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Abstract The monitoring and controlling of systemic risk have increasingly
become the focus of attention in the financial field. It is important and difficult
to accurately forecast systemic financial risk. In this paper, we propose a
spatio-temporal partial differential equation model to describe the systemic
risk of China’s Banking Industry based on network, clustering, and real date of
24 China’s A-share listed banks. The model considers the combined influence
of local risk and transboundary contagion effects, and the prediction relative
accuracy is up to 95%. Simulation results confirm that strict joint control
measures, the timeliness of central bank intervention, and differences in bank
strategies are efficient for reducing systemic risk. To our knowledge, this is
the first paper to apply a PDE model to forecast systemic financial risk.

Keywords Systemic risk, forecast, complex network, partial differential equa-
tion, joint control.
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1. Introduction
Following the international financial crisis of 2008, the prevention of systemic finan-
cial risks has become a top priority in the economic strategies of many countries.
The intricate interconnections among various markets and financial institutions
serve as channels for the spread of financial risks. Given the crucial role of the
banking industry within the financial system, it’s essential to understand the com-
plex correlations among banks and study the mechanisms of risk propagation. That
is helpful for regulatory bodies in preventing systemic risk and maintaining the sta-
bility of the banking industry. Allen [5] studied the systemic risk contagion of the
banking industry, and others researched systemic risk of areas such as the real estate
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sector, the stock market, and the foreign exchange market. Greenwood et al. [18]
discussed risk contagion across these sectors.

Various methods are used to measure systemic risk. Some papers analyze the
contribution of individual institutions to systemic financial risks, such as the condi-
tional value at risk (CoVaR) in Adrian and Brunnermeier [3,39], systemic expected
shortfall (SES) and marginal expected shortfall (MES) in Acharya et al. [2], and
the conditional capital shortfall of a firm during a severe market decline (SRISK) in
Brownlees and Engle [12]. Others measure financial risk at a systemic and overall
level, such as the aggregate level of risk-taking in the financial sector (CATFIN) [6].

Systemic risk can propagate through various channels, including interbank busi-
nesses [22] and the price linkage of banks’ stocks on the financial market [30]. These
complex interbank relationships can generally be characterized through network
analysis. Multiple methods exist to structure a banking network. For instance,
some networks are formed based on the asset-liability linkage [35] to study the con-
tagion effect of interbank business. Others are constructed by using the correlation
between banks’ stock prices [17] to calculate each bank’s contribution to systemic
risk and to evaluate the systemic importance of banks. Utilizing these networks,
researchers can trace the path of systemic risk contagion within the banking net-
work, explore the influence of network structure on the contagion effect of systemic
risk, and simulate the banking system’s response to various types of shocks [10].
However, existing researches often simulated the risk contagion effect of a single
bank shock on the bank network, or discussed the impact of network topology on
systemic risk [32]. There is few works considering the cluster effect of banks on risk
contagion. In fact, risk spreads not only between closely connected banks, but also
between different banking clusters [40].

To prevent systemic risks, accurate prediction and warning of such risks are
crucial. This helps regulators monitor systemic risks in the banking industry and
implement effective supervision to mitigate systemic risk. In recent years, sig-
nificant research has been conducted on predicting systemic risks using machine
learning and deep learning algorithms. Sekmen and Kurkcu [32] employed artificial
neural network learning to predict financial risks. Tölö [40] utilized long and short-
term memory (RNN-LSTM) and gated cycle unit (RNN-GRU) neural networks to
predict systemic financial crises 1-5 years in advance. Wang and Zhu [41] used
backpropagation (BP) neural networks to predict systemic risk in the three major
U.S. stock indexes, achieving higher prediction accuracy than traditional models.
While machine learning and deep learning methods offer reliable prediction accu-
racy, they rely on parameter learning and do not capture the specific process of
dynamic contagion in systemic risk.

In recent years, data-driven differential equation models are widely used in var-
ious fields [27, 37]. Partial differential equation (PDE) is an effective tool to study
the dynamic evolution of complex systems. A spatio-temporal PDEs model not only
depicts the temporary dynamics, but also can describe the spatial interactions. Y.
Wang and H. Wang [44] used a PDE model to forecast bitcoin price movements.
Wang et al. [46] developed a specific PDE model to describe and predict the trans-
mission of PM2.5 requiring only PM2.5 concentration data and avoiding extensive
computation. Compared to machine learning and traditional statistical methods,
the PDE model can effectively describe and explain the dynamic process of studied
object.

In this paper, based on real stock prices date of 24 China’s A-share listed banks,
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we construct a banking network and propose a spatio-temporal partial differential
equation model to describe the dynamic process of systemic risk generation and
propagation among bank-clusters. The model considers the combined influence of
local risk in each cluster and transboundary infection effects between different clus-
ters for obtaining a high prediction accuracy. Moreover, we use the PDE model to
observe the effects of different policies by simulation. To the best of our knowledge,
this is the first paper to apply a PDE model to forecast systemic financial risk.

