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GLOBAL STRUCTURE OF POSITIVE
SOLUTIONS FOR FIRST-ORDER DISCRETE
PERIODIC BOUNDARY VALUE PROBLEMS

WITH INDEFINITE WEIGHT∗
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Abstract We are concerned with the first-order discrete periodic boundary
value problem −Du(t) = λa(t)f(u(t)), t ∈ {1, 2, · · · , T},

u(0) = u(T ),
(P )

where λ > 0 is a parameter, T > 2 is an integer, Du(t) = u(t + 1) − u(t),
a : {1, 2, · · · , T} → R, f : R → R is continuous and f(0) = 0. Depending on
the behavior of f near 0 and ∞, we obtain that there exist 0 < λ∗ ≤ λ∗ such
that for any λ > λ∗, problem (P ) possesses at least two positive solutions,
while it has no solution for λ ∈ (0, λ∗). The proof of our main results are
based upon bifurcation technique.
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1. Introduction

Let T > 2 be an integer, T = {1, · · · , T}, T̂ = {0, · · · , T+1}, Du(t) = u(t+1)−u(t).
In this paper, we are concerned with the first-order discrete periodic boundary value
problem −Du(t) = λa(t)f(u(t)), t ∈ T,

u(0) = u(T ),
(1.1)

where λ > 0 is a parameter and a, f obey the conditions specified later.
In recent years, a great deal of research has been devoted to the study of existence

of positive periodic solutions for the nonlinear discrete equation

−Du(t) + α(t)h(u(t))u(t) = λβ(t)g(u(t)), t ∈ Z, (1.2)
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where α, β : Z→ [0,∞) are T -periodic, h, g ∈ C([0,∞), [0,∞)), λ > 0 is a parame-
ter, see [5,10,11,13,15,20,22] and the references therein. For instance, by applying
a cone theoretic fixed point theorem, Y. Raffoul [20] obtained that (1.2) with h ≡ 1
has at least one positive periodic solution for any λ > 0 under the assumption

(G1) g0 =∞, g∞ = 0 or g0 = 0, g∞ =∞, where

g0 := lim
s→0

g(s)

s
, g∞ := lim

s→∞

g(s)

s
.

R. Ma et.al [15] generalized the main results of Raffoul and assumed that g0 = 0
and g∞ = 0, then there exists λ0 > 0, such that problem (1.2) has at least two
positive T -periodic solutions for λ > λ0. Later, Y. Lu [11] generalized the main
results of [15] and provided more desirable intervals of λ.

However, fewer results seem to be available when α(t) ≡ 0 in (1.2). One of
the peculiar aspects of the periodic BVP associated with α(t) ≡ 0 is the fact that
the difference operator has a non-trivial kernel (which is made by the constant
functions). And it is customary when working with such boundary value problems,
whether in differential or difference equations, to display the desired solution in
terms of a suitable Green function and then apply the methods based on the theory
of positive operators for cones in Banach spaces [8, 18,23,24].

The natural question is that what would happen if we do not need a positive op-
erator. Fortunately, there have been some studies focused on the study of boundary
value problems of differential equations [2–4, 16]. For example, using critical point
theory, A. Boscaggin etc [4] studied the periodic problem associated with the second
order nonlinear differential equation

u′′(t) + λb(t)g(u) = 0, (1.3)

where λ > 0 is sufficiently large, b : R→ R is a locally integrable ω-periodic function
and a sign-changing function, g : [0,∞)→ [0,∞) is continuous and g(0) = 0. They
obtained that

Theorem A. Assume that
∫ ω
0
a(t)dt < 0 and

(H1) g0 = 0 and g∞ = 0;
(H2) g is regularly oscillating at zero and infinity, that is

lim
ω→1,s→0

g(ωs)

g(s)
= 1, lim

ω→1,s→∞

g(ωs)

g(s)
= 1.

Then there exists λ0 > 0, such that problem (1.3) has at least two positive ω-periodic
solutions for λ > λ0.

