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EFFICIENT ALGORITHMS FOR REAL
SYMMETRIC TOEPLITZ LINEAR SYSTEM
WITH LOW-RANK PERTURBATIONS AND

ITS APPLICATIONS∗
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Abstract This study investigates efficient algorithms for solving the real
symmetric Toeplitz linear system with low-rank perturbations. Based on a
new factorization of the real symmetric Toeplitz matrix inversion, we pro-
pose a novel and effective method to solve a sequence of linear equations
with a same symmetric Toeplitz matrix. Together with the application of
the Sherman-Morrison-Woodbury formula, the symmetric Toeplitz linear sys-
tem with low-rank perturbations can be solved by two proposed algorithms.
Moreover, the (structured) perturbation analysis and the applications in im-
age encryption and decryption are given. The numerical results are presented
to verify the theoretical analysis.
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1. Introduction

Toeplitz and quasi-Toeplitz matrices have been widely studied since they can be
applied in mathematical and scientific fields, such as solving differential equations
[1,2,18,24,35], scattering/radiation simulation on thin wires [9], the distribution of
neurons across the mouse brain [25], the quantum random number generation [19],
high-resolution optical imaging [31], the bandgap engineering of semiconductors [5]
and the calculation of the hemodynamic response function [28,32].
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In our study, we focus on a class of real symmetric Toeplitz matrices with low-
rank perturbations, which are represented as U = (uj,k)nj,k=1:

uj,k =


τ1 + t1, j = 1 and k = 2,

τ2 + t1, j = n and k = n− 1,

t|j−k|, otherwise.

(1.1)

So U can be written as

U = A+ αeT2 + βeTn−1, (1.2)

where A = (t|j−k|)
n
j,k=1 is a nonsingular n×n real symmetrical Toeplitz matrix, α =

[τ1, 0, . . . , 0]T , β = [0, . . . , 0, τ2]T , e2 = [0, 1, 0, . . . , 0]T and en−1 = [0, . . . , 0, 1, 0]T .
A large number of literatures exist on solving the Toeplitz and quasi-Toeplitz

linear systems. Liu et al. presented fast iterative solvers with complexity O(n log2 n)
for Toeplitz linear systems [20–23]. In [12], a class of bordered tridiagonal systems
of linear equations were solved. Fu et al. [7] developed two new methods to solve the
CUPL-Toeplitz linear system [13, 14, 36]. Order-reduction algorithms were applied
to the CUPL-Toeplitz linear system [33] for further reducing the complexity. In
[6], the authors gave a new decomposition of tridiagonal quasi-Toeplitz matrix by
exploiting the matrix structure. We also mention that Krylov subspace methods
(KSMs) [27] have been widely used in solving the Toeplitz linear systems. Some
preconditioners [10,26] were proposed for accelerating the convergence rate of KSMs.

In mathematical or engineering problems, we may be faced with solving a se-
quence of Toeplitz linear systems with a same coefficient matrix. In [11, 17], the
authors solved these Toeplitz linear systems utilizing the decomposition of the in-
verse of Toeplitz matrix. Compared with the traditional methods of solving linear
equations one by one, the proposed algorithms first solve two Toeplitz linear equa-
tions and then obtain the solutions by multiplying the Toeplitz matrix inversion
and the vectors.

The stability analysis has been concerned by some scholars [14, 29, 30]. In this
paper, we discuss the (structured) perturbation analysis of the factorization of the
symmetric Toeplitz matrix inversion.

This article is organized as follows. In Section 2, we propose an algorithm for
solving the linear systems with a same real symmetric Toeplitz matrix according to
the factorization of the Toeplitz matrix inversion. In Section 3, we extend to the case
of solving the symmetric Toeplitz linear system with low-rank perturbations. The
stability of the decomposition formula of real symmetric Toeplitz matrix inversion
is analyzed in Section 4. Applications and numerical experiments are presented in
Section 5 and Section 6, respectively. Some of the conclusions drawn from this work
are contained in Section 7.