Our research framework is as follows. First, we construct a complex banking
network based on the transfer entropy of the weekly stock return rate of sample
banks from 2016 to 2018. Then, we divide these 24 banks into three categories
using a network subgraph and spectral clustering, and embed them onto a one-
dimensional axis. We calculate the weighted average of |∆CoVaR| to measure the
systemic risk of three clusters.

Next, we establish a spatio-temporal partial differential equation (PDE) model
to describe the dynamic process of risk generation and propagation within and
between clusters. We validate the model using actual data from 2019 to 2022,
forecasting the weighted average of |∆CoVaR| for the fifth week by using historical
data of the first four weeks and achieving a prediction accuracy up to 95%. Notably,
the PDE model outperforms the prediction accuracy of the BP neural network and
Random Forest under the same conditions.

Furthermore, sensitivity analysis and simulations demonstrate that stricter joint
control measures lead to reduced systemic risk. The timeliness of central bank
interventions, the intensity of financial regulatory measures, and differences in bank
strategies are identified as effective factors in controlling systemic risk.

This article contributes to several research areas. We establish a PDE model
based on banking network to quantify the spatial and temporal dynamics of sys-
temic financial risk. This model can efficiently describe the dynamic process of risk
generation and propagation in the system. The spectral clustering with high-order
organization reveals deeper connections between the listed banks. This makes it
more effective to study the cluster effect of systemic risk contagion. Additionally,
the numerical simulations give insights into controlling the spread of systemic risks
and evaluating the impact of regulatory policies. Thus, this article provides a new
method and insight for researching systemic financial risk.

The rest of the paper is organized as follows. In Section 2, we introduce the
PDE model and bank network. The forecast process and results of systemic risk
are presented in Section 3. We show sensitivity analysis and policy simulation in
Section 4 and conclude the work in Section 5.

2. Method and data
2.1. Spatio-temporal partial differential equation model
Banks can form many complex network relying on various reasons. We will intro-
duce a new bank network in Section 2.2 and 2.3. For considering cluster effect of
systemic risk propagation, we divide the network into three clusters and treat the
banks in the same cluster as a whole. Then we embed three clusters onto an axis
in Euclidean space in Section 2.4. See Figure 1.

The dynamic process of systemic risk can be divided into two part: one genera-
tion and spread within each cluster and the other diffusion among clusters. Similar
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Figure 1. Three clusters embedded in one-dimensional space

transmission processes have been wildly studied in various fields such as epidemiol-
ogy [11, 25], biology [14, 26], informatics [42], and environmental science [45]. PDE
models have been proved to be effective to study these processes of diffusion and
infection [34,42,45]. Motivated by these works, we propose a spatio-temporal PDE
model to describe the dynamic process of systemic risk in China’s banking industry.
Although the banking system is influenced by other financial sectors, for simplicity,
we assume that the banking system is isolated, meaning there are no risk flows
entering or leaving the boundary of this system.

Let u(x, t) represent the concentration of systemic risk, that is the weighted
average of |∆CoVaR| (denoted in Section 2.5), in cluster x at a given time t. The
rate of change of u(x, t) depends on the generation of systemic risk within each
cluster and the contagion among clusters. The following proposition gives a spatio-
temporal PDE model to describe the changing process of systemic risk:

Proposition 2.1. Suppose u(x, t) represent the concentration of systemic risk, then
u(x, t) satisfies

∂u(x,t)
∂t = ∂

∂x

[
d(x)∂u(x,t)∂x

]
+ r(t)u(x, t)

[
h(x)− u(x,t)

K

]
,

u(x, 1) = φ(x), 1 < x < 3,

∂u
∂x (1, t) =

∂u
∂x (3, t) = 0, t > 1,

(2.1)

where ∂u(x,t)
∂t represents the rate of change in u(x, t) at time t, ∂u(x,t)

∂x represents
the rate of change in u(x, t) at location x.
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• ∂
∂x

[
d(x)∂u(x,t)∂x

]
indicates the transboundary contagion of systemic risk be-

tween different clusters. Based on Fick’s law [26], the term d(x)∂u(x,t)∂x mea-
sures the systemic risk quantity crossing the location x, where d(x) measures
the speed at which risk flows between different bank clusters. This concept has
been widely used to describe spatial contagion in infectious disease [11], spa-
tial transport of air pollution [45] and animal movements [34]. For simplicity,
we assume that d(x) ≡ d > 0.

• r(t)u(x, t)
[
h(x)− u(x,t)

K

]
represents the intrinsic growth and spread process

of systemic risk at cluster x and time t. This type of function is commonly
used to describe the growth of bacteria, tumors or social information over
time.

1. The function r(t) > 0 represents the growth rate of the systemic risk of
each cluster at time t. A highly interconnectedness financial network not
only leads to a rapid increase in systemic risks but also absorb shocks
through network associations [1]. Hence, we assume that systemic risk
rapidly increases initially, and reaching its peak at certain time, after
which the rate of growth decreases over time. The risk growth function
is expressed as r(t) = A + Be−C(t−1)2 , where A, B, C are non-negative
parameters to be determined based on actual data from 2019 to 2022.

