ≤ ᾱ

γ0
+ (S0(x) + E0(x) + I0(x))e−γ0t, x ∈ Ω, t ∈ [0, τφ). (2.2)

Therefore, there exists a positive constant M , which is dependent of initial value φ,
such that

||P (x, t)|| ≤M,

where ||u|| = ||u||∞ = esssup
x∈Ω̄

|u|.

Using the forth equation in problem (1.1), which together with c ≤ 1 and the
definition of T4(t), yields

W (x, t) = T4(t)W0(x) +

∫ t

0

T4(t− s)b(x)I(x, s)ds.

Recall that γ4(x) > 0, let c0(> 0) be the principal eigenvalue of −d∆ + γ4(x)
that subject to the Neumann boundary condition, so

||W (x, t)|| ≤ ||T4(t)W0(x)||+
∣∣∣∣∣∣∣∣∫ t

0

T4(t− s)b(x)I(x, s)ds

∣∣∣∣∣∣∣∣
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≤ e−c0t||W0(x)||+ b̄

∫ t

0

e−c0(t−s)||I(x, s)||ds

≤ ||W0(x)||+ b̄M

c0
,

where b̄ = max
x∈Ω̄

b(x). It follows from Lemma 2.1 that τφ = +∞. Thus, problem

(1.1) has a unique nonnegative global solution u(·, t) in [0,+∞).

Lemma 2.3. The solution to problem (1.1) is ultimately bounded for any initial
value φ ∈ X+.

Proof. It can be deduced form (2.2) that

lim sup
t→∞

(S(x, t) + E(x, t) + I(x, t)) ≤ ᾱ

γ0
, ∀x ∈ Ω̄.

Hence, for any 0 < ε0 ≤ 1, there is t0 > 0 such that

S(x, t) + E(x, t) + I(x, t) = P (x, t) ≤ (1 + ε0)
ᾱ

γ0
, x ∈ Ω, t ≥ t0, (2.3)

which means S(x, t), E(x, t) and I(x, t) are ultimately bounded.

Equation (2.3) and the forth equation in (1.1) assert


∂W (x, t)

∂t
≤ d∆W (x, t) +

b̄ᾱ

γ0
(1 + ε0)− γ4W (x, t), x ∈ Ω, t ≥ t0,

∂W (x, t)

∂η
= 0, x ∈ ∂Ω, t ≥ t0,

where γ
4

= min
x∈Ω̄

γ4(x).

It then follows from the comparison principal and Lemma 1 in [13] that there
exists a t1 > t0 > 0 such that

W (x, t) ≤ (1 + 2ε0)
b̄ᾱ

γ
4
γ0
, ∀t ≥ t1. (2.4)

Therefore, W (x, t) is ultimately bounded.

3. Threshold dynamics

It is easy to see that problem (1.1) admits a disease-free equilibrium E0(S∗(x),0,0,0),

where S∗(x) = α(x)
γ1(x) . We first linearize problem (1.1) in E0 and consider the

following problem
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

∂W

∂t
= d∆W + b(x)I − γ4(x)W, x ∈ Ω, t ∈

(
(nT )+, (n+ 1)T

]
,

∂I

∂t
= (1− δ)µ1(x)S∗(x)W + a(x)E

+ ((1− δ)µ2(x)S∗(x)− γ3(x))I, x ∈ Ω, t ∈
(
(nT )+, (n+ 1)T

]
,

∂E

∂t
= δµ1(x)S∗(x)W + δµ2(x)S∗(x)I

− (a(x) + γ2(x))E, x ∈ Ω, t ∈
(
(nT )+, (n+ 1)T

]
,

∂W

∂η
= 0, x ∈ ∂Ω,

W (x, (nT )+) = cW (x, nT ), x ∈ Ω, n = 0, 1, 2...,

V (x, (nT )+) = V (x, nT ), x ∈ Ω, V = S,E, I.

(3.1)

If c = 1, then there is no impulse in problem (3.1). Let E(x, t) = eλtϕ2(x), I(x, t)
= eλtϕ3(x) and W (x, t) = eλtϕ4(x), we obtain the following eigenvalue problem

d∆ϕ4(x) + b(x)ϕ3(x)− γ4(x)ϕ4(x) = λϕ4(x), x ∈ Ω,

(1− δ)µ1(x)S∗(x)ϕ4(x) + ((1− δ)µ2(x)S∗(x)− γ3(x))ϕ3(x)

= −a(x)ϕ2(x) + λϕ3(x), x ∈ Ω,

δµ1(x)S∗(x)ϕ4(x) + δµ2(x)S∗(x)ϕ3(x)

= (a(x) + γ2(x))ϕ2(x) + λϕ2(x), x ∈ Ω,

∂ϕ4

∂η
= 0, x ∈ ∂Ω.

(3.2)

Let R(t) be the solution semiflows on C(Ω̄,R2) corresponding to linear system
(3.1). Then R(t) is a positive C0-semigroup with generator A

A =


d∆− γ4(x) b(x) 0

(1− δ)µ1(x)S∗(x) (1− δ)µ2(x)S∗(x)− γ3(x) a(x)

δµ1(x)S∗(x) δµ2(x)S∗(x) −(a(x) + γ2(x))

 .

It follows from Theorem 3.12 in [11] that A is a closed and resolvent positive
operator and A = F + V , where

F =


0 0 0

(1− δ)µ1(x)S∗(x) (1− δ)µ2(x)S∗(x) 0

δµ1(x)S∗(x) δµ2(x)S∗(x) 0

 ,

and

V =


d∆− γ4(x) b(x) 0

0 −γ3(x) a(x)

0 0 −(a(x) + γ2(x))

 .
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Let R̃(t) be the solution semigroup generated by the operator V . We describe
the distribution of initial infections by ϕ̃(x) = (ϕ̃2(x), ϕ̃3(x), ϕ̃4(x)). Thus, R̃(t)ϕ̃ is
the distribution of infected individuals that affected by mobility, mortality, recovery
or transform. The distribution of new infections at time t becomes F (x)R̃(t)ϕ̃(x).
The total distribution of new infections can be described by L as the following

L(ϕ̃)(x) =

∫ ∞
0

F (x)R̃(t)ϕ̃(x)dt = F (x)

∫ ∞
0

R̃(t)ϕ̃(x)dt, ϕ̃ ∈ C(Ω̄,R3), x ∈ Ω̄.

