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CONVERGENT APPROACHES FOR THE
DIRICHLET MONGE-AMPÈRE PROBLEM

Hajri Imen1,† and Fethi Ben Belgacem2

Abstract In this article, we introduce and study three numerical methods
for the Dirichlet Monge-Ampère equation in two dimensions. The approaches
consist in considering new equivalent problems. In the first method (method
A) the equivalent problem is discretized by a wide stencil finite difference dis-
cretization and monotone schemes are obtained. Hence, we apply the Barles-
Souganidis theory to prove the convergence of the schemes and the Damped
Newtons method is used to compute the solutions of the schemes. In the last
two methods (B and C) we introduce two fixed point operators. Finally, some
numerical results are illustrated.
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1. Introduction

We are interested in the numerical solution of the Monge-Ampère equation with
Dirichlet boundary condition

(MAD)


det
(
D2u (x)

)
= f (x) , for x in Ω,

u (x) = ϕ (x) , for x on ∂Ω,

u is convex.

(1.1)

Where Ω is a convex bounded domain in R2, with boundary ∂Ω,
(
D2u

)
, is the

Hessian of the function u, f and ϕ are given functions.
For more general operator of Monge-Ampère and other boundary conditions, we

mention for instance [29]. The convexity constraint is crucial for the (MAD). It is
required for the Monge-Ampère equation to be degenerate elliptic and for (MAD)
to have a unique solution. It is also needed for numerical stability. The Monge-
Ampère equation, has extensive applications, it is strictly related to the “prescribed
Gauss curvature” problem, see for instance [29]. It appears also in affine geometry,
precisely, in the affine sphere problem and the affine maximal surfaces problem,
this was discussed in [8,9,30,33–36]. Other applications appear in fluid mechanics,
geometric optics, and meteorology : for example, in semigeostrophic equations, the
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Monge-Ampère equation is coupled with a transport equation, this is pointed out
in [29]. The analysis of the regularity of the Monge-Ampere equation is essential in
the study of the regularity of the transport problem. This, latter, has been employed
in many areas. We only briefly mention [7, 13, 15] for mesh geneartion, [19, 20, 31]
for image registration, and [29] for reflector design. Developing an efficient numer-
ical method has aroused a lot of interest, and large standard techniques have been
proposed. A first method to do so was introduced in [28] by using a discretization
of the geometric Alexandrov-Bakelman interpretation of solutions. Variational ap-
proaches have been presented in [10,11], more precisely, the augmented Lagrangian
approach and the least-squares approach. But these methods needed more regular-
ity than can be predicted for solutions. A different approach was studied in [14],
using the vanishing moment method. Methods using Newton’s algorithm are dis-
cussed in [21, 22]. Numerical method based on the method of characteristics was
discussed in [5]. We mention also the recent discretizations of the Monge-Ampere
equation introduced in [4, 6, 21].

Although, the standard techniques, mentioned above, work well for smooth so-
lutions they fail for singular solutions. As an illustration, in [12] the authors give
an example of a solution that is not in H2 (Ω), for which their method diverges.

The standard finite difference discretization of the Monge-Ampère equation does
not enforce the convexity condition and it can lead to instabilities. In addition, New-
ton’s method may be unstable and there is no reason to consider that the standard
discretization converges. In particular, the two dimensional scheme may have multi-
ple solutions. For more details, see, for instance, the discussion in [3]. To overcome
these difficulties, we have to use the notion of viscosity solution or Alexsandrov
solution. In two dimension, a numerical method was introduced in [28], which is
geometric in nature, and converges to the Alexsandrov solution. The method in-
troduced in [26] in two dimension and improved in [16] for higher dimension (see
also [23] in the same context), uses the wide stencil scheme that converges to the
viscosity solution. We note also that consistency and stability of the numericals
methods for the Monge-Ampère equation is not sufficient to prove convergence to
the viscosity solution. For convergence, monotonicity is also needed. In this setting,
building monotone methods requires the use of wide stencils.