2. An efficient method for solving linear systems
with a same real symmetric Toeplitz matrix

In mathematical or engineering problems, several symmetric Toeplitz linear systems
need to be solved. We could get into a situation where these linear systems have a
same coefficient matrix. Therefore, we propose an efficient method for solving these
linear systems by using the factorization of the Toeplitz matrix inversion.



108 X. Zhang, Y. Zheng, Z. Jiang & H. Byun

The factorization of the Toeplitz matrix inversion is proposed by Gohberg et al.
in [8, p738]. Supposing that the parameters ϕ = 1 and ψ = i involved in Theorem
3.2, we have, if the vectors p = [p1, p2, . . . , pn]T , p1 6= 0 and q = [q1, q2, . . . , qn]T

satisfy

Ap = e1 and Aq = en (2.1)

with e1 = [1, 0, . . . , 0]T , en = [0, . . . , 0, 1]T , then the Toeplitz matrix A is invertible
and

A−1 =
1

p1(1− i)
(SI1C1 − SI2C2), (2.2)

where SI1 = circ−i(p1, ipn, ipn−1, . . . , ip2)T , SI2 = circ−i(iqn, iqn−1, iqn−2, . . . , iq1)T

are skew-imaginary circulant matrices [15]; C1 = circ(qn, qn−1, qn−2, . . . , q1)T , C2 =
circ(p1, pn, pn−1, . . . , p2)T are circulant matrices [16]. According to the structural
characteristics of skew-imaginary circulant matrices and circulant matrices, the
first columns of SI1, SI2, C1 and C2 are described as p = [p1, p2, . . . , pn]T , q̂ =
[iqn, q1, q2, . . . , qn−1]T , q̃ = [qn, q1, q2, . . . , qn−1]T and p = [p1, p2, . . . , pn]T , respec-
tively.

The vectors p and q satisfy q = Jp when A is a real symmetric Toeplitz matrix,
where J is a an anti-identity matrix. Instead of solving two equations Ap = e1 and
Aq = en, if Ap = e1 has the solution p = [p1, p2, . . . , pn]T and p1 6= 0, then the
real symmetric Toeplitz matrix A is invertible. Actually, we can get SI2 = iS∗I1
and C1 = CT2 , the symbol S∗I1 means the conjugate transpose of SI1. The equation
(2.2) can be rewritten as

A−1 =
1

p1(1− i)
(SIC

T − iS∗IC), (2.3)

where the vector p is the first column of SI and C simultaneously.
Performing the spectral decomposition on SI and C, that is, SI = Ω∗nF

∗
nΛSIFnΩn

and C = F ∗nΛCFn, where Ωn = diag(1, e
−3iπ
2n , . . . , e

−3i(n−1)π
2n ), Fn = (Fj,k)nj,k=1,

Fj,k = 1√
n
e

2πi(j−1)(k−1)
n , 1 ≤ j, k ≤ n, ΛSI and ΛC are diagonal matrices comprised

of the eigenvalues of SI and C, respectively. Then we can obtain

A−1 =
1

p1(1− i)
Ω∗nF

∗
n(ΛSIFnΩnFnΛCF

∗
n

2 − iΛ∗SIFnΩnF
∗
nΛC)Fn, (2.4)

where F ∗n
2 = lcirc(1, 0, . . . , 0) is a left circulant permutation matrix [16, p45]. The

product of F ∗n
2 and the vector can be done by a simple permutation operation.

In terms of solving linear systems with a same symmetric Toeplitz matrix, we
first give Algorithm 1 for computing p and the eigenvalues of SI and C. Then based
on the equation (2.4), Algorithm 2 is shown for the product of the real symmetric
Toeplitz matirx inversion and the vector. All calculations are from right to left.