The basic reproduction number R0 can be defined by the spectral radius of L
as

R0 := r(L) = r(−FV −1).

Let η0 be the principal eigenvalue of the following eigenvalue problem
d∆− γ4(x) b(x) 0

η(1− δ)µ1(x)S∗ η(1− δ)µ2(x)S∗ − γ3(x) a(x)

ηδµ1(x)S∗ ηδµ2(x)S∗ −(a(x) + γ2(x))




Ψ̂4

Ψ̂3

Ψ̂2

 =


0

0

0

 , (3.3)

we have R0 = 1
η0
. It is easy to see that the expression of R0 is difficult to give, so

we here take the following auxiliary eigenvalue problem (3.4) into account. Let τ0
be the principal eigenvalue of eigenvalue problem (3.4)

d∆− γ4(x) b(x) 0

τ(1− δ)µ1(x)S∗ (1− δ)µ2(x)S∗ − γ3(x) a(x)

τδµ1(x)S∗ δµ2(x)S∗ −(a(x) + γ2(x))




Ψ̃4

Ψ̃3

Ψ̃2

 =


0

0

0

 . (3.4)

We will prove that R0 − 1 and 1
τ0
− 1 have the same sign. Since the principal

eigenvalue of A and AT are same, so τ0 is also the principal eigenvalue of problem
(3.5)

d∆− γ4(x) τ(1− δ)µ1(x)S∗ τδµ1(x)S∗

b(x) (1− δ)µ2(x)S∗ − γ3(x) δµ2(x)S∗

0 a(x) −(a(x) + γ2(x))




Ψ4

Ψ3

Ψ2

 =


0

0

0

 , (3.5)

which can be written by
d∆Ψ4(x)− γ4(x)Ψ4(x) + τ(1− δ)µ1(x)S∗Ψ3(x) + τδµ1(x)S∗Ψ2(x) = 0,

b(x)Ψ4(x) + ((1− δ)µ2(x)S∗ − γ3(x))Ψ3(x) + δµ2(x)S∗Ψ2(x) = 0,

a(x)Ψ3(x)− (a(x) + γ2(x))Ψ2(x) = 0.

(3.6)

It is clear that

Ψ2(x) =
a(x)

a(x) + γ2(x)
Ψ3(x) (3.7)

and

Ψ3(x) =
b(x)(a(x) + γ2(x))

γ3(x)(a(x) + γ2(x))− µ2(x)S∗(x)(a(x) + (1− δ)γ2(x))
Ψ4(x) (3.8)
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hold. Substituting (3.7) and (3.8) into the first equation of (3.6) yields
− d∆Ψ4(x) + γ4(x)Ψ4(x) = τG(x)Ψ4(x), x ∈ Ω,

∂Ψ4(x)

∂η
= 0, x ∈ ∂Ω,

(3.9)

where

G(x) =
µ1(x)S∗(x)b(x)(a(x) + (1− δ)γ2(x))

γ3(x)(a(x) + γ2(x))− µ2(x)S∗(x)(a(x) + (1− δ)γ2(x))
. (3.10)

It follows form Theorem 2.4 in [6] that elliptic eigenvalue problem (3.9) admits a
unique principal eigenvalue τ0 and its corresponding positive eigenfunction is Ψ∗4(x).
If γ3(x)(a(x)+γ2(x))−µ2(x)S∗(x)(a(x)+(1−δ)γ2(x)) > 0, the positivity of Ψ∗3(x)
and Ψ∗2(x) can be obtained by equations (3.7) and (3.8), respectively.

The following results can be obtained by Theorem 3.2 in [26].

Theorem 3.1. The eigenvalue problem (3.5) admits a unique positive principal
eigenvalue τ0, and its corresponding positive eigenfunction is (Ψ∗4,Ψ

∗
3,Ψ

∗
2). In ad-

dition,

1

τ0
= sup

Ψ∈H1(Ω),Ψ6=0

{ ∫
Ω
G(x)Ψ2(x)dx∫

Ω
[d|∇Ψ(x)|2 + γ4(x)Ψ2(x)]dx

}
. (3.11)

Remark 3.1. It is easy to see from the expression of 1
τ0

that τ0 is an nondecreasing
function with respect to d.

Remark 3.2. Considering the impact of the virus reproduction rate in the hetero-
geneous environment, we take b(x) := b0

(
1 + k sin

(
9πx
10

))
in Example 4.2 in Section

4. It can be seen from simulations of 1
τ0

that if b0 is fixed, 1
τ0

is a nondecreasing
function with respect to k.

Lemma 3.1. Assume that λ0 be the principal eigenvalue of the following eigenvalue
problem 

d∆ψ(x)− γ4(x)ψ(x) +G(x)ψ(x) = λψ(x), x ∈ Ω,

∂ψ(x)

∂η
= 0, x ∈ ∂Ω,

(3.12)

where G(x) is defined in (3.10). Then 1
τ0
− 1 and λ0 have the same sign.

Proof. In view of Krein-Rutman Theorem in [21] and references therein, the eigen-
value problem (3.12) admits a principal eigenvalue λ0 and a positive eigenfunction
ψ∗(x), satisfying

d∆ψ∗(x)− γ4(x)ψ∗(x) +G(x)ψ∗(x) = λ0ψ
∗(x), x ∈ Ω,

∂ψ∗(x)

∂η
= 0, x ∈ ∂Ω.

(3.13)

It follows from (3.9) and Theorem 3.1 that
d∆Ψ∗4(x)− γ4(x)Ψ∗4(x) + τ0G(x)Ψ∗4(x) = 0, x ∈ Ω,

∂Ψ∗4(x)

∂η
= 0, x ∈ ∂Ω.

(3.14)
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Multiplying the first equation in (3.13) by Ψ∗4(x) and the first equation in (3.14)
by ψ∗(x), then abstracting and integrating for x ∈ Ω, yield

(1− τ0)

∫
Ω

G(x)Ψ∗4(x)ψ∗(x)dx = λ0

∫
Ω

Ψ∗4(x)ψ∗(x)dx.