The approaches that we consider in the present paper are inspired by the idea
developed in [2] and the wide stencil finite difference discretization introduced in [26]
for viscosity solution of M-A equation. This discretization relies on a framework
developed in [1]. For clarity, we recall the full result in the next section.

2. Viscosity solution and convergence theory of ap-
proximation schemes

2.1. Degenerate elliptic equations

Let F (x, r, p,X) be a continuous real valued function defined on Ω×R×Rn×Sn,
with Sn being the space of symmetric n × n matrices. Consider the nonlinear,
partial differential equation with Dirichlet boundary conditions,{

F
(
x, u (x) , Du (x) , D2u (x)

)
(x) = 0 for x in Ω,

u (x) = g (x) for x in ∂Ω.
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Where Ω is a domain in Rn, Du and D2u denote the gradient and Hessian of u,
respectively.

Definition 2.1 ( [16] ). The equation F is degenerate elliptic if

F (x, r, p,X) ≤ F (x, s, p, Y ) whenever r ≤ s and Y ≤ X.

Where Y ≤ X means that Y −X is a nonnegative definite symmetric matrix.

The viscosity solution for the Monge-Ampère equation is defined in [26].

Definition 2.2. Let u ∈ C (Ω) be convex and f ≥ 0 be continuous. The func-
tion u is a viscosity subsolution (supersolution) of the Monge-Ampère equation
in Ω if whenever convex ϕ ∈ C2 (Ω) and x0 ∈ Ω are such that (u− ϕ) (x) ≤
(≥) (u− ϕ) (x0) for all x in a neighborhood of x0, then we must have

det
(
D2φ (x0)

)
≥ (≤) f (x0) .

The function u is a viscosity solution if it is both a viscosity subsolution and super-
solution.

For the existence and uniqueness of viscosity solution for (1.1), we mention the
next result in [18],

Theorem 2.1. Let Ω ⊆ Rd be abounded and strictly convex, g ∈ C (∂Ω) , f ∈
C (Ω) , with f ≥ 0. Then there exists a unique convex viscosity solution u ∈ C

(
Ω̄
)

of the problem (1.1).

The advantage of considering viscosity solutions come from the following funda-
mental theorem, obtained in [1], which gives conditions for convergence of approxi-
mation schemes to viscosity solution.

Theorem 2.2. (Convergence of Approximation Schemes). Consider a degenerate
elliptic equation, for which there exist unique viscosity solutions. A consistent,
stable approximation scheme converges uniformly on compact subsets to the viscosity
solution, provided it is monotone.

By the previous theorem, we need just a way to build a monotone finite difference
schemes, which represents a new challenge. In the sequel, we recall here the basic
framework introduced in [24], for building a monotone scheme.

Firstly, a finite difference equation take the form

F i [u] = F i (ui, ui − uj |i 6=j) .

We say that a scheme is degenerate elliptic if the following holds [24]:

Definition 2.3. The scheme F is degenerate elliptic if F i is non-decreasing in each
variable.

We are now ready to present the following theorem in [24]:

Theorem 2.3. Under mild analytic conditions, degenerate elliptic schemes are
monotone, and non-expansive in the uniform norm. The iteration

um+1 = um + dtF (um) , (2.1)

is a contraction in L∞ provided dt ≤ K (F )
−1
, where K (F ) is the Lipschitz con-

stant of the scheme, regarded as a function from RN −→ RN .
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We end this paragraph by the next result, proven in [24].

Theorem 2.4. A proper, locally Lipschitz continuous degenerate elliptic scheme
has a unique solution which is stable in the l∞ norm.

