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FRACTIONAL ADAMS-MOSER-TRUDINGER
TYPE INEQUALITY WITH SINGULAR TERM
IN LORENTZ SPACE AND L?” SPACE*

Yan Wu'! and Guanglan Wang"

Abstract For fractional derivatives (—A)2, we establish Adams-Moser-
Trudinger type inequalities with singular term ﬁ under Lorentz norm and
LP norm on bounded open domains, and get the sharpness of all inequalities.
Furthermore, we obtain the sharpness with a more general method.
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1. Introduction

Let @ be an open domain with finite measure in R”. The Sobolev embedding
theorem shows that Wy (Q) ¢ L9(Q) for 1 < ¢ < 5o and kp < n. However,

there is no Wéf’p (©Q) € L*®(Q) in the borderline case kp = n. Yudovich [32],
Pohozave [23] and Trudinger [29] proved that W, ™ can be embedded in Orlicz
space. In fact

1) dr < 400 (1.1)

w [ oo

WEWE (), [ Vull o gy <1

for some 8 > 0. Moser [21] gave the best constant S > 0 in the inequality (1.1),
that is

n 1
sup / exp(By [u|"T)dx < 400, fSn=nw."]. (1.2)
u€Wy ™ (Q), [Vl (o) <17 9

The constant in (1.2) is sharp in the sense that for any 8 > 3, the supermum in
(1.1) is infinite. The inequality (1.2) is known as Moser-Trudinger inequality.
The Hardy inequality is

(”_1> / lu wido < [ [Tl
" Q|zjn (log ‘%) Q
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where R > essupq|z|. Thus it is very natural to establish in relationship between
Hardy inequality and Moser-Trudinger inequality. Inspired by the Hardy inequal-
ity, Adimurthi and Sandeep proved a singular Moser-Trudinger inequality with the
sharp constant in [2].

Theorem A ( [2]). Let Q be an open and bounded set in R™. There exists a
constant Co = Cy(n, |Q]) > 0 such that

for any a € [0,n), 0 < B3 < (1 —2)B,, any u € Wy ™(Q) with Jo IVu|"dz < 1.
Moreover, this constant (1 — <), is sharp in the sense that if § > (1 —£)3,, then
the above inequality can no longer hold with some Cy independent of u.

There is another improved Moser-Trudinger inequality on the disk in R?, which
was recently proved and studied in [3,19]:

exp (4r|ul? — 1
sup / P(i—IZ)dx -
wew (), [Vula<1/8 (L= [2f?)

Wang and Ye [30] proved an interesting Hardy-Moser-Trudinger inequality on
the unit disk in R?, which improves the classical Moser-Trudinger inequality and
the classical Hardy inequality at the same time. Namely, there exists a constant
Cy > 0 such that

/Bexp <Z}f)> da < Cy < o0, Vu € C3°(B)\ {0},

) exp (4n|ul? — 1)
/ |Vul|“dz / 0= 22 —————%dx

Recently, there are many excellent results for the Moser-Trudinger inequality
[6-8,24].

In 1988, Adams [1] generalized the Moser-Trudinger inequality to high order
Sobolev spaces. He gave the following theorem in [1].

where

Theorem B ( [1]). Let Q be an open and bounded domain in R™. If m is a positive
integer less than n, then there exists a constant Co = C(n,m) > 0 such that for any

ue W(;n;(Q) and [|[V™ < 1, the inequality

) dx < Co|Q|

[
weCE®), IVFull g <170

holds for all B < B(k,n), where

5 okp(ktl n .
n [ﬂr(n,k(.ﬁ) )] "% where k is odd,
2

Wn—1

/B(kv n) =

n
] 22" 2 nik
n_[r 2’“1“(")]

ey by v e , where k is even,
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and, V¥ = VAT for k odd and V* = A3 for k even. Moreover the constant S
s sharp in the sense that

%k)dx =00

sup / exp(fS|u
<1Jo

ueCk(®), [VFull g <1

for B> B(k,n).
Adams [1] gave the the result of fractional Laplace operator f = (—A)%su, for
more fractional operators we can see [28].