Since
∫

Ω
G(x)Ψ∗4(x)ψ∗(x)dx and

∫
Ω

Ψ∗4(x)ψ∗(x)dx are positive, then τ0 > 0

owing to the expression of τ0. Therefore, 1
τ0
− 1 and λ0 have the same sign.

The following lemma can be obtained by Theorem 3.1 in [26].

Lemma 3.2. The eigenvalue problem (3.2) admits a unique principal eigenvalue
λ0. Additionally, R0 − 1 and λ0 have the same sign.

It follows from Lemma 3.1 and 3.2 that R0 − 1 and 1
τ0
− 1 have the same sign.

When 0 < c < 1 in problem (3.1), it means harvesting pulse occurs in this system
and 1 − c is the harvesting rate. Let E(x, t) = e−λtφ2(x, t), I(x, t) = e−λtφ3(x, t)
and W (x, t) = e−λtφ4(x, t) in problem (3.1), we obtain the corresponding eigenvalue
problem

(ϕ2)t = δµ1(x)S∗ϕ4 + δµ2(x)S∗ϕ3(x)

− a(x)ϕ2 + γ2(x)ϕ2 + λϕ2, x ∈ Ω, t ∈ (0+, T ],

(ϕ2)t = (1− δ)µ1S
∗ϕ4(x) + ((1− δ)µ2(x)S∗

− γ3(x))ϕ3 + a(x)ϕ2 + λϕ3, x ∈ Ω, t ∈ (0+, T ],

(ϕ4)t − d∆ϕ4 = −γ4ϕ4 + b(x)ϕ3 + λϕ4, x ∈ Ω, t ∈ (0+, T ],

ϕ4(x, 0+) = cϕ4(x, 0), x ∈ Ω,

ϕi(x, 0) = ϕi(x, T ), x ∈ Ω, i = 2, 3, 4,

∂ϕ4

∂η
= 0, x ∈ ∂Ω.

(3.15)

Problem (3.15) is the periodic and degenerate eigenvalue problem with pulse,
as we know, there is no results for the existence of the principal eigenvalue for this
kind of problem, so now we consider the generalized principal eigenvalues.

Similarly as in [19], the generalized principal eigenvalues of problem (3.15) are
defined as

λ∗ = sup{λ ∈ R : λ satisfies (3.15), where the equal signs

of the first three equations are replaced by ≥},

λ∗ = inf{λ ∈ R : λ satisfies (3.15), where the equal signs

of the first three equations are replaced by ≤}.

In the following, we will present the estimates of the generalized principal eigen-
values. Substituting ϕ2(x, t) = f1(t)ψ2(x), ϕ3(x, t) = f1(t)ψ3(x) and ϕ4(x, t) =
f2(t)ψ4(x) into (3.15), where ψ4(x) is the eigenfunction corresponding to the prin-
cipal eigenvalue λ1 for the eigenvalue problem

− ψxx = λψ, x ∈ Ω,

∂ψ

∂η
= 0, x ∈ ∂Ω.

(3.16)
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Then problem (3.15) is converted into

(f1)tψ2 = δµ1(x)S∗f2ψ4 + δµ2(x)S∗f1ψ3 − a(x)f1ψ2

+ γ2(x)f1ψ2 + λf1ψ2, x ∈ Ω, t ∈ (0+, T ],

(f1)tψ3 = (1− δ)µ1(x)S∗f2ψ4 + (1− δ)µ2(x)S∗f1ψ3

− γ3(x)f1ψ3 + a(x)f1ψ2 + λf1ψ3, x ∈ Ω, t ∈ (0+, T ],

(f2)tψ4 + dλ1f2ψ4 = b(x)f1ψ3 − γ4(x)f2ψ4 + λf2ψ4, x ∈ Ω, t ∈ (0+, T ],

f2(0+) = cf2(0),

fi(0) = fi(T ), i = 1, 2.

(3.17)

Letting ψ4(x) = ψ3(x) = ψ̂(x), ψ2(x) = mψ̂(x) for further simplification yields

(f1)t =
1

m
δµ1(x)S∗f2 +

1

m
δµ2(x)S∗f1 − a(x)f1

+ γ2(x)f1 + λf1, x ∈ Ω, t ∈ (0+, T ],

(f1)t = (1− δ)µ1(x)S∗f2 + ((1− δ)µ2(x)S∗ − γ3(x))f1

+ma(x)f1 + λf1, x ∈ Ω, t ∈ (0+, T ],

(f2)t + dλ1f2 = b(x)f1 − γ4(x)f2 + λf2, x ∈ Ω, t ∈ (0+, T ],

f2(0+) = cf2(0),

fi(0) = fi(T ), i = 1, 2.

(3.18)

To estimate the generalized principal eigenvalues λ∗ and λ∗, the corresponding
inequality problems

(g1)t ≥
1

m
δµ̄1S̄

∗g2 +
1

m
δµ̄2S̄

∗g1 − (a+ γ
2
)g1 + λg1, t ∈ (0+, T ],

(g1)t ≥ (1− δ)µ̄1S̄
∗g2 + ((1− δ)µ̄2S̄

∗ − γ
3
)g1 +māg1 + λg1, t ∈ (0+, T ],

(g2)t ≥ −dλ1g2 + b̄g1 − γ
4
g2 + λg2, t ∈ (0+, T ],

g2(0+) = cg2(0),

gi(0) = gi(T ), i = 1, 2

(3.19)

and

(h1)t ≤
1

m
δµ

1
S∗h2 +

1

m
δµ

2
S∗h1 − (ā+ γ̄2)h1 + λh1, t ∈ (0+, T ],

(h1)t ≤ (1− δ)µ
1
S∗h2 + ((1− δ)µ

2
S∗ − γ̄3)h1 +mah1 + λh1, t ∈ (0+, T ],

(h2)t ≤ −dλ1h2 + bh1 − γ̄4h2 + λh2, t ∈ (0+, T ],

h2(0+) = ch2(0),

hi(0) = hi(T ), i = 1, 2

(3.20)
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are considered, where v = maxx∈Ω v(x) and v = minx∈Ω v(x) for v(x) = µ1(x),
µ2(x), S∗(x), a(x), b(x), γ2(x), γ3(x), γ4(x). For simplicity, we choose g2 ≤ g1 and
h2 ≤ h1, then (3.19) holds as long as