Algorithm 1: Computing p, ΛSI and ΛC

Step 1: Solve Ap = e1 by any symmetric Toeplitz linear solver
Step 2: SI and C have the same first column p = [p1, p2, . . . , pn]T

Step 3: The entries of ΛSI are obtained from
√
nFnΩnp by fast Fourier

transform (FFT)
Step 4: The entries of ΛC are obtained from

√
nFnp by FFT



Solving real symmetric Toeplitz linear system with low-rank perturbations 109

Algorithm 2: A general method for computing x = A−1y

Step 1: Compute ỹ = Fny by FFT
Step 2: Compute y̌ = ΛSIFnΩnFnΛCF

∗
n

2ỹ by FFT
Step 3: Compute ŷ = iΛ∗SIFnΩnF

∗
nΛC ỹ by FFT and inverse FFT (IFFT)

Step 4: Compute x = 1
p1(1−i)Ω∗nF

∗
n(y̌ − ŷ) by the equation (2.4) and IFFT

KSMs are considered suitable for solving large Toeplitz linear systems. We
apply conjugate gradient method with Strang’s circulant preconditioner [11, 17]
(PCG) to solve Ap = e1 because A is set as a symmetric positive definite matrix
in our simulations. It is well known that one FFT or IFFT needs 5n log2 n+O(n)
real arithmetic operations [4, p75]. Algorithm 1 can be realized with O(n log2 n)
complexity. Algorithm 2 needs 30n log2 n+O(n) real arithmetic operations consist
of four FFTs and two IFFTs with length n.

Instead of solving symmetric Toeplitz linear systems one by one, we first execute
Algorithm 1 once, and then utilize the factorization of symmetric Toeplitz matrix
inversion to solve the linear systems. The solutions can be obtained by the mul-
tiplications of the symmetric Toeplitz matrix inversion and the vectors, which can
save a lot of time.

3. New algorithms for real symmetric Toeplitz lin-
ear system with low-rank perturbations

In this section, we consider solving the symmetric Toeplitz linear system with low-
rank perturbations, that is,

Uz = b, (3.1)

where U has a decomposition as in the equation (1.2), b = [b1, b2, . . . , bn]T and
z = [z1, z2, . . . , zn]T is an unknown vector.

Substituting the equation (1.2) into the equation (3.1), then

(A+ αeT2 + βeTn−1)z = b. (3.2)

Extracting A from the left or the right of the decomposition of U , we can get

A(In +A−1αeT2 +A−1βeTn−1)z = b, (3.3)

and
(In + αeT2 A

−1 + βeTn−1A
−1)Az = b, (3.4)

where In is an n-by-n identity matrix, α, β, e2 and en−1 are the same as that in
the equation (1.2).

Based on the equation (3.3), let A−1α = µ, A−1β = ν and A−1b = η, where
µ = [µ1, µ2, . . . , µn]T , ν = [ν1, ν2, . . . , νn]T and η = [η1, η2, . . . , ηn]T . Then,

z = (In + µeT2 + νeTn−1)−1η. (3.5)

We use Sherman-Morrison-Woodbury formula [3] to solve (In + µeT2 + νeTn−1)−1,
and

(In + µeT2 + νeTn−1)−1 = In − F, (3.6)
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where F = (fj,k)nj,k=1:

fj,k =


(1+νn−1)µj−µn−1νj

(1+µ2)(1+νn−1)−µn−1ν2
, k = 2,

(1+µ2)νj−ν2µj
(1+µ2)(1+νn−1)−µn−1ν2

, k = n− 1,

0, otherwise.

(3.7)

According to the equations (3.5), (3.6) and (3.7), the solution is

z = (In − F )η = (ηj − fj,2η2 − fj,n−1ηn−1)nj=1. (3.8)

Based on the equations (3.7) and (3.8), Algorithm 1 and Algorithm 2, we give
a new algorithm to solve Uz = b.