2. The location function h(x) describes the spatial heterogeneity of systemic
risks and indicates the different spread rates of risks in each cluster. h(x)
is constructed using cubic spline interpolation, satisfying h(x) ≡ hi, i =
1, 2, 3, where xi represents the location of the cluster i. The values of
h(x) depends on actual data.

3. K indicates the capacity of the banking system’s risk, i.e., the maximum
risk that the entire banking system can bear. If the risk exceeds the
maximum capacity of the system, the system will face collapse. The
values of K also depends on the actual data.

• The initial function u(x, 1) = φ(x) describes the weighted average of |∆CoVaR|
for each cluster at time t = 1, and it always satisfies φ(x) ≥ 0.

• The Neumann boundary condition [15] ∂u
∂x (1, t) =

∂u
∂x (3, t) = 0, t > 1, indicates

that no risk spreads across the boundaries at x = 1, and x = 3. It means
that we do not consider the inflow and outflow of risks between the banking
system and the outside world.

2.2. Data
To ensure the representativeness and availability of market data, we extract the clos-
ing prices of 24 China’s A-share commercial banks listed before 2017 (see Appendix
A) and the mainland China banking index.

These 24 banks hold significant influence over the entire banking system in
China. By the end of 2022, the assets of these 24 listed banks accounted for 73.78%
of the total assets of all domestic commercial banks, and their liabilities accounted
for 73.56% of the total liabilities of all domestic commercial banks, encompassing the
majority of the actual businesses within China’s entire banking system. Specially,
the sample includes four globally systemically important banks (G-SIBs) of China:
Bank of China, Industrial and Commercial Bank of China, Agricultural Bank of
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China, and China Construction Bank. Generally, these banks are categorized into
four groups based on their ownership: state-owned banks (SO), joint-stock banks
(JS), urban commercial banks (UC), and rural commercial banks (RC).

To ensure that the 24 listed banks have been on the market for at least one
year, we select the corresponding data from 159 trading weeks between 2016 and
2018. The data is obtained from the WIND Database.∗ We calculate the weekly
rate of return of each bank by taking the logarithmic firstorder difference: rit =
ln
(
qit
)
− ln

(
qit−1

)
, where qit represents the average closing stock price of stock i in

week t.

2.3. Network construction
In this section, we construct banking network by using information flow between
bank stock prices. The stock price of a bank, influenced by various factors such
as the bank’s operating results, macroeconomic environment and policy interven-
tions, is considered a key factor when discussing bank’s risk [48]. The correlation
between bank stock prices can represent the relationship of banks to some extent.
In recent years, information flow measurement based on transfer entropy has been
widely used in the stock market [16]. It is an important tool for analyzing causal
relationships in nonlinear systems [19]. Transfer entropy captures directional and
dynamic information [13] without relying on any specific functional form to describe
the interrelation between variables.

Let’s consider X as a discrete random variable with a probability distribution
p(x). The uncertainty or amount of information of X can be measured by its
entropy, defined as H(X) = −

∑
x p(x) log2 p(x). Suppose X and Y are stochastic

processes of order k and l, the transfer entropy from Y to X is defined by formula

TEY→X(k, l) =
∑

xn+1,x
(k)
n ,y

(l)
n

p(xn+1, x
(k)
n , y(l)n ) log2

p(xn+1 | x(k)
n , y

(l)
n )

p(xn+1 | x(k)
n )

. (2.2)

TEY→X(k, l) indicates the reduction of uncertainty of X when Y is known, high-
lighting the effect of Y in the prediction of X. The notation x

(k)
n = (xn, . . . , xn−k+1)

and y
(l)
n = (yn, . . . , yn−l+1) represent k-dimensional and l-dimensional delay embed-

ding vectors, and p(xn+1 | x(k)
n ) repesent conditional probability.

Assume W and Z represent the weekly rate of return series for each two banks,
as outlined in Appendix, over 159 trading weeks from 2016 to 2018. We divide
the series into five states using quantiles of 20%, 40%, 60% and 80%, denoted as
q0.2, q0.4, q0.6 and q0.8 respectively. Therefore, the state set is defined as s =
{s1, s2, s3, s4, s5}, where

sx =



s1 x < q0.2,

s2 q0.2 ⩽ x < q0.4,

s3 q0.4 ⩽ x < q0.6,

s4 q0.6 ⩽ x < q0.8,

s5 x ⩾ q0.8.

(2.3)

Using the stochastic processes X and Y record the state W and Z belong to in
every trading week. The correlation between W and Z is studied by calculating the

∗https://www.wind.com.cn/mobile/EDB/en.html.
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transfer entropy TEY→X(k, l) and TEX→Y (l, k) with k=l=1 [31]. The probabilities
in formula (2.2) can be approximated by the frequency of X(and Y ) located in each
state S = {s1, s2, s3, s4, s5}. In this article, we compute the transfer entropy using
“RTransferEntropy” package released by Behrendt et al [7].