Motivated by the results mentioned above, it is of interest to know whether The-
orem A still hold true for the first-order discrete periodic boundary value problem
(1.1). We note that while these earlier considerations furnished the motivation for
our work, it is clear that they cannot be easily applied to problems (1.1). Indeed,
if u(t) > 0 is a solution of (1.1), then, after summing the equation from 0 to T − 1,
one has that

T−1∑
t=0

a(t)f(u(t)) = 0

with f(u(t)) > 0 for every t, this implies that a(t) cannot be of constant sign. Thus,
the first difficulty we have to face is that the spectrum structure of corresponding
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linear eigenvalue problem with indefinite weight is unknown. Moreover, to the best
of our knowledge, the study of global structure of positive solutions for problem
(1.1) is completely new and has not been described before in related problems.

On the other hand, there are many essential differences between the discrete
equation and the differential equation. Such as mean value theorem, Poincaré in-
equality and the existence, uniqueness, and multiplicity of solutions may not be
shared between the continuous differential equation and related discrete equation,
see [1, p.520]. In addition, The continuous logistic model find that population
growth will reach a certain limit due to resource constraints, whereas its discrete

v(t+ 1) = kv(t)(1− v(k)), t ∈ N

is sensitive to changes in initial values and parameter values, and often small changes
can cause chaos, where k > 0 is a parameter. Thus, new challenges are faced.

For the convenience of the reader, we shall recall the following assumptions:

(A0) a : T→ R is a sign-changing function and satisfies
T∑
t=0

a(t) > 0;

(F0) f : R→ R is continuous and satisfies f(0) = 0 and f(s) > 0 for s > 0;

(F1) f0 := lim
s→0

f(s)
s = 0, f∞ := lim

s→∞
f(s)
s = 0;

(F2) lim
ω→1,s→0

f(ωs)
f(s) = 1, lim

ω→1,s→∞
f(ωs)
f(s) = 1.

Let Y := {u | u : T → R} be a Banach space with the norm ‖u‖Y = max
t∈T
|u|.

Let E := {u | u : T̂ → R, u(0) = u(T )} be a Banach space with the norm ‖u‖0 =
max
t∈T̂
|u|. Let Σ be the closure of the set of nontrivial solutions of (1.1) in [0,∞)×E.

The main results of this paper are the following

Theorem 1.1. Assume (A0) and (F0)-(F2) hold. Then there exists a connected
component C+ ⊂ Σ such that
(i) C+ joins (∞, 0) with infinity in λ direction;
(ii) there exist two constants Λ > 0 and ρ > 0 such that

C+ ∩ {(λ, u) ∈ Σ | λ ≥ Λ, ||u||0 = ρ} = ∅;

(iii) there exists λ∗ > 0 such that

C+ ∩ ((0, λ∗)× E) = ∅.

Corollary 1.1. Assume (A0) and (F0)-(F2) hold. Then there exist 0 < λ∗ ≤ λ∗

such that problem (1.1) has at least two positive solutions for λ > λ∗, while it has
no solution for λ ∈ (0, λ∗).

Remark 1.1. A function satisfying condition (F2) is called a “regularly oscillating”
function. It was done first by R. Schmidt [21] in 1925s in a sequential form. For the
specific definition considered in our paper, as well as for some historical remarks,
see [7] and the references therein. Observe that any function f(s) such that f(s) =
Ksq,K, q > 0 is regularly oscillating both at zero and at infinity.

Remark 1.2. Note that, for problem (1.1), constants are always solutions as λ→ 0,
thanks to regularly oscillating conditions, we proved that the connected branch and
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the vertical axis are disjoint, i.e., there exists λ∗ > 0 such that (1.1) has no solution
for λ ∈ (0, λ∗).

Remark 1.3. For other related results on the existence of positive solutions of
first-order ordinary differential equations, see [9, 12,17] and references therein.

The rest of this work is organized as follows. In Section 2, we state some proper-
ties of the superior limit of a certain infinity collection of connected sets and prove
some preliminary results. Section 3 is devoted to showing the proof of main results.

2. Preliminaries

Firstly, we state some properties of the superior limit of a certain infinity collection
of connected sets. Let N be a metric space and {Cn| n = 1, 2, · · · } be a family of
subsets of N . Then the superior limit D of Cn is defined by

D := lim sup
n→∞

Cn = {x ∈ N | ∃ nk ⊂ N, xnk
∈ Cnk

such that xnk
→ x}.