We finish this section by noting that wide stencil schemes are required to build
consistent, monotone schemes of degenerate second order PDEs (see discussion
in [26]). Wide stencil schemes were built for the two-dimensional Monge-Ampère
equation in [26] and for the convex envelope in [25]. Each approach considered here
is a function of eigenvalues of the Hessian. To fully discretize the equation (4.1)
for the eigenvalues of the Hessian on a finite difference grid, we approximate the
second derivatives by centered finite differences; this is the spatial discretization,
with parameter h. We consider also a finite number of possible directions ν that
lie on the grid; this is the directional discretization, with parameter dθ. The spatial
resolution is improved by using more grid points, the directional resolution is im-
proved by increasing the size of the stencil. So, a wide stencil is needed (see Fig 1).
This article is structured as follows: in Section 3, we introduce a new formulation

Figure 1. Grid for wide stencil 17 points, in two dimension.

of the (MAD) in two dimensions. The discretization of the equivalent obtained
problem (Method A) is described in Section 4. In Sections 5, we discuss two fixed
point problems (Method B and Method C). In Section 6, the methods discussed in
the preceding sections are s applied to the solution of test problems.

3. Formulation of the (MAD) in two dimensions

Let us recall the following variant of the AM-GM inequalities: For A and B two
symmetric matrices, such that, A,B ≥ 0. We have the following inequality

2
√

det (AB) ≤ Tr (AB) .

Where for symmetric matrices M ≥ 0 means xTMx ≥ 0.

Remark 3.1. We can deduce from the above that for a smooth convex solution u
of (1.1), one can deduce the following inequality

∆u− 2
√
f ≥ 0.

Let us define the function
g̃ := ∆u− 2

√
f.
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It is then straightforward to check that if u is a smooth solution of (1.1), then is
indeed a solution of the linear Dirichlet Poisson problem

(
P g̃
)∆u = 2

√
f + g̃,

u|Γ = ϕ,
(3.1)

which can be easily descretized by any method of choice if the function g̃ is known.
We finish this remark by mentioning that the convexity constraint is essential to

ensure uniqueness (for example, u and −u are both solution of the Monge Ampère
equation). For viscosity solution, this constraint can be required by the equation

λ1

(
D2u

)
≥ 0, (3.2)

in the viscosity sense, see for instance [25,26], where λ1

(
D2u

)
is the smallest eigen-

value of the Hessian of u. However, for a twice continuously differentiable function
u, the convexity restriction is equivalent to requiring that the eigenvalues of the
Hessian, D2u, are positives, which is approved by considering the solution ug̃ of the
linear Poisson Dirichlet problem

(
P g̃
)

as we will see in the following.

3.1. An equivalent problem

Let us begin with a simple approach to illustrate the ideas. We can rephrase, for
instance, the (MAD) as the following:{

Find a positive function g, such that,

det
(
D2ug

)
= λ1

[
D2ug

]
× λ2

[
D2ug

]
= f,

(3.3)

where: ug is the solution of

(Pg)

{
∆ug = λ1

[
D2ug

]
+ λ2

[
D2ug

]
= 2
√
f + g,

ug|Γ = ϕ.

We are now ready to state a first example of our approches.

Lemma 3.1. Provided the solution, u, of (1.1) is in H2, there exists a unique
positive function g̃ ∈ L2, such that u = ug̃, where ug̃ is the solution of (P g̃).
Conversely, if uḡ is solution of (3.3) for some ḡ > 0, then uḡ = u.

Proof. Let u be a solution of (1.1). From the above, one can see easily, that
u = ug̃.

Conversely, if uḡ is a solution of (3.3), we can clearly see that{
det
(
D2uḡ

)
= f > 0,

∆uḡ ≥ 0.

It follows that uḡ is convex and satisfies (1.1).

Remark 3.2. We notice that according to the result in [32], we have equivalence
of viscosity and weak solutions for the Poisson problem. This motivates us to build
a convergent scheme to the viscosity solution of Poisson problem

(
P g̃
)

through the

discretization of the (MAD) problem. The viscosity solution ug̃ of
(
P g̃
)

will be
equivalent to the weak solution of (MAD) problem in the distributional sense.
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4. Discretization of the problem (3.3) (method A)

Two discretizations are considered on an uniform cartesian grid.