(g1)t ≥
1

m
δµ̄1S̄

∗g1 +
1

m
δµ̄2S̄

∗g1 − (a+ γ
2
)g1 + λg1, t ∈ (0+, T ],

(g1)t ≥ (1− δ)µ̄1S̄
∗g1 + ((1− δ)µ̄2S̄

∗ − γ
3
)g1 +māg1 + λg1, t ∈ (0+, T ],

(g2)t ≥ −dλ1g2 + b̄g1 − γ
4
g2 + λg2, t ∈ (0+, T ],

g2(0+) = cg2(0),

gi(0) = gi(T ), i = 1, 2

(3.21)

holds, and (3.20) holds as long as

(h1)t ≤
1

m
δµ

1
S∗h2 +

1

m
δµ

2
S∗h1 − (ā+ γ̄2)h1 + λh1, t ∈ (0+, T ],

(h1)t ≤ (1− δ)µ
1
S∗h2 + ((1− δ)µ

2
S∗ − γ̄3)h1 +mah1 + λh1, t ∈ (0+, T ],

(h2)t ≤ −dλ1h2 + bh2 − γ̄4h2 + λh2, t ∈ (0+, T ],

h2(0+) = ch2(0),

hi(0) = hi(T ), i = 1, 2

(3.22)

holds. Denote

c1 =
1

m
δµ̄1S̄

∗ +
1

m
δµ̄2S̄

∗ − (a+ γ
2
), c2 = (1− δ)µ̄1S̄

∗ + ((1− δ)µ̄2S̄
∗ − γ

3
) +mā,

c3 = b̄, c4 = −dλ1 − γ
4
, k1 =

1

m
δµ

2
S∗ − (ā+ γ̄2), k2 =

1

m
δµ

1
S∗,

k3 = ((1− δ)µ
2
S∗ − γ̄3) +ma, k4 = (1− δ)µ

1
S∗, k5 = −dλ1 + b− γ̄4.

By careful calculation, problem (3.21) reduces to

(g1)t ≥ c1g1 + λg1, t ∈ (0+, T ],

(g1)t ≥ c2g1 + λg1, t ∈ (0+, T ],

(g2)t ≥ c3g1 + c4g2 + λg2, t ∈ (0+, T ],

g2(0+) = cg2(0),

gi(0) = gi(T ), i = 1, 2,

(3.23)

and problem (3.22) reduces to

(h1)t ≤ k1h1 + k2h2 + λh1, t ∈ (0+, T ],

(h1)t ≤ k3h1 + k4h2 + λh1, t ∈ (0+, T ],

(h2)t ≤ k5h2 + λh2, t ∈ (0+, T ],

h2(0+) = ch2(0),

hi(0) = hi(T ), i = 1, 2.

(3.24)

The first inequality in problem (3.23) can be written as

(g1)t
g1
≥ c1 + λ. (3.25)

Integrating both sides of inequality in (3.25) over (0+, T ), which together with
the last two equations of problem (3.23), yields that λ ≤ −c1. It then follows



3618 Y. Tang, I. Ahn & Z. Lin

from problems (3.23) and (3.25) that g1(t) ≥ e(c1+λ)t. Similarly, λ ≤ −c2 and
g1(t) ≥ e(c2+λ)t can be deduced by the second inequality of problem (3.23).

In what follows, we construct

g1(t) =
1

c
, g2(t) =

{
e−

ln c
T t, t ∈ (0+, T ],

1
c , t = 0,

which is substituted into the third inequality in problem (3.23) to derive that λ ≤
−c4 − 1

T ln c− c3
c e

ln c
T t. Then we have λ ≤ −c4 − 1

T ln c− c3
c , and

λ∗ ≥ min

{
−c1,−c2,−c4 −

1

T
ln c− c3

c

}
(3.26)

by the definition of the generalized eigenvalue λ∗.
Similarly, the third inequality in problem (3.24) can be written as

(h2)t
h2
≤ k5 + λ, (3.27)

and then integrating both sides of inequality aforementioned over (0+, T ) to get
λ ≥ −k5 − 1

T ln c. It can be derived through problems (3.24) and (3.27) that

h2(t) ≤ e− ln c
T t, t ∈ (0+, T ] and h2(0) ≤ 1

c .
We still construct

h1(t) =
1

c
, h2(t) =

{
e−

ln c
T t, t ∈ (0+, T ],

1
c , t = 0,

which is substituted into the first two inequalities in (3.24), assert λ ≥ −k1 − ck2

and λ ≥ −k3 − ck4. Therefore, we obtain

λ∗ ≤ max

{
−k1 − ck2,−k3 − ck4,−k5 −

1

T
ln c

}
(3.28)

by the definition of the generalized eigenvalue λ∗.
To sum up, we have the following estimates of the generalized principal eigen-

values.

Theorem 3.2. The generalized principal eigenvalues of problem (3.15) satisfy

λ∗ ≥ min

{
−c1,−c2,−c4 −

1

T
ln c− c3

c

}
,

λ∗ ≤ max

{
−k1 − ck2,−k3 − ck4,−k5 −

1

T
ln c

}
.

Remark 3.3. Let δ = µ1(x) = µ2(x) = a(x) = γ2(x) = b(x) = 0, γ3(x) =
γ3, γ4(x) = γ4 and γ3 = dλ1 + γ4 − ln c

T in problem (3.15). A simple calculation
yields λ∗ = λ∗ = γ3, which means that the principal eigenvalue of problem (3.15)
exists and λ = γ3.

Similar as Lemma 2.3 in [15], we have the following positivity of the solution by
using the strong maximum principle and the Hopf boundary lemma.
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Lemma 3.3. Assume that u(x, t) is the solution to problem (1.1)with nontrivial
initial value φ ∈ X+. Then S(x, t) > 0, E(x, t) > 0, I(x, t) > 0 and W (x, t) > 0 for
any x ∈ Ω̄, t > 0.

Next, we give the long time behavior of the solution according to the principal
eigenvalue (for c = 1) or the generalized principal eigenvalues (for 0 < c < 1).