Now, let’s construct an interbank information flow network. The nodes in the
network represent 24 sample banks. The weight of the connected edge between
any two nodes is the transfer entropy of the corresponding two random processes
generated from their weekly return rate series from 2016 to 2018. Considering that
the transfer entropy between some banks is too small, we choose θ=0.0925 [23] as
the threshold value for the transfer entropy. This allows us to construct a more
effective network, denoted as G̃(V, Ẽ) by filtering out redundant information, see
Figure 2 (Left). The rule for determining the weight of an edge (or the length of an
edge) from bank i to the bank j is shown in formula (2.4). If TEi→j(1, 1) ≥ θ, then
eij = 1, otherwise eij = 0. Similarly, the edge from bank j to bank i is determined
in the same manner.

Ẽ =

 eij = 1 i ̸= j and TEi→j ⩾ θ,

eij = 0 otherwise.
(2.4)

The information flow network G̃(V, Ẽ) can intuitively capture the network struc-
ture of the banking system.

Figure 2. The directed graph G̃ and the undirected graph G

The network structure at the level of individual nodes and edges are considered
to be lower-order connectivity patterns of complex networks. For exploring and
researching complex systems, high-order organization [8] is significant. A common
form of highorder organization is the small network subgraph, often referred to as
triangle motifs, as shown in Figure 3.

For example, triangle motifs M1−M7 are crucial for social networks, while two-
hop paths M8−M13 are essential to understanding air traffic patterns. In our study,
we choose the motif M8 to analyze the network G̃(V, Ẽ) since risk typically spreads
from high-risk zones (sources) to low-risk zones (targets). A bank is considered a
source (target) of risk if it has more outward (inward) edges. Based on motif M8,
the directed weighted network G̃(V, Ẽ) is transformed into an undirected weighted
network G(V,E), see Figure 2 (Right). The weight of the edge between bank i and
j in network G(V,E) represents the number of instances of motif M8 that contain
nodes i and j.
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Figure 3. Triangle motifs

We will explore the transmission of systemic risk in China’s commercial banks
based on network G(V,E). It is worth noting that the network G(V,E) is con-
structed based on the transfer entropy. Other papers used different methods for
constructing banking network, see references [9, 20]. To our best knowledge, this is
the first work to apply higher-order organization of complex networks to financial
risk analyzing. Network analysis not only gives a global view to system risk trans-
mission, but also reveals hidden internal structure of bank industry in China. The
basic characteristics of the network G(V,E) are presented in Table 1.

Table 1. The characteristics of the network G

Nodes Edges Average
degree

Average
path

length

Average
strength

Network
density

24 163 7.01 1.40 10.25 0.59

Node degree represents the number of edges by which the node connects with
other nodes, while the weight of every edge calls the path length. Node strength is
the sum of the weight of all edges connected to it. Network density refers to the
percentage of edges present in the network compared to the total number of edges.
In the banking network G(V,E), banks with higher degree and strength have a
greater ability for risk contagion after a crisis occurs. Since the average strength of
G(V,E) is 10.25, we list all banks with strength greater than 11 in Table 2.

Table 2. Banks with strength over 11

Bank node Strength Bank node Strength

3(RC) 18 13(JS) 14
10(UC) 18 16(SO) 14
12(RC) 18 18(SO) 14
14(UC) 18 22(UC) 14
7(JS) 14 24(RC) 14
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From Table 2, it is evident that, although the large state-owned banks being the
core of the banking system, the risk contagion capabilities of certain rural commer-
cial banks, urban commercial banks and joint-stock banks cannot be ignored. This
finding aligns with the actual situation [29]. In order to better study the generation
and contagion process of systemic financial risks, we need to find an appropriate
classification for the 24 China’s banks based on the network G(V,E) by using a
clustering method.

2.4. Clustering and embedding
Previous research shown that contagion of systemic financial risks has cluster effects.
Murugan and Sree Kala analysed financial risk using machine learning strategies
and cluster to predict loan defaults [27]. Since K-means clustering relies on strong
assumptions about cluster shape and is sensitive to outliers, the clustering results
can be vary based on the initial configuration of the centroids. To overcome these
limitations, spectral clustering has been proposed which is more advantageous in
capturing the primary features of the data. The essence of spectral clustering lies in
grouping similar data together as much as possible while separating different data
as much as possible. Several studies have demonstrated the effectiveness of spectral
clustering in various applications, such as image segmentation, social network anal-
ysis, and bioinformatics. For further research on spectral clustering, please refer to
Sharma and Seal [33] and Karlekar et al. [21]. Here, we apply spectral clustering to
cluster the bank network G(V,E).

Proposition 2.2. Let G(V,E) be above bank network. Then it can be divided
three parts by spectral clustering. Moreover, these clusters can be embed onto a
onedimensional axis with corresponding positions at x = 1, 2, 3, as shown in Figure
1.

Method: Using the algorithm based on high-order organization, we divide the 24
banks into 3 clusters. The main steps of spectral clustering are:

Step 1: Computing the adjacency matrix WM of the network G(V,E) based on
the motif M8.

Step 2: Apply spectral clustering to the the adjacency matrix WM .

• Calculating a normalized Laplace matrix LM = D
− 1

2

M (DM −WM )DM
− 1

2 ,
where DM is a diagonal matrix with (DM )ii =

∑n
j=1 (WM )ij .