4.1. The standard finite difference discretization (method A:
SFD)

The problem (3.3) can be written as{
Find a positive function g, such that,

det
(
D2ug

)
= f,

where ug is the solution of (Pg) .
The second derivatives are naturally discretized on a regular and uniform carte-

sian grid as follows:

D2
xxuij =

1

h2
(ui+1,,j + ui−1,j−, 2ui,,j) ,

D2
yyuij =

1

h2
(ui,,j+1 + ui,,j−1 − 2ui,,j) ,

D2
xyuij =

1

4h2
(ui+1,,j+1 + ui−1,,j−1 − ui−1,,j+1 − ui+1,,j−1) .

4.2. Wide stencils (method A: WS)

Let us consider a regular and uniform cartesian grid and the stencil at the reference
point x0 consist of the neighbors x1, ..., xN (as in Figure 1). We can define vi in
polar coordinates by

vi = xi − x0 = hivθi .

We assume that the stencil is symetric and we define the local spatial resolution
and the directional resolution respectively by

h̄ (x0) = max
i
hi

and
dθ = max

θ∈[−π,π]
min
i
|θ − θi|.

First, the problem (3.3) is written as functions of the eigenvalues of the Hessian.
We will then start by discretizing λ1 and λ2. Hence by a simple substitution we
obtain the scheme for (3.3).

We recall that the smallest and the largest eigenvalues of a symmetric matrix
can be represented respectively by the Rayleigh-Ritz formula

λ1

[
D2u

]
(x) = min

θ

d2u

dν2
θ

, λ2

[
D2u

]
(x) = max

θ

d2u

dν2
θ

, (4.1)

where νθ = (cos θ, sin θ)is the unit vector in the direction of the angle θ.
This formulas was used in [26] to build a monotone scheme in two dimension for

the (MAD).
We begin by building monotone schemes for λ1 and λ2 on a wide stencil uniform

grid. These operators are used to give schemes for all formulations in this paper.
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We discretize the eigenvalues of the Hessian by the following formula.

λh,dθ1

[
D2ug

]
(x) = min

i

ug (x+ vi)− 2ug (x) + ug (x− vi)
|vi|2

(4.2)

and

λh,dθ2

[
D2ug

]
(x) = max

i

ug (x+ vi)− 2ug (x) + ug (x− vi)
|vi|2

. (4.3)

Lemma 4.1. The schemes (4.2) and (4.3) are degenerate elliptic.

Proof. We follow the same as in [26].

Since each discrete second derivative in the direction vi is the average of the
terms which have the form ugj − ugi , they are non-decreasing in ugj − ugi . Taking
a minimum (or maximum) of non-decreasing functions furnishes a non-decreasing
function.

We finally substitute (4.2) and (4.3) in (3.3) to obtain the wide stencil finite
difference scheme of (3.3){

Find a positive function gi, such that,

λh,dθ1

[
D2ug

i
]
× λh,dθ2

[
D2ug

i
]

= f i,
(4.4)

with {
λh,dθ1

[
D2ug

i
]

+ λh,dθ2

[
D2ug

i
]

= 2
√
f i + gi,

ug|Γ = ϕ.
(4.5)

Where f i = f (xi) and gi = g (xi) .

Lemma 4.2. The scheme (4.4) is degenerate elliptic.

Proof. From the properties of nondecreasing functions, obtained in [26], that ifG :
R2 → R is a nondecreasing function, and if F1 and F2 are degenerate elliptic finite
difference schemes, then so is F = G (F1, F2) . It is also clear that the discretization
f i = f (xi) and gi = g (xi) does affect the ordering properties. We conclude that
(4.4) is degenerate elliptic.

In the following, for simplicity, we omit the index i when there is no ambiguity.