Theorem 3.3. When c = 1, i.e. there is no pulse in problem (1.1), if R0 <
1, then the disease-free equilibrium E0(S∗(x), 0, 0, 0) of problem (1.1) is globally
asymptotically stable.

Proof. We first define a Lyapunov function through positive eigenfunction pair
(Ψ∗4(x),Ψ∗3(x),Ψ∗2(x)) defined in (3.6),

W =

∫
Ω

[
[a(x) + (1− δ)γ2(x)]Ψ∗2(x)

a(x)
S∗(x)g

(
S

S∗(x)

)
+ Ψ∗2(x)E

+Ψ∗3(x)I + Ψ∗4(x)W ] dx,

where g(x) = x− 1− lnx.
Recall problem (3.5), we get

Ψ∗2(x) =
a(x)

a(x) + γ2(x)
Ψ∗3(x),

Ψ∗3(x) =
b(x)(a(x) + γ2(x))

γ3(x)(a(x) + γ2(x))− µ2(x)S∗(x)(a(x) + (1− δ)γ2(x))
Ψ∗4(x),

γ4(x)Ψ∗4(x) = d∆Ψ∗4(x) + τ0 [(1− δ)µ1(x)S∗(x)Ψ∗3(x) + δµ1(x)S∗(x)Ψ∗2(x)] Ψ∗4(x).

Direct calculation to the derivative of W yields

dW

dt
=

∫
Ω

[a(x) + (1− δ)γ2(x)]Ψ∗2(x)

a(x)

(
1− S∗(x)

S

)
[γ1(x)S∗(x)− µ1(x)SW

− µ2(x)SI − γ1(x)S] + Ψ∗2(x) [δµ1(x)SW + δµ2(x)SI − a(x)E − γ2(x)E]

+ Ψ∗3(x) [(1− δ)µ1(x)SW + (1− δ)µ2(x)SI + a(x)E − γ3(x)I]

+ Ψ∗4(x) [d∆W + b(x)I − γ4(x)W ] dx

=

∫
Ω

[a(x) + (1− δ)γ2(x)]Ψ∗2(x)

a(x)

[
γ1(x)S∗(x)

(
2− S∗(x)

S
− S

S∗(x)

)
+ µ1(x)S∗(x)W ]dx−

∫
Ω

Ψ∗3(x)γ3(x)Idx+

∫
Ω

Ψ∗4(x) [d∆W + b(x)I − γ4(x)W ] dx

=

∫
Ω

[a(x) + (1− δ)γ2(x)]Ψ∗2(x)

a(x)

[
γ1(x)S∗(x)

(
2− S∗(x)

S
− S

S∗(x)

)
+ (µ1(x)S∗(x)W − τ0µ1(x)S∗(x)W )]dx+

∫
Ω

d (Ψ∗4(x)∆W −W∆Ψ∗4(x)) dx.

It follows from the Green’s first formula and Neumann boundary condition that∫
Ω

d (Ψ∗4(x)∆W (x, t)−W (x, t)∆Ψ∗4(x)) dx = 0.

Therefore, we obtain

dW

dt
=

∫
Ω

[a(x) + (1− δ)γ2(x)]Ψ∗2(x)

a(x)

[
γ1(x)S∗(x)

(
2− S∗(x)

S
− S

S∗(x)

)
+ µ1(x)S∗(x)W (1− τ0)]dx.
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Recalling that R0−1 and 1
τ0
−1 have the same sign, R0 < 1 means that 1−τ0 < 0,

we then have dW
dt ≤ 0, and E0(S∗(x), 0, 0, 0) is globally asymptotically stable by the

similar argument as in [16].

Theorem 3.4. When 0 < c < 1, i.e. harvesting pulse takes place in problem (1.1),
if λ∗ > 0, then the disease-free equilibrium E0(S∗(x), 0, 0, 0) of problem (1.1) is
globally asymptotically stable.

Proof. First, it follows from (1.1) and the comparison principle that S(x, t) ≤
S̃(x, t), where S̃ satisfies

∂S̃

∂t
= α(x)− γ1(x)S̃, x ∈ Ω, t > 0,

S̃(x, 0) = S0(x), x ∈ Ω.

(3.29)

It is easy to check that lim
t→∞

S̃(x, t) = S∗(x) uniformly for x ∈ Ω, therefore, for

any small ε0 > 0, there exists T0 > 0 such that S(x, t) < S∗(x) + ε0 for t > T0 and
x ∈ Ω.

Since λ∗ > 0, there exists λ > 0 and positive function pair (ϕ∗2(x, t), ϕ∗3(x, t),
ϕ∗4(x, t)), satisfying

(ϕ∗2)t ≥ δµ1(x)S∗ϕ∗4 + δµ2(x)S∗ϕ∗3 − (a(x) + γ2(x))ϕ∗2

+ λϕ∗2, x ∈ Ω, t ∈ (0+, T ],

(ϕ∗3)t ≥ (1− δ)µ1(x)S∗ϕ∗4 + ((1− δ)µ2(x)S∗ − γ3(x))ϕ∗3

+ a(x)ϕ∗2 + λϕ∗3, x ∈ Ω, t ∈ (0+, T ],

(ϕ∗4)t ≥ d∆ϕ∗4 − γ4ϕ
∗
4 + b(x)ϕ∗3 + λϕ∗4, x ∈ Ω, t ∈ (0+, T ],

ϕ∗4(x, 0+) = cϕ∗4(x, 0), x ∈ Ω,

ϕ∗i (x, 0) = ϕ∗i (x, T ), x ∈ Ω, i = 2, 3, 4,

∂ϕ∗4
∂η

= 0, x ∈ ∂Ω.