Algorithm 3: An algorithm for solving real symmetric Toeplitz linear
system with low-rank perturbations Uz = b

Step 1: Implement Algorithm 1
Step 2: Get µ = A−1α, ν = A−1β and η = A−1b by Algorithm 2
Step 3: Compute fj,k by the equation (3.7)
Step 4: Compute the solution z by the equation (3.8)

Similarly, for the equation (3.4), if we set eT2 A
−1 = ρT , eTn−1A

−1 = σT and
Az = %, where ρ = [ρ1, ρ2, . . . , ρn]T , σ = [σ1, σ2, . . . , σn]T and % = [%1, %2, . . . , %n]T ,
then

% = (In + αρT + βσT )−1b. (3.9)

Based on the Sherman-Morrison-Woodbury formula, (In + αρT + βσT )−1 can be
represented as

(In + αρT + βσT )−1 = In −G, (3.10)

where G = (gj,k)nj,k=1:

gj,k =


(1+σnτ2)τ1ρk−ρnτ1τ2σk

(1+ρ1τ1)(1+σnτ2)−σ1ρnτ1τ2
, j = 1,

(1+ρ1τ1)τ2σk−σ1τ1τ2ρk
(1+ρ1τ1)(1+σnτ2)−σ1ρnτ1τ2

, j = n,

0, otherwise.

(3.11)

According to the equations (3.9), (3.10) and (3.11), we can get

% = (In −G)b = b− [
n∑
k=1

g1,kbk, 0, . . . , 0,

n∑
k=1

gn,kbk]T . (3.12)

Finally, the solution z can be obtained by solving the linear system Az = %.
Based on Algorithm 1, Algorithm 2, the equations (3.11) and (3.12), another

algorithm for solving Uz = b is shown as follows

Algorithm 4: An algorithm for solving real symmetric Toeplitz linear
system with low-rank perturbations Uz = b

Step 1: Implement Algorithm 1
Step 2: Get ρ = A−1e2 and σ = A−1en−1 by Algorithm 2
Step 3: Compute % by the equations (3.11) and (3.12)
Step 4: Get the solution z = A−1% by Algorithm 2
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It is shown that solving the real symmetric Toeplitz linear system with low-
rank perturbations needs to solve three symmetric Toeplitz linear systems. The
complexity of Algorithm 3 or Algorithm 4 is 90n log2 n + O(n) besides Algorithm
1. If three are more perturbations, we must solve more symmetric Toeplitz linear
systems, then it is more efficient to utilize the factorization of matrix inversion for
computation. The proposed algorithms are also fit for solving many linear systems
with a constant symmetric Toeplitz matrix with low-rank perturbations.

4. Stability analysis

Algorithms for solving real symmetric Toeplitz linear system with low-rank pertur-
bations are based on the factorization of symmetric Toeplitz inversion. Therefore,
the numerical stability of the symmetric Toeplitz inversion factorization is an im-
portant problem. In this section, we show the error bounds of the equation (2.3)
and the error estimate between the numerical solution and the exact solution. As-
sume that p̂ = [p̂1, p̂2, . . . , p̂n]T and p̂1 6= 0 is the numerical solution of Ap = e1, we
denote

Â−1 =
1

p̂1(1− i)
(ŜIĈ

T − iŜI
∗
Ĉ) (4.1)

as a perturbation to A−1.

Theorem 4.1. Let ε > 0, if p1 6= 0, p̂1 6= 0, suppose ε̂ = |1/p1−1/p̂1|
|1/p1| as the relative

error of 1/p1, and
‖p̂− p‖1
‖p‖1

≤ ε, (4.2)

then the absolute error

‖A−1 − Â−1‖c ≤ |
√

2

p1
|{ε+ [ε+ (1 + ε)ε̂](1 + ε)}‖p‖21, (4.3)

where c = 1, 2 or ∞. The relative errors

‖A−1 − Â−1‖1
‖A−1‖1

≤ |
√

2

p1
|{ε+ [ε+ (1 + ε)ε̂](1 + ε)}‖p‖1, (4.4)

‖A−1 − Â−1‖∞
‖A−1‖∞

≤ |
√

2

p1
|{ε+ [ε+ (1 + ε)ε̂](1 + ε)}‖p‖1, (4.5)

and
‖A−1 − Â−1‖2
‖A−1‖2

≤ |
√

2n

p1
|{ε+ [ε+ (1 + ε)ε̂](1 + ε)}‖p‖1. (4.6)

Proof. The proof is similar to the proof in [34].