• Calculating the eigenvectors z2 and z3 corresponding to the second smallest
eigenvalue λ2 and the third smallest eigenvalue λ3 of the Laplacian matrix
LM .

• Combining the eigenvectors z2 and z3 a matrix whose dimension is n × 2.
• Perform the K-means clustering algorithm is on the n × 2 matrix, grouping it

into k classes. The clustering results are shown in Table 3.

By comparing Table 3 with Table 2, we observe that Cluster 1 includes six out
of the ten banks from Table 2, while Cluster 2 covers three banks, and Cluster 3
includes only one bank. The average strength of nodes in Cluster 1, Cluster 2, and
Cluster 3 is 11.4, 11.1, and 7.7, respectively. This implies that the banks in Cluster
1 have the highest level of interconnectedness, followed by Cluster 2 and Cluster 3.
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Table 3. The results of three clusters in 24 listed banks

Ownership Cluster 1 Cluster 2 Cluster 3

SO 16 21 18 20 17
JS 4 7 5 13 19 1 6 23
UC 10 11 22 9 2 14 15
RC 8 12 24 3

The greater the interconnection, the stronger the ability for risk contagion within
the cluster.

Next, we calculate the sum of the weights of all edges connecting two clusters,
which can be interpreted as the distance between these two clusters. A higher level
of interconnectedness indicates a smaller distance between clusters. The sum of
the weights of edges between Cluster 1 and Cluster 2 is 53, that between Cluster
2 and Cluster 3 is 21, and that between Cluster 1 and Cluster 3 is 39. Based
on the average strength and the distances among clusters, we embed Cluster 1,
Cluster 2, and Cluster 3 onto a one-dimensional axis with corresponding positions
at x = 1, 2, 3, as shown in Figure 1. Then we can use PDE model (2.1) to study
the contagion of systemic risk of China’s Banking Industry.

2.5. Computing weighted average of |∆CoVaR|
The most commonly measure for assessing the risk of an individual financial insti-
tution is value-at-risk (VaR). The maximum loss VaRi

α,t of the institution i at time
t at the confidence level 1− α (e.g., 95%) is defined as:

Pr(rit ≤ VaRi
α,t) = α, (2.5)

where rit is the return rate of the institution i at time t. To measure the contribution
of each institutional asset to systemic risk, Adrian and Brunnermeier [3] proposed
the concept of CoVaR, defined as follows:

Pr(rs ≤ CoVaRs|i
α,t | ri = VaRi

α,t) = α. (2.6)

Here rs represents the return rate of the market, CoVaRs|i
α,t represents the con-

ditional risk to which the system is exposed when the financial institution i has
suffered an extreme loss VaRi

α,t at time t.
We employ quantile regression techniques to estimate CoVaR. The selection

of state variables is primarily based on the approaches adopted by Adrian and
Brunnermeier [3]. Taking into account the actual conditions of China’s financial
market, we have chosen the following lagged variables: (1) the weekly market return
of the HS300 index†; (2) the volatility (the 22-day rolling standard deviation of the
daily HS300 return); (3) the change in the 3-month Treasury bill rate, referred to
as the short term “liquid spread” (which is defined as the difference between the

†The HS300 Index is composed of 300 most representative stocks with large scale and good
liquidity in the Shanghai and Shenzhen Stock Exchange. It was officially released on April 8, 2005,
to reflect the overall performance of the stocks of listed companies in the Shanghai and Shenzhen
Stock Exchange.
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3-month repo rate and the 3-month Treasury bill rate); (4) the term spread; (5) the
weekly real estate sector return; (6) the change in the 3-month Treasury bill rate.‡

CoVaRs|i
α,t and CoVaRs|i,50%

α,t respectively represent the systemic risk of the bank-
ing system during the period where the bank i is in crisis and when bank i is in the
mediate state (with the return of bank i as the median). The spillover of risk from
bank i to the banking system can be measured in terms of:

∆CoVaRs|i
α,t = CoVaRs|i

α,t − CoVaRs|i,50%
α,t . (2.7)

∆CoVaR has proven to be a valuable tool for assessing systemic risk in financial
markets.

Proposition 2.3. Based on formula (2.2) and stock return rates of 208 weeks from
January 2019 to December 2020, we obtain the weekly weighted average |∆CoVaR|
for the three Clusters. We find that Cluster 1 has the highest systemic risk and
Cluster 3 has the lowest systemic risk for most periods, as shown in Figure 4.

Method: We calculate the weekly ∆CoVaR for 24 banks using the stock return
rates of 208 weeks from January 2019 to December 2020. Since the value of ∆CoVaR
are all negative, we use the absolut value |∆CoVaR| to represent systemic risk for
convenient. The top ten banks with the highest average weekly |∆CoVaR| are listed
in Table 4. The average weekly |∆CoVaR| for the three Clusters are 1.9945, 1.3316,
1.0707, respectively. This indicates that the Cluster 1 has the highest average
systemic risk, then Cluster 2 and Cluster 3.