Theorem C ( [1]). Let Q be an open and bounded domain in R"™. Fiz p € (1,00).
For o € (0,n) and f € LP(2), we consider the Riesz potential I, f defined as

_ fy)
Iaf(x) - ,/Q |.Z‘ . y‘n,a dy

Then ,
L I’Vl p
Sup / ewn—ll ?-ﬂ dx S Cn,p|Q|7 p/ — L
FELP(Q), [IfllLr(@)<1/Q p—1
The constant — s sharp in the sense that
In f|? n
sup / eﬁy| 2/l dx = oo for every § >0, v > .
FECF (Bs), I fllLr(Bs) <1 Bs Wn—1

In 1996, Alvino, Ferone and Trombetti established the Moser-Truding inequality
on bounded domain in Lorentz-Sobolev space in [5].

Theorem D ( [5]). Let Q be an open and bounded domain in R™, n > 2, and let
f e Cgo(R) be a function compactly supported in Q such that: ||V flnp <1, 1 <
q < 0o. We have:

(i) if 1 < g < oo then:

q

1 _aq_ L,
a7 [ esp(BIAIT e < co < 00, B < B = (i)
(ii) if ¢ = oo then:
1 J i
@/ exp(B|fl7T)dz < ¢y < 00, VB < Broo = N4 .
Q

This constant By, is sharp in the sense that if B > By, ,, then the above inequality
can no longer hold with some ¢y independent of f.

Lu and Tang gave the Moser-Trudinger inequalities on any bounded domain in
R™ with Lorentz-Sobolev norms in [17].

For the fractional Adams-Moser-Trudinger type inequalities, Luca gave the fol-
lowing result.

Theorem E ( [20]). For any p € (1,00) and positive integer n, set K, s :=

F(Fﬂ(:%, Bnp = ﬁK;p%/ Then for any open set 2 € R™ with finite measure,
2
we have
sup / exp(fn plul? )dx < C,, 5|9 (1.3)
o Q

e o, [y, <
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Moreover the constant By, p is sharp in the sense that we cannot replace it with any
larger one without making the supremum in (1.8) infinite.

In 2008, Angel [4] gave the Adams type inequalities in bounded domain of
Lorentz space:

Theorem F ( [4]). Let m be a positive integer satisfying 1 < m < n and let
q € (1,+00),

w, where m is even,

wn ™ D(2Zm)

ﬁn,m = %er 112L+1

7,:,7”—(7), where m is odd.
w,I,TF("*g‘*l)

Then there exists a constant C = C(n,m, ||, q) such that
/ exp(Bm|ul? )dz < C, (1.4)
Q

for every u € W Lw9(Q) fulfilling ||VmuHL%,q(Q) < 1. The result is sharp in the

sense that the left-hand of (1.4) with B, . replaced by any larger constant cannot
be uniformly bounded as u ranges among all functions from WOmL%’q (Q) satisfying
vauHL%,q(Q) <1

For the fractional Adams inequalities in Lorentz space, Xiao and Zhai [31] proved
the following results in 2010.

Theorem G ( [31]). Suppose that 0 < s < n,q € (1,00) and Q is a bounded open
domain. Then there exists a positive constant Cs 4. depending on s,q, and n such

that
@\ g

%fHL%vQ(Q)

q' "=
n n /
< K 4
6 = <wn1) ERD

supp((=A)3 f) €2, [[(=A)3 fl| 2.0 qy < 00

holds for all

and

Furthermore, no number greater than (W:L—l) B K‘;,’{ can replace B in (1.5),
(=)

m22:T(5)

where K, =

For more fractional operator [11,25-27].

In this paper, we will first give singular sharp Adams inequalities with fractional
Laplace operators in Lorentz space and LP space. We will establish the sharpness
with a more general method.

Theorem 1.1. Ifq € (1,00),0 < a < n, then there exists a positive constant C 4 p,
depending on s, q and n such that

exp [(1—-5)B
/ A < CognolQ™%,  (16)
Q ||
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for all

/rm—s

q
n n /
< K74
8 < (w)

and supp((—A):f) C H( fHL,‘q < ©00. Furthermore, no

¢ /
number greater than ( o ) K; % can replace B in (1.6).