Definition 4.1. We say the scheme Hh,dθ is consistent with the equation (MAD)
at x0 if for every twice continuously differentiable function ϕ (x) defined in a neigh-
borhood of x0, H

h,dθ(ϕ) (x0)→ H (ϕ) (x0) as h, dθ → 0. The global scheme defined
on Ω is consistent if the limit above holds uniformly for all x ∈ Ω. (The domain is
assumed to be closed and bounded).

Lemma 4.3. The consistency holds for (4.2) and (4.3) and so for (4.4).

Proof. Let x0 be a reference point with neighbors x1, ..., xN , and direction vectors
vi = xi−x0, for i = 1, ..., N, arranged symmetrically, if vi is a direction vector, then
so is −vi. By Taylor series one has

ug (x0 + vi)− 2ug (x0) + ug (x0 − vi)
|vi|2

=
d2ug

dv2
i

+O
(
h2
i

)
.
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Let M given symetric 2 × 2 matrix, that we can take it diagonal. Set vθ a unit
vector. It follows from [26] (Lemma 3) that

min
θ∈{θ1,...,θN}

vTθMvθ = λ1 + (λ2 − λ1)O
(
θ2
)
.

Which implies that

λ1 (ϕ) (x0)− λh,dθ1 (ϕ) (x0) = O
(
h̄2 + (λ2 − λ1) dθ2

)
and thus consistency holds for (4.2). Similar argument gives consistency for (4.3)
and so for (4.4).

Theorem 4.1. Suppose that unique viscosity solutions exist for the equation (3.3)
then the finite difference scheme given by (4.4) converges uniformly on compacts
subsets of Ω to the unique viscosity solution of the equation.

Proof. We need to verify consistency and monotonicity. Consistency follows from
Lemma 4.3 and monotonicity follows from Lemma 4.2.

Finally, the scheme yields a fully nonlinear equation defined on grid functions.
We perform the iteration (2.1) and by Theorem 2.3 will converge to a fixed point
which is a solution of the equation. This approach is used in [26].

5. Two fixed point operators

5.1. The second method (Method B)

Notice that from Lemma 3.1 if u is a solution of (1.1) u (x, y) = ug̃ (x, y) it follows
that det

(
D2u

)
= det

(
D2ug̃

)
, where ug̃ is the solution of (3.1) for g̃ ∈ L2.

By writing

4ug̃ = 2
√
f + g̃ =

√
(∆ug̃)

2
+ 2 (f − det (D2ug̃))

and expanding
(
∆ug̃

)2
=
(
ug̃xx
)2

+
(
ug̃yy
)2

+ 2ug̃xxu
g̃
yy we have

4ug̃ =

√(
ug̃xx
)2

+
(
ug̃yy
)2

+ 2
(
ug̃xy
)2

+ 2f = 2
√
f + g̃.

Let us define the operator Q : L2 (Ω)→ L2 (Ω) for Ω ⊂ R2 by

Q (g) :=

√
(ugxx)

2
+ (ugyy)

2
+ 2 (ugxy)

2
+ 2f − 2

√
f,

with ug solution of (Pg) . So, one has

Lemma 5.1. g̃ is a fixed point of Q.

Proof. It follows from above expansions.

5.1.1. The scheme

We consider the following scheme

gn+1 = Q (gn) =

√
(ugnxx)

2
+ (ugnyy)

2
+ 2 (ugnxy)

2
+ 2f − 2

√
f.

With initial value g0 > 0 close to zero and ug0 is the solution of (P g0) .
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Remark 5.1. The advantage of this method by comparing it to that in [16] and [3]
is that it guarantees, at least, at each iteration that tr

(
D2ugn (x)

)
> 0, which is

necessary but of course not sufficient to guarantee convexity at each iteration.
Although this method turns out to be simple to implement is well suited in the

case where ug is in H2 (Ω) . If not, the method may not converge.

5.1.2. Algorithm

• g0 ≥ 0 (close to 0), solve (P g0) , ((ug)
0

= ug0being known),

• For n ≥ 0, compute gn+1 and (ug)
n+1

as follows

gn+1 = Q (gn) ,

(ug)
n+1

solution of
(
P g

n+1
)
.

