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Abstract This paper studies the Cauchy problem of a BGK model and the
corresponding nonlinear hyperbolic conservation laws. Given bounded initial
data for the kinetic equation, the existence of weak solutions to the BGK model
is obtained by the time-splitting method. Moreover, weak solutions to the
limiting hyperbolic system are obtained by passing the relaxation parameter
to zero in a modified BGK model.
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1. Introduction

In this paper, we consider the following BGK kinetic system:f εt + v∂xf
ε =

1

ε

(
Mfε − f ε

)
,

f ε(0, x, v) = f0(x, v),
(1.1)

where f ε(t, x, v) ≥ 0 represents the density distribution function of particles at
time t ∈ R+ around position x ∈ R with velocity v ∈ (−1, 1), ε is the relaxation
parameter, and M is defined later in (1.4).

Let dµ := 1/2dv and

〈g〉 :=

∫ 1

−1

g(v)dµ(v) =
1

2

∫ 1

−1

g(v)dv
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be the mean of a function g with respect to v in distribution sense. The macroscopic
quantities of f include density ρ and momentum J , which are defined by(

ρf

Jf

)
:=

(
〈f〉
〈vf〉

)
=

∫ 1

−1

(
1

v

)
f(t, x, v)dµ(v). (1.2)

For simplicity, we use ρ and J to denote ρf and Jf respectively when there is no
ambiguities. The entropy of f is given by

H(f) := 〈f ln f〉 =

∫ 1

−1

f(t, x, v) ln f(t, x, v)dµ(v). (1.3)

Define the equilibrium state of f as

Mf = M(ρf ,Jf ) :=


0, if ρf = 0,

ρf

F ◦G−1(
Jf
ρf

)
exp

(
vG−1(

Jf
ρf

)
)
, otherwise,

(1.4)

where

F(z) :=


sinh z

z
, z 6= 0,

1, z = 0,
G(z) :=


F′(z)
F(z)

= coth z − 1

z
, z 6= 0,

0, z = 0.

Easy to see that function G is a C∞ diffeomorphism from R onto (−1, 1).

Given any ρ(t, x), J(t, x), one can check that M(ρ,J) is a minimizer of H(f)
among all f satisfying 〈f〉 = ρ, 〈vf〉 = J . Namely,

〈M(ρ,J)〉 = ρ, 〈vM(ρ,J)〉 = J, H(M(ρ,J)) = min
〈f〉=ρ,〈vf〉=J

H(f). (1.5)

By using the nonlinear entropy-based moment closure method in [15], we can
derive the following hyperbolic conservation laws:

ρt + ∂xJ = 0, t > 0, x ∈ R,

Jt + ∂x
(
ρψ(

J

ρ
)
)

= 0, t > 0, x ∈ R,

ρ(x, 0) = ρ0(x), J(x, 0) = J0(x),

(1.6)

with |J | < ρ and ψ : (−1, 1)→ (0,+∞) defined by

ψ(s) := s2 + G′
(
G−1(s)

)
=

F′′

F
(
G−1(s)

)
, s ∈ (−1, 1).

Obviously, G is an odd function, F, ψ are even, ψ is strictly convex, and

F(0) = 1, G(0) = 0, ψ(0) = G′(0) =
1

3
, ψ′(0) = 0,

lim
s→±1

ψ(s) = 1, lim
s→±1

ψ′(s) = ±2.



164 Y. Dong, Z. Jiang & L. Li

Direct calculation implies that the eigenvalues and corresponding eigenvectors
of (1.6) are given by:

λi(s) =
ψ′(s)±

√(
ψ′(s)

)2 − 4sψ′(s) + 4ψ(s)

2
, ri(s) =

(
1

λi(s)

)
, i = 1, 2,

with λ1(s) < s < λ2(s) and λ′i(s) > 0. The system (1.6) is strictly hyperbolic
and genuinely nonlinear. All the properties above were given in [8], and it was
shown that the corresponding homogeneous Riemann problem can be solved without
smallness assumption.