Wn—1 s,n

Now we consider the Adams-Moser-Trudinger type inequalities with singular
term ﬁ under LP norms. We observe that the requirement supp((—A)zf) C Q
is necessary in Theorem 1.1, and Adams applies this result to the function f =
(fA)%u where u is smooth and supported in Q, and p = %- Here it is crucial that
when % € N, then the support of f does not exceed the the support of u, so that
Adams result in [1] can be applied. This is not the case when 2 ¢ N. In fact, the

support of (—A)Zu can be the whole R™ for general s > 0 even if u is compactly
supported.

In order to circumvent this issue, instead of using the Riesz potential we will
write u in terms of a Green representation formular

:/Q G (z,y)(—A) P u(y)dy,

which holds for a suitable Green function which we construct using variational
methods, and which we can sharply bound in terms of the fundamental solution of
(—A)% in R™.

Next, we will first give singular sharp inequality with fractional Laplace operator
and establish the sharpness with a more general method.

T (n—s)
Theorem 1.2. For any p € (1,00) and positive integer n, set Ky s = 1‘((5)22 é,
3)2°m
Brp = K . Then, for any open set 2 C R™ with finite measure, we have
1 o(1=8) By ul T
. sup e / FE dx < C(n,q, ).
uEW; _A)%UHLF(Q)SI

And the constant (1 — %) Bn,p s sharp in the sense that the above supremum is
infinite for any 8 > (1 - %) Br.p-

2. Proof of Theorem 1.1

We know that from [31]
(D)2 f(y)

ge |y — "™

f(z) =K, dy, VreR" (2.1)

with

Ks,n = ( 1
2

2
w2 25T(%)
(

Theorem 1.1 is immediately obtained from (2.1) and Lemma 2.1 below-a sharp
result about the Riesz potential.
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Lemma 2.1. If g € (1,00),0 < a < n, then there exists a positive constant Cs 4 r,
depending on s, q and n such that

q
_ayg | _Lexflm)
exp [(1 n)ﬁ ’ ”fHL%, N

]dx < ChplQt 5 (2.2)
Q ||

holds, where

q/ n—s
n n
B < ;
Wn—1

supp(f) €@, |[fll 2. o(qy < oo

and

/Im—s

Furthermore, no number greater than ( n ) " can replace B in (2.2).

Wn—1
Proof of Lemma 2.1. By O’Neil’s [22] result,
u*(t) < (Is * )*(t)
1 t t o]
/ I:(T)TdT/ f*(T)dT+/ I (r)f*(r)dr
0 0 ¢

IN

t

(

Wn—1

IN

n

n=s [N _n=s ¢ % 2] % _n-—s
) lst n /Of(T)dT—I— t ()= dT].

Let t = |Q]e™". We get

1 n—s
7

(1-2)° (52) T mes

n n

< (1-2)7 2020 [ (el ok

1

[T (1= 2) 7 ete 0y (9o

- /0 ~ a(o, 7)p(0)do.

Here (o) = f*(1Q]e=7)(|Qe~7) =, if ¢ > 0, and

n—s

Qe )=, 0<7<0o<o0.

a(o,7) -2, 0<o0<7<00,
0,T) = nes
(=) 5(Qlemm) = (

Now, we need a result similar to the Lemma 1 in Adams [1]: Let a(s,t) be a
nonnegative measure function in [0, 00] X [0, c0] such that a(s,t) < 1, for a.e. 0 <
s < t. Assume that

1
7

sup (/ a(s,t)q/d8> " o< oo
>0 \J¢

Then there exists a positive constant C' = C(q, b, @) such that

/ e FaWgt < O,
0
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for every nonnegative measure function ¢ in (0,00) satisfying fooo p(s)lds < 1,
where

Fot)=(1— %)t 1= </0°O a(s,t)go(s)dsy .

n

It is easy to know that a(o,7) < 1,fora.e. 0 <o <7, when 0 <7 < 0 < 00,
o / >0 nos n—s1d
J A e A o R (P R
- n’ . Ls