Where, the method involves simply discretising the second derivatives using stan-
dard central differences on a uniform Cartesian grid, as a result

D2
xxuij =

1

h2
(ui+1,,j + ui−1,j−, 2ui,,j) ,

D2
yyuij =

1

h2
(ui,,j+1 + ui,,j−1 − 2ui,,j) ,

D2
xyuij =

1

4h2
(ui+1,,j+1 + ui−1,,j−1 − ui−1,,j+1 − ui+1,,j−1) .

5.2. The third method

In the same setting we define the next operator.

Definition 5.1. Let Ω a bounded domain in R2. Define the operator F : L2 (Ω)→
L2 (Ω) , by

F (g) =
√
|det [D2ug]− f |+ g, (5.1)

where ug is a solution of

(Pg)

∆u = 2
√
f + g,

u|Γ = ϕ.
(5.2)

For g ∈ L2 (Ω), the operator F is well defined and it is easy to verify that

Lemma 5.2. g̃ is a fixed point of the operator F.

Proof. Let u a smooth solution of (1.1). It follows from Lemma 3.1 that u = ug̃.
Which implies that det

[
D2ug̃

]
= det

[
D2u

]
= f and therefore, F (g̃) = g̃.

5.2.1. The scheme

We define the following scheme

gn+1 = F (gn) =
√
|det [D2ugn ]− f |+ gn.

With initial value g0 > 0 close to zero and ug0 is the solution of (P g0) .
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Remark 5.2. The method is advantageous, it simply involves evaluating deriva-
tives and solving the Poisson equation. As in the previous method, this one turns
out to be convenient for ug in H2 (Ω) , if not, it may not converge.

5.2.2. Algorithm

• g0 ≥ 0 (close to 0), solve (P g0) , ((ug)
0

= ug0being known),

• For n ≥ 0, compute gn+1 and (ug)
n+1

as follows

gn+1 = α
√
|det [D2ugn ]− f |+ gn,

with 0 < α < 1,

(ug)
n+1

solution of
(
P g

n+1
)
.

6. Numerical experiments

The three methods are tested on three different examples (smooth or singular solu-
tions). The discretization is done in the wide stencil Finte Difference method with
17- points (see Figure 1). The number of noeuds meshing is equal to N ∗ N with
N = 31, 45, 63, 89, 127, the step of meshing h = L/N, with L is the length of the
side of the rectangular domain Ω. Two convergence tests are defined; the first is
||gn+1 − gn||∞ and the second is ||un+1 − un||∞.

The methods are tested for different meshing.
The results we obtained were sufficient to show the efficiency of the methods.
In the first example we study the regular solution given by:

u(x, y) = exp((x2 + y2)/2) where f(x, y) = (x2 + y2 + 1) exp(x2 + y2).

The exact solution of the second example is :

u(x, y) =
1

2
((
√

(x− 0.5)2 + (y − 0.5)2 − 0.2)+)2

where

f(x, y) = (1− 0.2√
(x− 0.5)2 + (y − 0.5)2 − 0.2)

)+.

In Figure 2 we show the surface plot of the solution and the total CPU time
versusN for the methods A, B and C. The Table1 summarize the obtained numerical
errors for different meshing. In this case, the method A (WS) is slightly less accurate
compare to the method A (SFD).

The results are in Table 2 and Figure 3. One can see easily that the non-
smoothness affects the accuracy.

Finally, we consider a third example which is singular at the bord of the
domain Ω = [0, 1]× [0.1] , defined by

u(x, y) = −
√

(2− x2 − y2) where f(x, y) =
2

(2− x2 − y2)2
.

The results are illustrated in Table 3 and Figure 4.
In this last example, the accuracy of the (Method A: WS) is better than the

accuracy of the (Method A: SFD) and the other methods. This is due to the non-
smooth of the solution.

In the three examples, method C is less accurate than the other methods.
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Figure 2. Results for the first example on an N×N grid and total CPU time versus N for the methods
A, B and C.