Table 4. Top ten banks with the average weekly |∆CoVaR| from 2019 to 2022

Bank node |∆CoVaR| Bank node |∆CoVaR|

5(JS) 6.0606 15(UC) 5.4092
6(JS) 5.7446 4(JS) 5.3424
7(JS) 5.7336 14(UC) 4.7438

19(SO) 5.6093 1(JS) 4.7319
2(UC) 5.4326 22(UC) 4.7063

Based on the discussion above, we find that Cluster 1 has the highest inter-
connectedness and contributes the most to overall risk, followed by Cluster 2 and
Cluster 3. Furthermore, the risk tends to spill over from high-risk clusters to low-
risk clusters. Taking this into consideration, we calculate the weighted average value
of |∆CoVaR| for each cluster at every trading week as a measure of the cluster’s
systemic financial risk.

The weight of each bank i is given by wi =
(DM )ii∑n
i=1(DM )ii

, where DM is the diagonal
matrix generated by the adjacency matrix WM of the network G(V,E). Figure 4
illustrates the weekly weighted average of |∆CoVaR| of three clusters from 2019 to
2022. It represents a dynamic change of systemic risk of each cluster. It can be
observed that the systemic risk of Cluster 1 is higher than that of Cluster 2, and
Cluster 2 is higher than that of Cluster 3 for most periods. This result is consistent
with the order in which the clusters are embedded onto the Euclidean space.

‡In the absence of readily available data on credit spread change in China, we have opted to
use these six state variables as proxies.



Forecasting systemic risk of China’s banking industry by PDE model 3643

Figure 4. The weighted average of |∆CoVaR| of three clusters from 2019 to 2022. The Date-axis
represents the 208 trading weeks from 2019 to 2022, and the |∆CoVaR|-axis represents the value of the
weighted average of |∆CoVaR| for each cluster.

3. Forecast and analysis

3.1. Forecast process and result

The prediction is based on the PDE model (2.1). To predict the weighted average
|∆CoVaR| of three clusters, the model parameters are trained using historical data
fom 2019 to 2022. The PDE is then solved for prediction.

Proposition 3.1. Using PDE model (2.1) and historical data, we forecast the weekly
|∆CoVaR| of three Clusters. The prediction relative accuracy is up to 95%, which
is higher than two common machine learning methods under the same conditions,
as shown in Figure 5, Figure 6, Figure 7 and Table 5.

Method: The forecast is conducted by using a rolling window approach, where
historical data from every 4 weeks is used to forecast the weighted |∆CoVaR| for
the following week. That is, the real stock data of weeks 1-4 are used to predict
the weighted |∆CoVaR| for the fifth week, weeks 2-5 for week 6, and so on. The
forecast covers the period from 2019 to December 2022, totaling 204 weeks.

The parameter space is explored using a tensor train global optimization method
[28], followed by the Nelder-Mead simplex local optimization method [24] to fine-
tune the weighted |∆CoVaR| modeling problem. The local optimization is imple-
mented using the fminsearch function in MATLAB. Once the model parameters are
determined, the fourth-order Runge-Kutta method is employed to numerically solve
the partial differential equations for one-step forward pediction.

The forecast parameters vary for each step. For example, the parameters for
the last week (from December 26 to December 30, 2022) are as follows: d = 4.37,
K = 4.17, A = 0.35, B = 0.25, C = 0.59 and h1 = 0.54, h2 = 0.12 and h3 = 0.47.
Figure 5 illustrates the forecast of systemic risk for the three clusters from 2019 to
2022.

Next, we assess the prediction accuracy using relative accuracy (RA) for each
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Figure 5. The weighted average of |∆CoVaR| of three clusters from 2019 to 2022. The Date-axis
represents the 208 trading weeks from 2019 to 2022, and the |∆CoVaR|-axis represents the value of the
weighted average of |∆CoVaR| for each cluster.

week, defined as:
RAt = 1−

∣∣ut,real − xt,predict

ut,real

∣∣, (3.1)

where ut,real represents the observed weighted |∆CoVaR|. The first row of Table
5 shows that the mean of relative accuracy (MRA) for Cluster 1, Cluster 2, and
Cluster 3 is 97.85%, 97.56%, and 96.96%, respectively, for the period from 2019 to
2022 using 4-week data for prediction.

Table 5. Comparison of MRA between PDE, BP and RF

Cluster 1 Cluster 2 Cluster 3

MRA(PDE) 97.65% 97.56% 96.96%
MRA(BP) 96.06% 90.94% 89.28%
MRA(RF) 88.37% 92.54% 88.78%

Figure 6 visually illustrates the value of RA of the prediction for the three
clusters. It implies that PDE model (2.1) demonstrates good short-term prediction
capability for risk contagion.

Figure 6. The relative accuracy (RA) in Cluster 1, Cluster 2 and Cluster 3 from 2019 to 2022.
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Additionally, we compare the PDE model’s prediction capability with other ma-
chine learning techniques such as BP neural network [37] and Random Forest [38].
To ensure consistency in the prediction methodology, the BP neural network and
Random Forest models are trained using data from the first four weeks. The MRA
of the BP neural network and Random Forest is presented in the second and third
rows of Table 5, respectively. The PDE model outperforms both machine learning
approaches, achieving higher MRA in all three clusters. Figure 7 provides a compar-
ison of the RA for the three methods, demonstrating that the PDE model exhibits
smaller changes in amplitude compared to the other machine learning approaches.
Consequently, the PDE model (2.1) demonstrates superior accuracy compared to
the other two machine learning techniques.