A component of a set M means a maximal connected subset of M, see [24] for
the detail.

Lemma 2.1 ( [14]). Let X be a Banach space and let Cn be a family of closed
connected subsets of X. Assume that

(a) there exist zn ∈ Cn, n = 1, 2, · · · and z∗ ∈ X such that zn → z∗;

(b) lim
n→∞

rn =∞, where rn = sup{‖x‖ | x ∈ Cn};

(c) for every R > 0, (∪∞n=1Cn) ∩BR is a relatively compact set of X, where

BR = {x ∈ X | ‖x‖ ≤ R}.

Then D := lim sup
n→∞

Cn contains an unbounded component C with z∗ ∈ C.

Define T : E → Y by

Tu := −Du(t).

As underlined in the introduction, due to the difference operator T has a non-trivial
kernel (which is made by the constant functions), in order to using bifurcation
theory, we consider the following auxiliary problem−Du(t) + 1

mu(t) = λa(t)f(u(t)), t ∈ T,

u(0) = u(T ),
(2.1)

where m ∈ N is a constant.

It is easy to see that u is a solution of (2.1) if and only if

u(t) = λ

t+T−1∑
s=t

G(t, s)a(s)f(u(s)),
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where

G(t, s) =

t+T−1∏
i=s+1

(1 + 1
m )

t+T−1∏
i=t

(1 + 1
m )− 1

=
(1 + 1

m )t−s+T−1

(1 + 1
m )T − 1

, t ≤ s ≤ t+ T − 1.

Notice that
1

(1 + 1
m )T − 1

≤ G(t, s) ≤
(1 + 1

m )T−1

(1 + 1
m )T − 1

.

Next, we will consider the linear eigenvalue problem−Du(t) + 1
mu(t) = λa(t)u(t), t ∈ T,

u(0) = u(T ).
(2.2)

Let

J =



1 + 1
m −1 0 · · · 0 0

0 1 + 1
m −1 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 1 + 1
m −1

0 0 0 · · · 0 1 + 1
m


and F = diag(a(1), a(2), · · · , a(T )). Then (2.2) can be written as a linear pencil
problem

Ju = λFu.

Let Jj denote the j-th principal submatrix of J . Then J and Ji are positive definite.
For j = 1, 2, · · · , T , let Qj(λ) denote the j-th principal subdeterminant of J − λF
and suppose that Q0(λ) = 1. Then QT (λ) = det(J − λF ) and

Q0(λ) = 1;

Q1(λ) = 1 +
1

m
− λa(1);

Q2(λ) = [1 +
1

m
− λa(1)][1 +

1

m
− λa(2)];

Qj(λ) =

j∏
i=1

[1 +
1

m
− λa(i)], j = 3, · · · , T.

As we know, finding the eigenvalues of (2.2) is equivalent to finding the zeros of
QT (λ).

For j ∈ {1, · · · , T}, let j+ be the number of the elements in {a(i) | a(i) >
0 for some i ∈ {1, · · · , j}}, and j− the number of the elements in {a(i) | a(i) <
0 for some i ∈ {1, · · · , j}}.

Obviously, Q1(λ) = 1 + 1
m − λa(1). If a(1) > 0, then j = 1, j+ = 1, j− = 0 and

λ+1,1 =
1+ 1

m

a(1) > 0. If a(1) < 0, then j = 1, j+ = 0, j− = 1 and λ−1,1 =
1+ 1

m

a(1) < 0.
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Recall Q2(λ) = [1 + 1
m − λa(1)][1 + 1

m − λa(2)]. Then Q2(λ) = 0 has two roots
as follows:

λ1 =
1 + 1

m

a(1)
, λ2 =

1 + 1
m

a(2)
.

Case 1. If a(1) > 0, a(2) > 0, then j = 2, j+ = 2, j− = 0. Let λ+2,1 = λ1, λ
+
2,2 = λ2.

Then λ+2,1, λ
+
2,2 > 0.

Case 2. If a(1) < 0, a(2) < 0, then j = 2, j+ = 0, j− = 2. Let λ−2,1 = λ1, λ
−
2,2 = λ2.

Then λ−2,1, λ
−
2,2 < 0.