-(1-3)

(7 foie )5 [ (o) do

for 7 > 0, which can imply

o0
sup/ a(o,7)? do < 0,
7>0Jr

and
Il = [ 1) (9le) o

12|
- [ e
0

— q —
- Hf”L%’q(Q) - 1

Using above result, we obtain

/Im—s

/ exp ((1 — %)(w:’il)q ™
Q

||

121 Q@ n o in—s N\ (W1 o
< _ 4~ |* q n—ly-1\"
< [Tew (0D or) (=)
=105 [ e (1= D (keI - (1= D) e
0 n

u(@)|)

dx

n Wnp-1

<|Q)i-% /Ooo exp ((/OOO a(o, T)ga(a)d(f)q/ —d(1- Z)T> dr

=l [ e Oar < calt,

0

where Fio(r) = (1— 2)7 — (1 — 2) ([ a(o, )p(0)do)? .
Now we will prove the (1 — %)(ﬁ)q/ﬂ is the best one for 2 = B : the unite

ball centered at the origin, let f > 0 such that Iy« f > 1, for z € B, := {x € R":
|z] <7} with 0 < r < 1, from (1.6) it follows that

(1-2)p
o1 19,
n—e Ls?

UARES

B, |' "
&
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(1-2)8

o e
B, =% 1 / e L% d
— x
| B |Br|17% B, |x‘a
(1= 2)BIexf(a)
‘Br -2 / . Hin/%q
< = = dr
B |B:|'" % Jp, ||
(1- 2)8I+f(2)
. . HquL/E’q
< = dx
| B[~ /B ||«
<C,

and

N , «
(158 11 (1 S0

B o
z +log<raBr|n>+logc)

d _“ a
< U oy (1= 2108 | |+ log 817 105 ).

So 8 < nlim,_q(log %)[C’apWL%,q(BT.; B)}q/, where

Capy,, ».«(F; B) = inf | f|

L%MI(B)?

and FE is a compact subset of B. Where the infimum is taken over all f > 0 vanishing
on the complement of B, and

Isx f(x)>1, on E.

By the proof of Theorem 1.2 in [1], for any € > 0, we can choose 0 < r < 1 small
enough such that
Is* fr(y) > 1, on B,

with

Fuly) = {Mll(l_E)(IOg D7yl <yl <1,

0, otherwise,

and

ly[=, r<lyl <1,
h =
) {O, otherwise.

Then the domain of h*(t) is (r" 2=, o), where

pey = L @) T T <<,
0, otherwise.

Consequently,

s

s_1
tv 9 fr (Ol Leco, )

”fTHL%“I(B) = |

Wn—1 o
1 1 n tn/ s s 1 4 4
<——— (log =)t TwtwTa | dt
S oo ) </ (] )
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1
na Wp—1,\ = 1,1=4
= n 1 _ qa
wn_l(lfe)( )7 (log )

This gives

Cap,ys.a(BriB) < | £

Ls9(B)

1
na Wh—1 . =
;

S wpi(l—e)' n

Finally, a simple computation yields

n—0 r \ w1 (l—¢)

1 q
1 q 1 . o 1.1
5<nnmlog( e 1 1>n<1og>1f)
n T

/rm—s

( n >q n
Wn—1

This completes the proof of Lemma 2.1. O

3. The proof of Theorem 1.2

In order to prove the Theorem 1.2, we need some preparatory work.

s

Lemma 3.1. ( [16]) The fundamental solution of (—A)~"2 on R™ is Fs(z) =
Ko s|z|*~™, in the sense that Fs € Ly(R™) and (—A)"3Fs = &y in the sense of
tempered distributions. Moreover (—A)™2(Fy * f) = f for every f € S(R™).

Lemma 3.2. ([14]) Let 0 < p < o0, 0 < v < n, and Q@ C R™ be an open set with
bounded measure. Then there is a constant Cy = Cy(p, q) such that for f € LP(R™)
with support contained in ), then

ay_n_ | Lxf@)|?
exp ((1 g P b v )
/ dr < Oy, (3.1)
Q

||

where I, % f(z) = [ |z —y|"~"f(y)dy is the Riesz potential of order ~.