Figure 7. Comparison of the relative accuracy (RA) among PDE model, BP neural network model and
Random Forest model

3.2. Robustness check
3.2.1. The frequency of the data

Figure 8. Month-Forecast of weighted |∆CoVaR| for Cluster 1, Cluster 2 and Cluster 3 from 2019 to
2022 with monthly data.

The results demonstrated that the model remained robust to these variations,
indicating its ability to capture the underlying dynamics of the data. Note that some
points fit not well with the model. One possible explanation could be the differences
in data distribution and dynamics between weekly and monthly frequencies, which
could affect the stability of the model. The lower frequency of data could result
in a loss of information and potentially miss short-term fluctuations in the data.
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However, the trend of changing of Month-Forecast weighted |∆CoVaR| remains
consistent with the actual data. As for daily data, the prediction accuracy is similar
to weekly data.

3.2.2. Other periods

Next, we assessed the robustness of the model by using data from a different time
period, specifically the years 2009 to 2014, to predict the stock market turbulence in
2015. The Chinese stock market turbulence started on 12 June 2015 and ended in
30 August 2015. During this period, the Shanghai and Shenzhen composite indices
have experienced a nearly 50% decline, with a significant number of individual stock
prices plummeting. As depicted in Figure 9, the grey area represents the period
when stock market turbulence occurred. The predicted values (the blue line) fit
well with the actual values (the red line). In the week of 12 July 2015, the values
of |∆CoVaR| in all three clusters reached their peak, with prediction accuracies of
98.38%, 97.63%, and 99.79%, respectively. The average accuracies for the stock
market turbulence from 12 June 2015 to 30 August 2015 are 95.51%, 97.87%, and
98.82%, respectively. It illustrates that the model performed well in fitting the
data. The successful prediction of the 2015 stock market crash highlights its ability
to generalize across diverse market conditions and time periods. This suggests that
the model is applicable to the market under various economic scenarios. However,
it is important to note that the accuracy of the predictions may depend on the
economic conditions and market dynamics. Therefore, it is recommended to exercise
caution when applying the model to new market conditions and adjust the model
parameters accordingly.

Figure 9. Week-Forecast of weighted |∆CoVaR| for Cluster 1, 2, 3 in 2015.

4. Sensitivity analysis and policy simulation

4.1. Sensitivity analysis on h(x)

During financial crises, monetary authorities and regulators tighten their monitoring
of banks. They will take some regulatory measures to control the risk. Sensitivity
analysis on the h(x) in the PDE model (2.1) is conducted to explore the impact of
policies.
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Proposition 4.1. Sensitivity analysis on h(x) based on the PDE model (2.1) shows
that a significant reduction in systemic risk as the decreasing of h(x). In particular,
the effect of joint intervention is better than that of individual intervention.

Method: We present two types of interventions for reducing systemic risk: joint
intervention for all bank clusters, and single intervention targeting a specific bank
cluster. Each time, we fit the model (2.1) initially using actual weighted |∆CoVaR|
data for four weeks. Then, without changing the estimated parameters, we conduct
forecasts by decreasing the value of h(xi), i = 1, 2, 3. The benchmark is the weighted
|∆CoVaR| without any additional interventions.

In Case 1, as shown in Figure 10, with increasingly intensive joint interventions
for all bank clusters (90%h(xi), 70%h(xi), 50%h(xi), i = 1, 2, 3), the weighted
|∆CoVaR| in each cluster gradually decrease. These results demonstrate that
stricter control measures can lead to lower |∆CoVaR| values.

Figure 10. The weighted |∆CoVaR| versus the benchmark under different levels of external joint-
interventions for all clusters

Cluster 1 represents a subsystem of banking industry, encompassing four distinct
categories of banks. It not only has the highest number of banks among the three
clusters but also exhibits the most complex structure among them. It plays a
significant role in stabilizing financial risk in the banking system. Therefore, it is
beneficial for financial regulators to implement targeted supervision in Cluster 1.

In Case 2, we focus on decreasing the values of h(x1), which means implement-
ing interventions only on Cluster 1 at levels of 50%. As depicted in Figure 11,
with stricter interventions on Cluster 1, not only does the |∆CoVaR| of Cluster 1
decrease, but the values of Cluster 2 and Cluster 3 also decrease. Comparing Figure
10 with Figure 11, we can observe that joint intervention for all bank clusters can
significantly reduce the level of systemic risk. These findings demonstrate that our
model can reflect the actual phenomenon of risk contagion among bank clusters.