There have been extensive studies on the mathematical theory for the systems of
hyperbolic conservation laws. One feature of the hyperbolic system is that discon-
tinuities always happen within a finite time no matter how smooth the initial data
is. In the framework of solutions with small total variation, there are two classic
methods to obtain the global existence: In the fundamental work of Glimm [10], the
weak solution is established by introducing the Glimm scheme which uses as building
blocks the solutions to Riemann problems solved by Lax, refer to [5,12,14,16,17] and
the references therein. On the other hand, Bianchini and Bressan [3] constructed
solutions for hyperbolic systems by the method of vanishing viscosity. Bianchini
provided in [2] a general framework to extend the relative entropy method to a
class of diffusive relaxation systems with discrete velocities. The same approach
has been successfully used to show the strong convergence of a vector-BGK model
to the 2D incompressible Navier-Stokes equations. Buttá et al. [6] proved the con-
vergence of a suitable particle system towards the BGK model. Hwang et al. [13]
proved the unique existence and asymptotic behavior of classical solutions to the
relativistic polyatomic BGK model when the initial data is sufficiently close to a
global equilibrium.

For weak solutions with large initial data, the method of compensated compact-
ness is used to establish weak solutions to the scalar or 2× 2 systems of hyperbolic
conservation laws with initial data in Lp, refer to [7, 18, 22]. The key point of this
method is to establish a series of entropies for conservation laws, but the equation of
entropy is always a second-order nonlinear PDE, so it is hard to obtain the entropy
function by solving it. Yang, Zhu and Zhao in [25] studied the strong convergence
of a sequence of uniform bounded approximate solutions uε(x, t) to a weak solution
of scalar conservation laws in Lploc(R×R+), 1 < p ≤ +∞. Lu in [19] established an
existence theorem for global entropy solutions of the nonstrictly hyperbolic system
by use the theory of compensated compactness coupled with some basic ideas of
the kinetic formulation. Wang, Liu and Zhao in [24] studied the Riemann problem
of a one-dimensional nonlinear wave systems with different gamma laws. They con-
structed the Riemann solution and prove the stability of Riemannian solutions for
some disturbance of the initial data by utilizing the interaction of the elementary
waves. Under the assumptions of spherical symmetry and self-similarity, Zhang and
Hu considered in [26] the self-similar flow of multidimensional isentropic compress-
ible Euler equations caused by uniform expansion of a spherically-symmetric piston
into the undisturbed fluid. Sun and Lu studied in [21] the global existence of weak
solutions for the Cauchy problem of the nonlinear hyperbolic system with bounded
initial data. They introduced a variant of the viscosity argument, added the arti-
ficial viscosity to the Riemann invariant system, and constructed the approximate
solutions of the nonlinear conservation system. Then they proved the pointwise
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convergence of the viscosity solutions by the compensated compactness theory.
Formal moment closure of the kinetic equation can give rise to hyperbolic sys-

tems. This idea can also be utilized to construct schemes for hyperbolic systems by
solving the underlying kinetic equation, which is the approach that we take in this
paper, as well as in [8, 15, 20]. If the entropy of the kinetic equation is chosen to
be linear, the minimizer will be a Dirac function, see [20, 23], and the moments of
minimizer belong to a bounded subset of BV ∩L∞. However, if we use the physical
entropy (1.3), the minimizer given by (1.4) is unbounded in L∞. This fact leads to a
lack of strong compactness. Our main goal is to prove that given rough initial data
for the kinetic equation, the solutions converge to a weak solution of the limiting
hyperbolic system.

Now we give definitions of the weak solutions to (1.1) and (1.6).

Definition 1.1. We say that f ε is a weak solution to (1.1) if f ε(t, x, v) ∈ L1
(
[0, T )×

R× (−1, 1)
)

and∫ T

0

∫
R

∫ 1

−1

f ε(φt + vφx)dµ(v)dxdt+

∫
R

∫ 1

−1

f0(x, v)φ(0, x, v)dµ(v)dx

+
1

ε

∫ T

0

∫
R

∫ 1

−1

(Mfε − f ε)φdµ(v)dxdt

=0

holds for any smooth function φ(t, x, v) with compact support in {(t, x, v) ∈ [0, T )×
R× (−1, 1)}.