Let (Ẽ, Ĩ, W̃ ) = (Mektϕ∗2,Mektϕ∗3,Mektϕ∗4) with −λ < k < 0. We show that
(Ẽ, Ĩ, W̃ ) ≥ (E, I,W ), where (S,E, I,W ) is the solution of (1.1). In fact,

Ẽt − δµ1(x)S̃W̃ − δµ2(x)S̃Ĩ + a(x)Ẽ + γ2(x)Ẽ

= Ẽt − δµ1(x)(S∗(x) + ε0)W̃ − δµ2(x)(S∗(x) + ε0)Ĩ + a(x)Ẽ + γ2(x)Ẽ

= kMektϕ∗2 +Mekt(ϕ∗2)t − δµ1(x)(S∗(x) + ε0)Mektϕ∗4 + a(x)Mektϕ∗2

− δµ2(x)(S∗(x) + ε0)Mektϕ∗3 + γ2(x)Mektϕ∗2

≥ kMektϕ∗2 + δµ1(x)S∗(x)Mektϕ∗4 + δµ2(x)S∗(x)Mektϕ∗3 + λMektϕ∗2

− (a(x) + γ2(x))Mektϕ∗2 − δµ1(x)(S∗(x) + ε0)Mektϕ∗4 + a(x)Mektϕ∗2

− δµ2(x)(S∗(x) + ε0)Mektϕ∗3 + γ2(x)Mektϕ∗2

= (k + λ)Ẽ − ε0δµ1(x)W̃ − ε0δµ2(x)Ĩ .

In consideration of λ+ k > 0, we can take a sufficiently small ε0 such that

Ẽt − δµ1(x)S̃W̃ − δµ2(x)S̃Ĩ + a(x)Ẽ + γ2(x)Ẽ ≥ 0.
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Similarly, it can be deduced that

Ĩt − (1− δ)µ1(x)S̃W̃ − (1− δ)µ2(x)S̃Ĩ − a(x)Ẽ + γ3(x)Ĩ ≥ 0,

W̃t − d∆W̃ − b(x)Ĩ + γ4(x)W̃ ≥ 0

as long as ε0 is sufficiently small. Hence, if we choose a sufficiently big M , then
(Ẽ, Ĩ, W̃ ) is an upper solution of the following problem

∂E

∂t
= δµ1(x)SW + δµ2(x)SI − a(x)E − γ2(x)E, x ∈ Ω, t ∈

(
(nT )+, (n+ 1)T

]
,

∂I

∂t
= (1− δ)µ1(x)SW + (1− δ)µ2(x)SI

+ a(x)E − γ3(x)I, x ∈ Ω, t ∈
(
(nT )+, (n+ 1)T

]
,

∂W

∂t
= d∆W + b(x)I − γ4(x)W, x ∈ Ω, t ∈

(
(nT )+, (n+ 1)T

]
,

W (x, (nT )+) = cW (x, nT ), x ∈ Ω, n = 0, 1, 2, ...,

V (x, (nT )+) = V (x, nT ), x ∈ Ω, V = E, I,

∂W

∂η
= 0, x ∈ ∂Ω, t > 0,

(E(x, 0), I(x, 0),W (x, 0))

= (E0(x), I0(x),W0(x)) ≥ 0, x ∈ Ω,

which means that (Ẽ, Ĩ, W̃ ) ≥ (E, I,W ).
On the other hand, since lim

t→∞
(Ẽ(x, t), Ĩ(x, t), W̃ (x, t)) = (0, 0, 0), then we have

lim
t→∞

(E(x, t), I(x, t),W (x, t)) = (0, 0, 0) for x ∈ Ω,

which implies that for any ε > 0, there exists T1 > 0 such that 0 ≤ I(x, t) ≤ ε and
0 ≤ W (x, t) ≤ ε for x ∈ Ω and t ≥ T1. By the first equation in problem (1.1), we
have

α(x)− εµ1(x)S − εµ2(x)S − γ1(x)S ≤ St ≤ α(x)− γ1(x)S,

for x ∈ Ω and t ≥ T1.
The arbitrariness of ε yields lim

t→∞
S(x, t) = S∗(x), and the disease-free equilib-

rium E0(S∗(x), 0, 0, 0) of problem (1.1) with harvesting pulse is globally asymptot-
ically stable.

According to Lemma 2.8 in [15] and Theorem 4.2 in [30], we have the following
results.

Lemma 3.4. Suppose c = 1, i.e. there is no pulse in problem (1.1). If R0 > 1,
then steady state solution E0 is a uniform weak repeller, that is,

lim sup
t→+∞

||(S,E, I,W )− (S∗, 0, 0, 0)|| ≥ ε0

for some ε0 > 0.

Lemma 3.5. Suppose c = 1, i.e. there is no pulse in problem (1.1). If R0 > 1,
then there exists a constant ε > 0, such that the positive solution (S,E, I,W ) to
problem (1.1) satisfies

lim inf
t→+∞

S(x, t) ≥ ε, lim inf
t→+∞

E(x, t) ≥ ε, lim inf
t→+∞

I(x, t) ≥ ε, lim inf
t→+∞

W (x, t) ≥ ε (3.30)
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for x ∈ Ω. Furthermore, problem (1.1) admits a unique positive steady state
E1(S(x), E(x), I(x),W (x)) when γ1(x)γ3(x)(a(x) + γ2(x))−α(x)µ2(x)[a(x) + (1−
δ)γ2(x)] > 0, where S(x), E(x), I(x),W (x) satisfying

α(x)− µ1(x)SW − µ2(x)SI − γ1(x)S = 0, x ∈ Ω,

δµ1(x)SW + δµ2(x)SI − (a(x) + γ2(x))E = 0, x ∈ Ω,

(1− δ)µ1(x)SW + (1− δ)µ2(x)SI + a(x)E − γ3(x)I = 0, x ∈ Ω,

d∆W + b(x)I − γ4(x)W = 0, x ∈ Ω,

∂W

∂η
= 0, x ∈ ∂Ω.

(3.31)

Proof. The result (3.30) is followed from the positivity of the solution, Lemma 3.4
and Theorem 3 in [22], and the existence of positive steady state solution to problem
(1.1) is similar as Lemma 2.9(ii) in [15] and Theorem 4.2 in [30], we omit the proofs
here with obvious modifications. In the following, we will prove the uniqueness.

The first three equations of problem (3.31) indicates that I(x) satisfies

γ3(x)µ2(x)(a(x) + γ2(x))I
2

+ γ3(x)[γ1(x) + µ1(x)W ](a(x) + γ2(x))I

− α(x)µ2(x)[a(x) + (1− δ)γ2(x)]I − α(x)µ1(x)W [a(x) + (1− δ)γ2(x)] = 0.
(3.32)

In view of I(x) > 0, we get

I(x) =
α(x)µ2(x)[a(x) + (1− δ)γ2(x)]− γ3(x)[γ1(x) + µ1(x)W ](a(x) + γ2(x)) +

√
∆

2γ3(x)µ2(x)(a(x) + γ2(x))
,

where

∆ =
{
γ3(x)[γ1(x) + µ1(x)W ](a(x) + γ2(x))− α(x)µ2(x)[a(x) + (1− δ)γ2(x)]

}2

+ 4(a(x) + γ2(x))γ3(x)µ1(x)µ2(x)α(x)[a(x) + (1− δ)γ2(x)]W.