Case 3. If a(1) > 0, a(2) < 0, then j = 2, j+ = 1, j− = 1. Let λ+2,1 = λ1, λ
−
2,1 = λ2.

Then λ+2,1 > 0, λ−2,1 < 0.

Case 4. If a(1) < 0, a(2) > 0, then j = 2, j+ = 1, j− = 1. Let λ+2,1 = λ2, λ
−
2,1 = λ1.

Then λ+2,1 > 0, λ−2,1 < 0.
Since a is sign-changing, Case 1 and Case 2 are impossible. Now by the same

argument for j = T , we may deduce that QT (λ) = 0 has T roots as follows:

λ1 =
1 + 1

m

a(1)
, λ2 =

1 + 1
m

a(2)
, · · · , λT =

1 + 1
m

a(T )
,

where j+ > 0 positive roots and j− > 0 negative roots. Let λ+T,1 is the first positive
eigenvalue.

Lemma 2.2. λ+T,1 is simple, and the corresponding eigenfunction does not change

sign. Thus we can choose φ+T,1 such that φ+T,1 > 0.

Proof. Let w be any eigenfunction corresponding to λ+T,1. We write w = w+−w−.
Then we have

T−1∑
t=0

w+(t+ 1)Dw+(t) +
1

m

T−1∑
t=0

(w+)2 = λ+T,1

T−1∑
t=0

a(t)(w+)2

and
T−1∑
t=0

w−(t+ 1)Dw−(t) +
1

m

T−1∑
t=0

(w−)2 = λ+T,1

T−1∑
t=0

a(t)(w−)2.

If w does not have constant sign in T, then both w+ and w− are not identically
zero. Hence both w+ and w− are eigenfunctions for λ+T,1, i.e.,

−Dw+(t) +
1

m
w+(t) + λ+T,1a

−(t)w+(t) = λ+T,1a
+(t)w+(t)

and

−Dw−(t) +
1

m
w−(t) + λ+T,1a

−(t)w−(t) = λ+T,1a
+(t)w−(t).

By the strong maximum principle, w+ > 0 and w− > 0. But it is impossible since
w+ must vanish when w− 6= 0 and vice versa. Thus, w does not change sign in T.
Hence we can choose φ+T,1 > 0 which is an eigenfunction corresponding to λ+T,1.

If λ+T,1 is not simple, then there exists another eigenfunction orthogonal to

φ+T,1 > 0, say, φ̂+T,1 > 0 which also does not change sign in T. It is impossible

to
T−1∑
t=0

φ+T,1φ̂
+
T,1 = 0. Thus λ+T,1 is simple.



Global structure of positive solutions for discrete problems 125

3. The proof of main results

For any n ∈ N, define f [n] : R→ R by

f [n](s) =


nf( 1

n )s, s ∈ [0, 1
n ],

f(s), s ∈ ( 1
n ,+∞),

−f [n](−s), s < 0.

Then f [n] is an odd function in R and

(f [n])0 := lim
s→0

f [n](s)

s
= nf(

1

n
), (f [n])∞ := lim

s→∞

f [n](s)

s
= lim
s→∞

f(s)

s
.

By the first condition (F1), it follows that

lim
n→∞

(f [n])0 = 0.

Now let us consider the auxiliary family of the problem−Du(t) + 1
mu(t) = λa(t)f [n](u(t)), t ∈ T,

u(0) = u(T ).
(3.1)

From the definition of f [n], it follows that for every s ∈ R,

f [n](s) = (f [n])0s+ ζ [n](s) = nf(
1

n
)s+ ζ [n](s),

where ζ [n] : R→ R is continuous and

lim
s→0

ζ [n](s)

s
= 0.

Define linear operator L : E → Y by

Lu := −Du(t) +
1

m
u(t).

Then L : E → E is compact and continuous since E is finite dimensional.

Let us consider

Lu(t) = λa(t)(f [n])0u(t) + λa(t)ζ [n](u(t)) (3.2)

as a bifurcation problem from the trivial solution u ≡ 0. Then problem (3.2) can
be equivalently written as

u = λL−1[a(t)(f [n])0u](t) + λL−1[a(t)ζ [n]u](t).