For the proof of sharpness of Theorem 1.1, we will give a more general conclusion.
We hope obtain the following result:

(1=2)Bp plul?’
sup / f(lul)e | di = 0o,
D <1 Q

uGWo%’p(Q)y H(*A)%uH -T‘a

LP(Q)
for any f :[0,00) — [0, 00) with

lim f(t) = o0, f is Borel measurable. (3.2)

t—o0

Obviously, the above f(t) is not necessarily increasing with exponent.
Similar to standard Moser function, Adams’ test function is smooth and com-

pact, he obtains the W: "% _norms with a precisely method. However, when k is no
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longer an integer even number, the Adams way is much more complex. So we have

Lr(Q)
In fact, we can prove the following result in a slightly stronger form.

to prove the fractional Laplacians norms H(—A)%u’

Lemma 3.3. Let Q C R™ be a domain with finite measure and let f : [0,00) —
[0,00) be a Borel measurable satisfying lim;_,o f(¢t) = co. Then

(1= 2) B plul”’
sup / F(luDe - dr = 00,
P <1 Q |J}|

u W%p Q ul|? —A %u
€Wy (@), llull}p g+ (-2) % u

LP(R™)

’

where B p = S (Kp,2)P .

In order to prove Lemma 3.3, we need the following Moser type functions. Set
two smooth functions 7, ¢ such that 0 <7, ¢ <1,

3 3
C®(-1,1 -1 _22
neCr(-1,1), n On(4,4),

and
peCr(-2,2), n=1on(-1,1).

For € > 0, we set

1—p(t), if0<t<i
= 2

n(t), ift ,
and
vee() = (tog ) " (tog (1) petlal 108 () petlah ) we e
Where o) = 2o(5)

Lemma 3.4. ( [12]) Let

u(w) = WY TRV T (s

1
2 T

For 1 < p < oo there exists a constant C' > 0 such that

Y
<<1—|—C(log) ) ,
Lr(R") €

n—0! n
%W I

Proof of Lemma 3.3. Without loss of generality, we can assume that B; C (),
let u. be defined as in Lemma 3.4, we claim that there exists a constant 4 > 0 such

that
exp ( (1= 2)Bn pluc|? p

r
e 1 p sy +{] (—2) 27 e )
LPED 7 dx = lim I, > 6.
e—0

[CYNERS

where I' is gamma function and ~, =

lim -
e—0 B. |(E|
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Then Lemma 3.3 follows at once, since u. — 0o, on B, as € — 0, and

(1=2) B plul?”
sup / I (Jul)e dx

||

weW (@), ullfp oy +[-)Fu]?, <1
> L= i p(ua(@))).
e on, /(e
Let € = e~*. Noting that
C._» P’
lim [~ 1+ =) %] =-ck
kig)lo[ k+ k( +k) v ] Cp

and using the results of Lemma 3.4,

_p
I, |Bl|€”e"1°gé(HC(lOg%)_l) P
>

’

—1 ")

< (nloge® (1+C

log e

= |B1|€7k

o’
P

_ |Bl|e—kn+";a(kn+(1+0%)_ )t+ka

p
p

_ |B1|€7kn+ka+kn(1+%)7 1

P
p

:|Bl|e(n—a)(—k+k(1+%)‘ ).

So,
I,

This completes the proof of Lemma 3.3. O
Now, we begin to prove Theorem 1.2.

Proof of Theorem 1.2. Set f := |[(—=A)%u| € LP(52). Using Lemma 3.1, we get

af‘B |en a)C

Dl < [ 16 @l )y < Koy T )

Then, for ||uHL,,(Q <1, by Lemma 3.2,

T (o) [P
o (1= 9022 | 57 )
< C
. e o
we obtain
Inxf(z)|?
-y _n_ e
1 exp (1 — )5n,p”u| 1 exp (1 n)wn_l B
1—<« « dl’g -2 “ dx
2% Jo K = Jo .
< ColQf' .

We can obtain the sharpness by Lemma 3.3.
This completes the proof. O
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