If γ1(x)γ3(x)(a(x)+γ2(x))−α(x)µ2(x)[a(x)+(1−δ)γ2(x)] > 0, then the equation
(3.32) can be rewritten as

AI
2
(x) + (BW (x) + C)I(x)−DW (x) = 0,

where A = γ3(x)µ2(x)(a(x) + γ2(x)) > 0, B = γ3(x)µ1(x)(a(x) + γ2(x)) > 0, C =
γ1(x)γ3(x)(a(x)+γ2(x))−α(x)µ2(x)[a(x)+(1−δ)γ2(x)] > 0 andD = α(x)µ1(x)[a(x)
+ (1− δ)γ2(x)] > 0.

Let f
(
W
)

= −γ4(x)W + b(x)I, we can see from −d∆W (x) = −γ4(x)W (x) +

b(x)I(x) that the monotonicity of
f(W)
W

and I(x)

W (x)
is consistent.

Denote g(W (x)) = I(x)

W (x)
=
−(B+ C

W
)+

√
(B+ C

W
)2+ 4AD

W

2A . After careful calculation,

we derive that the derivative of I(x)

W (x)
with respect to W is less than zero when

γ1(x)γ3(x)(a(x) + γ2(x))−α(x)µ2(x)[a(x) + (1− δ)γ2(x)] > 0, which implies
f(W)
W

is nonincreasing with respect to W . The uniqueness is now completed.
Next we consider global asymptotic property of the endemic equilibrium of the

system (1.1) with no pulse.
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Theorem 3.5. Assume that c = 1, which means no pulse occurs. If R0 > 1,
then the endemic equilibrium E1(S(x), E(x), I(x),W (x)) of problem (1.1) is globally
asymptotically stable.

Proof. Define

H(t) =

∫
Ω

b(x)I(x)

µ1(x)S(x)

[
S(x)g

(
S

S(x)

)
+ E(x)g

(
E

E(x)

)
+ I(x)g

(
I

I(x)

)

+
µ1(x)S(x)W (x)

b(x)I(x)
W (x)g

(
W

W (x)

)]
dx,

where g(x) = x− 1− lnx.
By calculating the derivative of H along the positive solution of system (1.1),

we have

dH

dt
=

∫
Ω

b(x)I(x)

µ1(x)S(x)

[(
1− S(x)

S

)
(α(x)− µ1(x)SW − µ2(x)SI − γ1(x)S)

+

(
1− E(x)

E

)
(δµ1(x)SW + δµ2(x)SI − a(x)E − γ2(x)E)

+

(
1− I(x)

I

)
((1− δ)µ1(x)SW + (1− δ)µ2(x)SI + a(x)E − γ3(x)I)

+
µ1(x)S(x)W (x)

b(x)I(x)

(
1− W (x)

W

)
(d∆W + b(x)I − γ4(x)W )

]
dx.

(3.33)

Since E1 is the steady state solution to problem (1.1), substituting (3.31) into
(3.33) yields

dH

dt
=

∫
Ω

W (x)

[(
1− W (x)

W

)
d∆W +

(
1− W

W (x)

)
d∆W (x)

]
dx

+

∫
Ω

b(x)I(x)

µ1(x)S(x)

[
γ1(x)S(x)

(
2− S

S(x)
− S(x)

S

)

+ (1− δ)µ1(x)S(x)W (x)

(
3− SWI(x)

S(x)W (x)I
− S(x)

S
− W (x)I

WI(x)

)

+ δµ1(x)S(x)W (x)

(
4− S(x)

S
− SWE(x)

S(x)W (x)E
− EI(x)

E(x)I
− W (x)I

WI(x)

)

+ (1− δ)µ2(x)S(x)I(x)

(
2− S(x)

S
− S

S(x)

)
(3.34)

+ δµ2(x)S(x)I(x)

(
3− S(x)

S
− SIE(x)

S(x)I(x)E
− EI(x)

E(x)I

)
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− γ2(x)E(x)

(
1 +

E

E(x)
− I

I(x)
− EI(x)

E(x)I

)]
dx.

It then follows from Green’s first formula and Neumann boundary condition
that∫

Ω

W (x)

[(
1− W (x)

W

)
d∆W +

(
1− W

W (x)

)
d∆W (x)

]
dx

=d

[∫
∂Ω

W (x)

(
1− W (x)

W

)
OW · ηdS −

∫
Ω

OW (x)

(
1− W (x)

W

)
OWdx

+

∫
∂Ω

W (x)

(
1− W

W (x)

)
OW (x) · ηdS −

∫
Ω

OW (x)

(
1− W

W (x)

)
OW (x)dx

]

=− d
∫

Ω

n∑
j=1

(
W (x)

W

∂W

∂xj
− ∂W (x)

∂xj

)2

dx.

Hence, dH
dt ≤ 0, and the equality sign holds if and only if

(S(x, t), E(x, t), I(x, t),W (x, t)) =
(
S(x), E(x), I(x),W (x)

)
.

We finally obtain that E1 is globally asymptotically stable.

It is quite difficult to analyze the stability of the endemic equilibrium of problem
(1.1) with harvesting pulse (i.e. 0 < c < 1), however, the following numerical
approximations (see Fig. 6) show that if λ∗ < 0, the solution to problem (1.1)
tends to a positive periodic solution.

4. Numerical simulations

In this section, numerical approximations are carried out to verify the correctness
of the theoretical results and explore the impact of virus reproduction rate and
diffusion coefficient on the basic reproduction number.

We choose function b(x) = b0
(
1 + k sin

(
9πx
10

))
, and fix other parameters ( [3,

14,20,25,27])

α = 0.86× 105, γ1 = 0.01, µ1 = 0.105× 10−5, µ2 = 0.4× 10−8,

δ = 0.001, a = 0.1, γ2 = 0.004, γ3 = 7, Ω = [0, 10],

(S0(x), E0(x), I0(x),W0(x)) = (106, 0, 0, 0.001× e−(x−5)2).