4.2. Policy simulation

In view of the importance of joint governance, we add common intervention strategy
control factor α to PDE model (2.1). Consider the model
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Figure 11. The weighted |∆CoVaR| versus the benchmark under different levels of external joint-
interventions for only Cluster 1



∂u(x,t)
∂t = ∂

∂x

[
d(x)∂u(x,t)∂x

]
+ r(t)αu(x, t)

[
h(x)− u(x,t)

K

]
,

u(x, 1) = φ(x), 1 < x < 3,

∂u
∂x (1, t) =

∂u
∂x (3, t) = 0, t > 1.

(4.1)

Motivated by [36,43], we define control factor α as follows:

α = f(κ, ξ, ϕ) = e−2κξ(1− e−
1
ϕ ). (4.2)

Here,

• The parameter κ(0 < κ < 1) reflects the timeliness of central bank inter-
vention in promoting financial stability. When κ is closer to 1, the central
bank’s intervention in the asset markets becomes increasingly timely, aiding
in stabilizing asset prices and preventing a spiral decline.

• The parameter ξ(0 < ξ < 1) reflects the intensity of financial regulators. As ξ
approaches 1, the level of supervision becomes stronger, allowing regulator to
utilize robust measures to adjust bank expectations and mitigate risk during
periods of heightened risk.

• The parameter ϕ(0 < ϕ < 1) represents the variations in bank responses.
When ϕ approaches 1, the differences in bank responses become more signifi-
cant. This can help avoid mutual locking caused by consistency and adjusting
asset prices expectations in the market. Banks actively adapting to these
changes can mitigate systemic risk contagion.

Proposition 4.2. Numerical simulation implies that all three interventions can
effectively reduce banking systemic risks.

Method: To examine the impact of these interventions on systemic risk contagion,
we set the basic values of κ = 0.3, ξ = 0.3, ϕ = 0.4 in model (4.1). Then, we
adjust each parameter to values 0.5, 0.7, 0.9, respectively, while keeping the rest of
the forecast process the same as in references [36,43].
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Based on the analysis, we find that, in most periods, increasing the values of κ, ξ,
and ϕ results in a decrease in the weighted |∆CoVaR| as shown in Figure 12, Figure
13, and Figure 14. All three interventions show a negative correlation with interbank
systemic risk contagion, supporting the conclusions in reference [36]. Meanwhile,
we can also find the effect of heterogeneity about different policy intensity and bank
clusters.

Figure 12. The |∆CoVaR| versus the benchmark under joint-interventions with ξ = 0.3, ϕ = 0.4

Figure 13. The |∆CoVaR| versus the benchmark under joint-interventions with κ = 0.3, ϕ = 0.4

Figure 14. The |∆CoVaR| versus the benchmark under joint-interventions with κ = 0.3, ξ = 0.3

These results suggest that timely intervention measures by the central bank and
strengthened control efforts by financial regulatory authorities are crucial in con-
trolling the contagion of systemic risk. Additionally, differential response strategies
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by banks when risks arise are essential for rapidly curbing risk contagion. By im-
plementing these macro measures and promoting coordinated governance, systemic
risks can be effectively controlled and mitigated.

5. Conclusion and suggestion
This work provides a comprehensive analysis of systemic risk in China’s banking
industry using a combination of network analysis, spectral clustering, and a spa-
tiotemporal PDE model. The numerical results demonstrate the effectiveness of
the PDE model in predicting systemic risk. Compared to the BP neural network
model and the Random Forest model, the PDE model shows superior prediction
ability, especially in short-term predictions using only a few weeks of historical data.
Sensitivity analysis illustrate that joint-control of all clusters is more efficient than
single-control of one cluster. Through policy simulations, we examine the impact
of various interventions on systemic risk contagion. This helps us better under-
stand the dynamic transmission of systemic risk and provide valuable insights for
policymakers and regulators in implementing effective risk management strategies.

In fact, an important trend in studying complex problems is to combine deter-
ministic models with machine learning, especially deep learning, social networks,
and large-scale real data [4, 47]. The method developed in this paper can also be
used to study more financial risk, such as systemic risk on stock market, bond mar-
ket, the financial market of some region or even even global financial market etc.
More complex differential equation or systems can be considered based on different
problem.
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Appendix: 24 listed banks in China

Bank Node Full name of the banks Abbreviation

1 Ping An Bank PAB
2 Ningbo Bank BNB
3 Jiangsu Jiangyin Rural

Commercial Bank
JJRCB

4 Shanghai Pudong
Development Bank

SPDB

5 Huaxia Bank HB
6 China Minsheng Bank CMDB
7 China Merchants Bank CMB
8 Wuxi Rural Commercial

Bank
WRCB

9 Jiangsu Bank JB
10 Hangzhou Bank BH
11 Nanjing Bank BN
12 Jiangsu Changshu Rural

Commercial Bank
JCRCB

13 Industrial Bank IB
14 Bank of Beijing BB
15 Shanghai Bank BS
16 Agricultural Bank of

China
ABC

17 Bank of Communications BC
18 Industrial and

Commercial Bank of
China

ICBC

19 China Everbright Bank CEB
20 China Construction Bank CCB
21 Bank of China BOC
22 Guiyang bank BG
23 China CITIC Bank CITICB
24 Jiangsu Suzhou Rural

Commercial Bank
JSRCB
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