Theorem 4.2. Under the same assumptions of Theorem 4.1, if x = A−1y and
x̂ = Â−1y are the computed solution and the exact solution of the real symmetric
Toeplitz linear system, respectively. We have

‖x− x̂‖c
‖x‖c

≤ |
√

2

p1
|{ε+ [ε+ (1 + ε)ε̂](1 + ε)} · ‖p‖21 · ‖A‖c, (4.7)

where c = 1, 2 or ∞.
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Proof. It is indicate that

‖x− x̂‖c = ‖A−1y − Â−1y‖c

= ‖A−1 − Â−1‖c · ‖Ax‖c

≤ ‖A−1 − Â−1‖c · ‖A‖c · ‖x‖c,

(4.8)

where c = 1, 2 or ∞. By the equation (4.3), we can write

‖x− x̂‖c
‖x‖c

≤ |
√

2

p1
|{ε+ [ε+ (1 + ε)ε̂](1 + ε)} · ‖p‖21 · ‖A‖c. (4.9)

5. Applications

Image encryption and decryption have received a lot of attention recently. The real
symmetric Toeplitz matrix with low-rank perturbations can be used effectively in
the process of image encryption and decryption. Now, we consider a real symmetric
Toeplitz matrix with perturbations in the first and last rows.

Suppose the matrix U has the structure of the equation (1.2), where the first
column of the Toeplitz matrix A and two perturbations are randomly taken from
(0, 1). To keep U as a diagonally dominant matrix, a parameter is added to the
diagonal elements of U .

We take three pictures with different pixels, then encrypt and decrypt them using
the matrix U . Let the original image matrix be Φ = [φ1, φ2, . . . , φn], the encrypted
image matrix is Ψ = [ψ1, ψ2, . . . , ψn] = U(U [φ1, φ2, . . . , φn]) and the decrypted
image matrix is obtained by Φ̃ = [φ̃1, φ̃2, . . . , φ̃n] = U−1(U−1[ψ1, ψ2, . . . , ψn]). Fig.
1 – Fig. 3 show the results of image encryption and decryption of different pixels.

Original Image Encrypted Image Decrypted Image

Figure 1. Image encryption and decryption of 256× 256 pixels

The matrix-vector multiplication needs to be calculated in image encryption,
and multiple linear systems with a same coefficient matrix U need to be solved in
image decryption. Here, we utilize matrix-vector multiplication in MATLAB for
encryption and Algorithm 3 for decryption. When Algorithm 3 is performed in the
process of image decryption, Algorithm 1 and µ = A−1α, ν = A−1β can be done
only once. The results show that effective image encryption and decryption are
realized.
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Original Image Encrypted Image Decrypted Image

Figure 2. Image encryption and decryption of 512× 512 pixels

Original Image Encrypted Image Decrypted Image

Figure 3. Image encryption and decryption of 1024× 1024 pixels

6. Numerical examples

In this section, we give some numerical experiments to illustrate the theoretical
results. All experiments are run using MATLAB R2022a on an AMD Ryzen 7
5800H processor with 3.20 GHz and 16GB RAM.

Example 6.1. Consider Ax = y as a symmetric Toeplitz linear system. The first
column of A is randomly taken from (0, 1). Then we set the diagonal elements of
A to be the sum of the first column. The exact solution is xexact = [1, 1, ..., 1]T , so
the vector y = Axexact.

Table 1 shows the errors and CPU times of different methods for solving the
symmetric Toeplitz linear system. “Error” = ‖x−xexact

xexact
‖∞, “n” denotes matrix order

and “Time” is measured in seconds. Besides Back-slash, the stopping criterion for
the other methods is set to 1× 10−7.

Back-slash method using backward slash operator in MATLAB, Alg 1 and Alg
2 denote the proposed algorithms. In addition to Back-slash method, the other
methods can deal with high-order linear system. The latter two methods utilize
the decomposition of matrix inversion to solve the linear system. Alg 1 + Alg 2
performs better than Alg Huang due to considering the special structure of sym-
metric Toeplitz matrix. However, compared with PCG method, the advantage of
the decomposition is not realized when solving a linear system.