Further

||L−1[a(·)ζ [n]u](·)||0 = max
t∈T

∣∣ t+T−1∑
s=t

G(t, s)a(s)ζ [n](u(s))
∣∣

≤
(1 + 1

m )T−1

(1 + 1
m )T − 1

max
t∈T
|a(t)| · ||ζ [n](u(·))||0,
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therefore we have that ||L−1[a(·)ζ [n](u(·))]||0 = ◦(||u||0) for u near 0 in E.

Let S denote the set of functions in E which have no generalized zeros in T,

S− = −S+ and S = S+ ∪ S−. Let Σ
[n]
m be the closure of the set of nontrivial

solutions of (3.2) in [0,∞)× E.

By the Rabinowitz global bifurcation theorem [19], there exists a continuum

C[n]m ⊂ Σ
[n]
m of solutions of (3.2) bifurcating from (

λ+
T,1

(f [n])0
, 0) which is either un-

bounded or contains a pair (
λ+
T,j

(f [n])0
, 0) for some j > 1. Note that the fact, if there

exists t0 such u(t0) = 0, then u ≡ 0, prevents the second alternative occurring.

Furthermore, by [6, Theorem 2], there are two continua C[n]m,+ and C[n]m,−, con-

sisting of the bifurcation branch C[n]m , which satisfy either C[n]m,+ and C[n]m,− are both

unbounded or C[n]m,+ ∩ C
[n]
m,− 6= {(

λ+
T,1

(f [n])0
, 0)}.

Indeed, since αφ+T,1 ∈ S± if 0 6= α ∈ R± or R∓, we have that

(
C[n]m,± \ {(

λ+T,1
(f [n])0

, 0)} ∩ Bε(
λ+T,1

(f [n])0
, 0)
)
⊂ R× S±

for all positive ε small enough. Similar to the above argument, we can show that

C[n]m,± \ {(
λ+
T,1

(f [n])0
, 0)} cannot leave R × S± outside of a neighborhood of (

λ+
T,1

(f [n])0
, 0).

Therefore, we have that

C[n]m,± ⊂
(
R× S± ∪ {(

λ+T,1
(f [n])0

, 0)}
)
.

It follows that both C[n]+ and C[n]− are unbounded. Otherwise, with loss of generality,

we may suppose that C[n]m,− is bounded. Then there exists (λ∗, u∗) ∈ C[n]m,+ ∩ C
[n]
m,−

such that (λ∗, u∗) 6= (
λ+
T,1

(f [n])0
, 0) and u∗ ∈ S+ ∩ S−. This contradicts the definition

of S+ and S−.

Since this paper is only concerned with the existence of positive solutions, we

will only consider the properties of C[n]m,+ in the following.

Lemma 3.1. Assume that (A0) and (F0)-(F2) hold and let ρ be a fixed constant.
Then there exists a positive constant Λ such that

C[n]m,+ ∩ {(λ, u) ∈ S | λ ≥ Λ, ρ− ρ

8
≤ ‖u‖0 ≤ ρ+

ρ

8
} = ∅.

Proof. In fact, if (λ, u) ∈ C[n]m,+ is a solution with

ρ− ρ

8
≤ ‖u‖0 ≤ ρ+

ρ

8
.

Let N∗ ∈ N be an integer such that

1

N∗
<

1

2
ρ.
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Then, for n ≥ N∗, we have

f [n](s) = f(s), s ∈ [
1

2
ρ,∞).

Denote

I+ = {t | a(t) > 0, t ∈ T}, I− = {t | a(t) < 0, t ∈ T}.

Thus
9

8
ρ = ||u||0

= λmax
t∈T

∣∣ t+T−1∑
s=t

G(t, s)a(s)f(u(s))
∣∣

≥ λmax
t∈I+

∣∣ t+T−1∑
s=t

G(t, s)a(s)f(u(s))
∣∣

≥ λ

(1 + 1
m )T − 1

max
t∈I+

∣∣ t+T−1∑
s=t

a(s)f(u(s))
∣∣

≥
λfmin max

t∈I+

t+T−1∑
s=t

a(s)

(1 + 1
m )T − 1

≥
λfmin max

t∈I+

t+T−1∑
s=t

a(s)

2T − 1
,

where

fmin := min{f(u) :
1

2
ρ ≤ u ≤ ρ}.