(4.1)

Example 4.1. The virus reproduction rate b(x) = b0
(
1 + 0.5 sin

(
9πx
10

))
.

We first fix d = 0.01, c = 1, b0 = 0.05, then 1
τ0
≈ 0.8141 < 1 and the basic

reproduction number R0 < 1. Problem (3.1) admits a disease-free equilibrium
E0(5× 106, 0, 0, 0), and if R0 < 1, E0 is globally asymptotically stable. It is shown
in Fig. 1 that I(x, t) and W (x, t) decay to 0 with time evolution.

We secondly fix d = 0.01, c = 1, b0 = 0.12, then 1
τ0
≈ 1.9537 > 1 and R0 > 1.

Problem (3.1) admits an endemic equilibrium E1, and if R0 > 1, E1 is globally
asymptotically stable. Fig. 2 indicates that I(x, t) and W (x, t) ultimately stabilize
to a positive steady state.
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(a) (b)

(c) (d)

Figure 1. Choose b0 = 0.05 and other parameters fixed in (4.1)(R0 < 1). I(x, t) and W (x, t) decay to
zero.

(a) (b)

(c) (d)

Figure 2. Choose b0 = 0.12 and other parameters fixed in (4.1) (R0 > 1). I(x, t) and W (x, t) tend to
a positive steady state.



3626 Y. Tang, I. Ahn & Z. Lin

Example 4.2. The virus reproduction rate b(x) = b0
(
1 + k sin

(
9πx
10

))
with 0 ≤

k < 1.

We still fix d = 0.01, c = 1, and then choose b0 = 0.06, 0.07, 0.08, respectively.
It is worth noting in Fig. 3 that 1

τ0
is a nondecreasing function with respect to k.

Owing to the same sign of R0 − 1 and 1
τ0
− 1, we can see that the increase of the

virus reproduction rate in heterogeneous environment will lead to an increase in R0,
which increases the risk of disease infection and bring about more infections.

0 0.2 0.4 0.6 0.8 1

k

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
1/

0
b

0
=0.06

b
0
=0.07

b
0
=0.08

R
0
=1

(a)

Figure 3. Choose b0 = 0.06, 0.07, 0.08 and other parameters fixed in (4.1). The impact of k on 1
τ0

.

Example 4.3. The impact of virus diffusion coefficient d on basic reproduction
number R0 in heterogeneous environment.

In order to investigate the effect of virus diffusion coefficient on R0, we first
let the diffusion coefficient d changes over [0, 0.02]. Then fix c = 1,
b(x) = b0

(
1 + 0.5 sin

(
9πx
10

))
, and select b0 = 0.05, 0.06, 0.07. It is clear in Fig. 4

that 1
τ0

is nonincreasing with respect to d. Since R0 − 1 and 1
τ0
− 1 have the same

sign, an increase of virus diffusion rate in the environment can effectively lead to a
decline in the number of newly infected individuals.

Example 4.4. The environment with impulse.

In the following, the stability of the solution is illustrated by numerical simula-
tion. Firstly, fix parameters b(x) = 0.6

(
1 + 0.5 sin( 9πx

10 )
)
, d = 0.137, c = 0.8, and

choose γ4 = 0.5, then λ∗ ≥ 0.1029 > 0. From Fig. 5 we can see that the density
of viruses in the environment eventually goes to zero. Secondly, Choose γ4 = 0.1,
then λ∗ ≤ −0.2495 < 0. Numerical approximation in Fig. 6 indicates the virus in
the environment stabilizes to a positive periodic steady state.

This indicates that the smaller γ4(x) is, the longer the average survival time of
free viruses without hosts has, the more likely viruses are to persist in the envi-
ronment. Therefore, it can be seen that, the average survival time of free viruses
without hosts which is 1/γ4(x) plays an important role in the persistence or extinc-
tion of viruses in the environment. We also note that a short average survival time
of free viruses is beneficial for the extinction of the viruses when the pulse takes
place.
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Figure 4. Fix parameters in (4.1). The relation between d and 1
τ0

. (a) b0 = 0.05; (b) b0 = 0.06; (c) b0 =

0.07.

(a) (b)

(c)

Figure 5. λ∗ > 0 and the density of viruses in the environment eventually goes to zero.
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(a) (b)

(c)

Figure 6. λ∗ < 0 and viruses in the environment eventually tend to a positive steady state.

5. Discussion

This paper focuses on a reaction-diffusion problem featuring impulsive effects under
Neumann boundary conditions. Initially, we formulate an infectious disease model
that incorporates both pulsing and environmental virus diffusion, and prove the
well-posedness of problem (1.1). Subsequently, we utilize the principal eigenvalue τ0
of the corresponding elliptic eigenvalue problem to establish a symbolic relationship
with R0 in problem (1.1) when c = 1 (no pulse). We also estimate the generalized
eigenvalues in problem (1.1) for 0 < c < 1 (harvesting pulse). In the case where
c = 1, we examine the global stability of both the disease-free and endemic equilibria
in heterogeneous environments by constructing a Lyapunov functional. Specifically,
we find that if R0 < 1, the disease-free equilibrium is globally asymptotically stable.
Conversely, if R0 > 1, problem (1.1) exhibits uniform persistence and admits a
unique, globally asymptotically stable, positive steady-state solution. Furthermore,
in the case where 0 < c < 1, we establish that if λ∗ > 0, the disease-free equilibrium
is globally asymptotically stable. However, if λ∗ < 0, the solution to problem (1.1)
converges to a positive periodic solution.

Our numerical simulations demonstrate that an elevated rate of viral reproduc-
tion contributes to an increase in new infections in spatially heterogeneous envi-
ronments. In the other hand, extensive viral diffusion coupled with regular envi-
ronmental cleaning results in a decrease in new infections. These results suggest
strategy for infection control. Specifically, frequent ventilation can facilitate the
diffusion of the virus, thereby reducing the number of new infections. Additionally,
regular environmental disinfection is effective in eliminating viruses originating from
the environment.
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