Example 6.2. Consider a series of symmetric Toeplitz linear systems Axm =
ym, m = 1, 2, . . . ,M in the real number field, the first column of the symmet-
ric Toeplitz matrix A is randomly taken from (0, 1). The sum of the first column
is set to the diagonal elements of A. The vectors ym are all randomly taken from
(0, 1).
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Table 1. Comparison of different methods for solving Ax = y for Example 6.1

n
Back-slash PCG Alg Huang [11,17] Alg 1 + Alg 2

Error Time Error Time Error Time Error Time

212 1.6653e-
14

0.2426 2.2595e-
07

0.0045 7.2351e-
09

0.0083 5.9447e-
09

0.0058

213 2.5313e-
14

1.4247 7.9559e-
08

0.0055 1.4935e-
09

0.0122 9.9938e-
10

0.0070

214 3.4195e-
14

9.2321 3.8915e-
08

0.0070 1.0192e-
07

0.0181 7.1900e-
08

0.0089

215 — — 1.7127e-
08

0.0109 1.3075e-
08

0.0275 2.2860e-
07

0.0152

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

223 — — 3.3373e-
08

2.4233 1.9537e-
08

6.6573 4.8824e-
08

3.5626

224 — — 9.9464e-
09

5.2435 2.5576e-
08

14.0127 2.1068e-
08

7.2237

“—” denotes exceeding the memory of MATLAB.

Table 2. CPU time in seconds for solving Axm = ym for Example 6.2

n M Back-slash PCG Alg Huang [11,17] Alg 1 + Alg 2

212

2 0.5119 0.0087 0.0174 0.0106

5 1.3229 0.0230 0.0273 0.0170

10 2.5481 0.0468 0.0457 0.0338

213

2 3.1010 0.0106 0.0206 0.0129

5 7.3105 0.0293 0.0334 0.0228

10 15.2951 0.0517 0.0514 0.0350

214

2 18.5335 0.0139 0.0250 0.0146

5 45.8370 0.0373 0.0425 0.0241

10 90.2456 0.0705 0.0589 0.0408

215

2 — 0.0237 0.0389 0.0207

5 — 0.0564 0.0578 0.0374

10 — 0.1117 0.0845 0.0569

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

223

2 — 4.8812 8.2343 4.8370

5 — 11.8070 12.5119 8.3027

10 — 24.2191 19.7335 14.1546

224

2 — 10.8995 16.5022 9.3189

5 — 26.3403 23.0020 14.6806

10 — 52.8359 34.6852 23.8413

“—” denotes exceeding the memory of MATLAB.

A series of symmetric Toeplitz linear systems are solved by different methods
in Example 2. “M” denotes the number of linear equations. As can be seen from
Table 2, when the number of equations is greater than 5, Alg 1 + Alg 2 provides
a dramatic reduction in running time over PCG method. Alg Huang method also
has improved performance compared with PCG method when solving 10 symmetric
Toeplitz linear systems.

It is proved that using the decomposition of matrix inversion to solve multiple
linear equations with a same coefficient matrix is meaningful and has remarkable
performance.
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Example 6.3. Consider Uz = b as a symmetric Toeplitz linear system with low-
rank perturbations. According to the equation (1.2), U can be seen as the sum of a
symmetric Toeplitz matrix A and two rank-one matrices, where the elements of A
are ts = 1

s , s = 1, 2, . . . , n, the perturbations τ1 and τ2 are randomly taken in (0, 1).
The vector b is chosen so that the exact solution is zexact = [1, 1, ..., 1]T .