Choose

Λ :=
9

8
ρ(2T − 1)

(
fmin max

t∈I+

t+T−1∑
s=t

a(s)
)−1

+
1

8
ρ.

Obviously, Λ is independent of n and m.

Lemma 3.2. Assume that (A0) and (F0)-(F2) hold and let I ∈ (0,∞) be a closed
and bounded interval. Then there exists a positive constant c such that

sup{||u||0 : (λ, u) ∈ C[n]m,+, λ ∈ I} ≤ c.

Proof. On the contrary, we suppose that there exists (λk, uk) ∈ C[n]m,+, λk ∈ I
such that ||uk||0 →∞. Then we have

−Duk(t) +
1

m
uk(t) = λka(t)f [n](uk).

Set vk(t) := uk(t)
||uk||0 , then ||vk||0 = 1. Now, choosing a subsequence and relabelling

if necessary, it follows that there exists (λ∗, v∗) ∈ I × E with ||v∗||0 = 1, such that

lim
k→∞

(λk, uk) = (λ∗, v∗) in R× E.
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On the other hand, we have

−Dvk(t) +
1

m
vk(t) = λka(t)

f [n](uk)

uk
vk(t),

and

vk(t) = λk

t+T−1∑
s=t

G(t, s)a(s)
f [n](uk)

uk
vk(s).

Combining this with (f [n])∞ = 0 and using the Lebesgue dominated convergence
theorem, it follows that

v∗(t) = λ∗

t+T−1∑
s=t

G(t, s)a(s) · 0 · v∗(s),

and consequently, v∗ ≡ 0. This contradicts ||v∗||0 = 1.

Lemma 3.3. Assume that (A0) and (F0)-(F2) hold. Then there exists ρ∗ > 0 such
that

(

∞⋃
n=1

C[n]m,+) ∩ ((0, ρ∗)× E) = ∅.

Proof. Assume on the contrary that there exists {(λk, uk)} ⊂ (
∞⋃
n=1
C[n]m,+)∩((0,∞)×

E) such that λk → 0. Set vk(t) = uk(t)
||uk||0 , then ||vk||0 = 1. And we have

vk(t) = λk

t+T−1∑
s=t

G(t, s)a(s)
f [n](uk)

uk
vk(s)

≤ λk
t+T−1∑
s=t

G(t, s)a(s)
f [n](uk)

uk
||vk(s)||0 → 0,

which contradicts the fact ||vk||0 = 1.

Lemma 3.4. Assume that (A0) and (F0)-(F2) hold. Then

(C[n]m,+) ∩ ((0,+∞)× {0}) = ∅.

Proof. Suppose, on the contrary, that there exists (λk, uk) ∈
(

(C[n]m,+)∩((0,+∞)×

{0})
)

such that λk → µ ∈ (0,∞) and uk → 0 as k → ∞. Hence, for any N0 ∈ N,

there exists n0 ≥ N0 such that (λk, uk) ∈ C[n0]
m,+. It follows that µ =

λ+
T,1

n0
. The

arbitrary of N0 implies that µ = 0, which contradicts the assumption of µ ∈ (0,∞).

Let us verify that {C[n]m,+} satisfies all of the conditions of Lemma 2.1. Since

lim
n→∞

λ+T,1
(f [n])0

= lim
n→∞

λ+T,1

nf( 1
n )

=∞.



Global structure of positive solutions for discrete problems 129

Condition (a) in Lemma 2.1 is satisfied with z∗ = (∞, 0). Obviously

rn = sup{|λ|+ ||u||0 | (λ, u) ∈ {C[n]m,+}} =∞,

and accordingly, (b) holds. (c) can be deduced directly from the Arzelà-Ascoli

theorem and the definition of f [n]. Therefore, the superior limit of {C[n]m,+}, i.e. D,
contains an unbounded connected component Cm,+ joins (∞, 0) with infinity in the
direction of λ.

Now by the same argument in the proof of Lemma 3.2, with obvious changes,
we may deduce the desired results for Cm,+.

Lemma 3.5. Assume that (A0) and (F0)-(F2) hold and let I1 ∈ (0,∞) be a closed
and bounded interval. Then there exists a positive constant c1 such that

sup{||u||0 : (λ, u) ∈ Cm,+, λ ∈ I1} ≤ c1.