7. Conclusions

Three numerical methods (A), (B) and (C) for the Dirichlet Monge-Ampère (MAD)
equation in two dimensions have been presented.

Computations were performed on a number of examples of varying regularity.
Efficiency comparisons were made between the methods and between results avail-
able in [16]. In the method (A) two discretization of the equivalent problem are
introduced namly (Method A: SFD) and (Method A: WS). The (Method A: SFD) is
a discretization with the standard finite difference. The method seems to converge
for all the numerical examples and yet this scheme is not monotone and so we can’t
give a proof of convergence. The second discretization (Method A: WS) is done by
wide stencils. Monotone scheme is constructed and convergence is proved.

The Methods B and C are based on introducing a fixed point problems. The
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Table 1. Errors
∥∥∥u− uN

∥∥∥
∞

for the exact solution of the first example on an N ×N grid. We include

results from the wide stencil methods of [16] on seventeen point stencils.

N Method in [16] Method A: SFD Method A: WS Method B Method C

31 2.44× 10−4 7.21× 10−4 2.965× 10−4 4.226× 10−4 18× 10−4

45 1.52× 10−4 3.41× 10−5 3.052× 10−4 2.202× 10−4 18× 10−4

63 9.06× 10−5 1.731× 10−5 2.801× 10−4 1.190× 10−4 17× 10−4

89 5.32× 10−5 1.504× 10−5 8.035× 10−4 6.494× 10−5 17× 10−4

127 3.06× 10−5 1.321× 10−5 2.015× 10−4 3.888× 10−5 17× 10−4
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Figure 3. Results for the second example on an N × N grid and total CPU time versus N for the
methods A, B and C.
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Table 2. Errors
∥∥∥u− uN

∥∥∥
∞

for the exact solution of the second example on an N×N grid. We include

results from the wide stencil methods of [16] on seventeen point stencils.

N Method in [16] Method A: SFD Method A: WS Method B: SFD Method C: SFD

31 1.22× 10−3 5.14× 10−4 5.806× 10−4 6.853× 10−4 8.794× 10−4

45 5.9× 10−4 5.01× 10−4 4.92× 10−4 6.719× 10−4 8.727× 10−4

63 4.2× 10−4 4.03× 10−4 4.914× 10−4 2.733× 10−4 8.601× 10−4

89 2.6× 10−4 3.37× 10−4 4.085× 10−4 2.09× 10−5 8.173× 10−4

127 2.0× 10−4 3.011× 10−4 4.056× 10−4 1.08× 10−5 8.164× 10−4
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Figure 4. Results for the third example on an N×N grid and total CPU time versus N for the methods
A, B and C.

Method B give more accurate results and seems to converge for regular solutions.
However, the Method C is the least accurate since the operator is not regular.

The methods (Method A: WS) and (Method B) have almost the same process
time (CPU) in the first two examples where the Method C is the faster in the first
example and the slowest in the second example.
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Table 3. Errors
∥∥∥u− uN

∥∥∥
∞

for the exact solution of the third example on an N ×N grid. We include

results from the wide stencil methods of [16] on seventeen point stencils.

N Method in [16] Method A: SFD Method A: WS Method B Method C

31 1.74× 10−3 18.21× 10−3 1.7× 10−3 5.1× 10−3 5.7× 10−3

45 9.8× 10−4 16.9× 10−3 1.5× 10−3 4.8× 10−3 5.5× 10−3

63 5.9× 10−4 16.85× 10−3 8.9× 10−4 3.9× 10−3 5.5× 10−3

89 3.5× 10−4 − 8.9× 10−4 3.1× 10−3 5.5× 10−3

127 2.0× 10−4 − 8.2× 10−4 2.4× 10−3 5.5× 10−3

In the third example the (Method A: WS) is the slowest but converges unlike
other methods where convergence is not guaranteed, which implies the importance
of using the wide stencils for singular solution.
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