Table 3. Comparison of different methods for solving Uz = b for Example 6.3

n
Back-slash PGMRES Algorithm 3 Algorithm 4

Error Time Error Time Error Time Error Time

212 1.8985e-
13

0.3832 1.4858e-
06

0.0080 4.9529e-
07

0.0105 3.5194e-
07

0.0101

213 3.6282e-
13

2.3162 5.0524e-
06

0.0098 1.6417e-
06

0.0149 1.8373e-
06

0.0141

214 7.8981e-
13

16.1937 8.4249e-
07

0.0147 4.2389e-
06

0.0248 3.4561e-
06

0.0228

215 — — 5.1378e-
06

0.0241 7.2713e-
06

0.0412 7.1734e-
06

0.0436

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

223 — — 6.4451e-
06

8.7136 1.1978e-
05

13.2083 1.1524e-
05

12.8630

224 — — 7.4835e-
05

16.8070 2.1252e-
05

43.7741 2.4763e-
05

34.4123

“—” denotes exceeding the memory of MATLAB.

For solving a symmetric Toeplitz linear system with low-rank perturbations,
Table 3 presents the comparison of different methods. “Error” is given as the dif-
ference between the exact solution and the numerical solution under infinity norm.
PGMRES method means the generalized minimal residual method with Strang’s
circulant preconditioner. Since U is a non-symmetric matrix, we choose PGMRES
method in KSMs to solve the linear system as a comparison. The proposed Algo-
rithm 3 and Algorithm 4 can not only solve higher-order linear systems, but also
take much less time than Back-slash solver in MATLAB. Similar to Example 1,
PGMRES method has the best performance in solving symmetric Toeplitz linear
systems with low-rank perturbations and outperforms our proposed algorithm.

Example 6.4. Consider a series of linear systems Uzm = bm, m = 1, 2, . . . ,M in
the real number field, where U is a symmetric Toeplitz matrix with two perturba-
tions. Based on the equation (1.2), the elements of A are ts = 1

s , s = 1, 2, . . . , n,
and the perturbations τ1 and τ2 are randomly taken in (0, 1). The vectors bm are
all randomly taken from (0, 1).

In this experiment, we apply different methods to solve the multiple linear sys-
tems with a same perturbed symmetric Toeplitz matrix. Table 4 displays the com-
putational times in different cases. “n” and “M” represent the matrix order and
the number of linear systems, respectively.

The times taken by the Back-slash and PGMRES methods multiplied as the
number of linear equations solved increases. However, with the increase of “M” in
the same matrix order, the entire times spent by Algorithm 3 and Algorithm 4 tend
to decrease, compared with the PGMRES method. Basically, when the number
of equations reaches 5, the proposed algorithms are already superior to the other
algorithms.
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Table 4. CPU time in seconds for solving Uzm = bm for Example 6.4

n M Back-slash PGMRES Algorithm 3 Algorithm 4

212

2 0.7941 0.0167 0.0169 0.0166

5 2.0613 0.0384 0.0324 0.0338

10 3.9121 0.0690 0.0594 0.0584

213

2 4.6807 0.0200 0.0249 0.0236

5 11.8098 0.0520 0.0428 0.0457

10 23.6419 0.1060 0.0834 0.0861

214

2 30.2341 0.0273 0.0369 0.0362

5 76.8728 0.0744 0.0708 0.0704

10 152.2609 0.1476 0.1311 0.1237

215

2 — 0.0461 0.0616 0.0669

5 — 0.1206 0.1133 0.1187

10 — 0.2394 0.2145 0.2205

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

223

2 — 15.5762 17.2683 17.3519

5 — 39.0341 31.5532 29.7404

10 — 72.2756 51.4408 49.4211

224

2 — 32.9732 33.1619 35.7834

5 — 80.5099 57.5120 64.4113

10 — 160.4509 99.2317 110.5142

“—” denotes exceeding the memory of MATLAB.

7. Conclusions

In this paper, we apply a new factorization of the inverse of real symmetric Toeplitz
matrix to solve multiple linear equations with a constant coefficient matrix. For the
solution of the quasi-Toeplitz linear system which has two different perturbations,
two efficient algorithms are proposed in this paper. Numerical experiments show
that the proposed algorithms can save the computational time significantly when
solving a series of (quasi-)symmetric Toeplitz linear systems with a same coeffi-
cient matrix. The stability analysis of the decomposition of the inverse of the real
symmetric Toeplitz matrix has been shown, and the applications of the proposed
algorithms in image encryption and decryption has been expressed.
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