Lemma 3.6. Assume that (A0) and (F0)-(F2) hold. Then for fixed λ, there exists
a positive constant c2 such that

sup{||u||0 : (λ, u) ∈ Cm,+} ≤ c2 uniformly for m ∈ N.

Proof of Theorem 1.1. By Lemma 3.5 and 3.6, for (λ, um) ∈ Cm,+, choosing
a subsequence and relabling if necessary, it follows from the Arzalà-Ascoli theorem
that there exist an unbounded connected component C+ ⊆ Cm,+, which joins (∞, 0)
with infinity in the direction of λ, that is, (i) of Theorem 1.1 holds. Since Λ in
Lemma 3.1 is independent of n,m, we also have

C+ ∩ {(λ, u) ∈ Σ | λ ≥ Λ, ||u||0 = ρ} = ∅,

i.e. (ii) of Theorem 1.1 is satisfied.

Next we will show the proof of (iii) of Theorem 1.1. Let

λ∗ := inf{λ : (λ, u) ∈ C+}.

We claim that λ∗ ∈ (0,∞).
Assume on the contrary that there exists {(λk, uk)} ⊂ C+ ∩ ((0,∞) × E) such

that λk → 0, then uk → c3, where c3 is a constant.
We first claim that there exist b∗, B∗ such that b∗ ≤ c3 ≤ B∗. Suppose on the

contrary that there exists a sequence {uk} of non-negative solutions of (1.1) for
λ = λk satisfying ||uk||0 = bk → 0. Define

vk(t) =
uk(t)

bk
, t ∈ T,

which solves −Dvk(t) = λka(t) f(uk(t))
uk(t)

vk(t), t ∈ T,

vk(0) = vk(T ).
(3.3)

Sum both sides of (3.3) from 1 to t− 1, using (F1), we have

−
t−1∑
s=1

Dvk(s) = λk

t−1∑
s=1

a(s)
f(uk(s))

uk(s)
vk(s) ≤ λkT ||a||0 sup

∣∣f(uk(s))

uk(s)

∣∣||vk||0 → 0.
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Thus, combining the fact ||vk||0 ≤ 1, we obtain that Dvk → 0 uniformly. As a
consequence, vk → 1 uniformly in T, since

|vk(t)− 1| = |vk(t)− vk(t0)| ≤
t−1∑
s=1

|Dvk(s)|,

where t0 ∈ T such that vk(t0) = bk. On the other hand, summing equation (3.3)
we obtain that

0 = −
T−1∑
s=0

a(s)f(vk(s)) = −
T−1∑
s=0

a(s)f(bk) +

T−1∑
s=0

a(s)(f(bk)− f(bkvk(s)))

and dividing by f(bk) > 0, we have

0 <

T−1∑
s=1

a(s) ≤ (T − 1)||a||0 sup
∣∣∣1− f(bkvk(s))

f(bk)

∣∣∣.
Using the first condition in (F2) and vk(t) → 1 uniformly as k → ∞, we have

0 <
T−1∑
s=1

a(s) ≤ 0. This is absurd. Therefore we can fix b∗ such that b∗ ≤ c3. Using

the second condition in (F2), the argument would be similar for the case c3 ≤ B∗

and we omit its details here.

Furthermore, {(λk, uk)} ⊂ C+ ∩ ((0,∞)× E) satisfy−
1
λk
Duk(t) = a(t)f(uk(t)), t ∈ T,

uk(0) = uk(T )
(3.4)

and uk → c3 ∈ [b∗, B∗]. Summing (3.4) from 0 to T , then

0 = −
T−1∑
s=0

a(s)f(uk(s)).

By dominated convergence theorem, it implies that 0 = −f(c3)
T−1∑
s=0

a(s) < 0, this

is a contradiction. Thus, there exists λ∗ > 0 such that

C+ ∩ ((0, λ∗)× E) = ∅,

i.e., the property (iii) of the continuum C+ listed in Theorem 1.1 is satisfied. In
conclusion, the proof of Theorem 1.1 is completed. �

The proof of Corollary 1.1. It is an immediate consequence of Theorem 1.1.
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