Definition 1.2. We say that (ρ, J) ∈ L1([0, T ) × R) × L1([0, T ) × R) is a weak
solution to (1.6) if ∫ T

0

∫
R
ρϕt + Jϕxdxdt+

∫
R
ρ0ϕ(0, x)dx = 0

and ∫ T

0

∫
R

(
Jϕt + ρψ(

J

ρ
)ϕx + Jϕ

)
dxdt+

∫
R
J0ϕ(0, x)dx = 0

hold for any smooth function ϕ(t, x) with compact support in {(t, x) ∈ [0, T )×R}.

The main results of this paper are the following theorems. The first result
concerns the existence of weak solution to (1.1).

Theorem 1.1. Suppose the initial data f0(x, v) ≥ 0 satisfies∫
R

∫ 1

−1

(1 + |x|)f0(x, v)dµ(v)dx ≤ C0, (1.7)

and ∫
R

∫ 1

−1

f0(x, v) ln f0(x, v)dµ(v)dx ≤ C0. (1.8)

Then (1.1) has a weak solution f ε(t, x, v) ∈ L1([0, T )× R× (−1, 1)).

Remark 1.1. From conditions (1.7) and (1.8), we deduce later that∫
R

∫ 1

−1

f0(x, v)| ln f0(x, v)|dµ(v)dx ≤ C0.
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Our second result verifies the validity of the entropy-based moment closure
method for this BGK kinetic equation.

Theorem 1.2. Suppose that the initial data f0(x, v) ≥ 0 satisfies (1.7) and (1.8).
For any fixed constant ζ > 0, there exists f(t, x, v) ∈ L1([0, T )× (−1, 1)× R) such
that (ρ, J, p), defined by ρ := 〈f〉, J := 〈vf〉, p := 〈v2f〉, is a pair of weak solution
to 

ρt + ∂xJ = 0,

Jt + ∂xp = 0,

ρ(x, 0) = ρ0(x), J(x, 0) = J0(x),

and the pressure p satisfies

‖p− ρψ(
J

ρ
)‖L1

loc
≤ Cζ,

where (ρ0, J0) = (〈f0〉, 〈vf0〉) and C is a constant independent of ζ.

It is worth mentioning that the function f in Theorem 1.2, which may not be
equal to the weak solution in Theorem 1.1, is obtained as the limit of a sequence of
weak solutions to the approximate system (4.2).

Remark 1.2. Given ρ0, J0. We can use

f0(x, v) = M(ρ0,J0) =
ρ0

F(G−1(J0/ρ0))
evG

−1(J0/ρ0)

to rephrase the initial conditions (1.7) and (1.8) as∫
R

(1 + |x|)ρ0dx ≤ C0,

and ∫
R

(
ρ0 ln ρ0 − ρ0 ln

(
F ◦G−1(J0/ρ0)

)
+ J0G−1(J0/ρ0)

)
dx ≤ C0.

Our method in this paper can be used in a wide range of kinetic equations and
their corresponding system of hyperbolic conservation laws, which is derived from
an entropy-based moment closure of the kinetic equation.

There are some difficulties to obtain weak solutions of the conservation laws
in L1 space. First, the minimizer or equilibrium Mf is unbounded in L∞ and we
lack strong compactness for the moments of f ε. The entropy inequality leads to an
estimate

1

ε

∫ T

0

∫
R

∫ 1

−1

(ln f ε(t, x, v)− lnMfε(t,x,v))(f
ε(t, x, v)−Mfε(t,x,v))dµ(v)dxdt

≤C(f0(x, v), T ),

but what we need is a uniform bound for

1

ε

∫ T

0

∫
R

∫ 1

−1

|f ε(t, x, v)−Mfε(t,x,v)|dµ(v)dxdt. (1.9)

In fact, for any x, y > 0, it can be proved that

(lnx− ln y)(x− y) ≥ 2(
√
x−√y)2. (1.10)
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So the entropy estimate is not sufficient to control (1.9). Secondly, we lack regularity
of the moments of f ε. From the kinetic theory, we can gain some regularities by
the velocity averaging lemma, but the right-hand side of (1.1) and the approximate
equation (1.6) do not satisfy the conditions to apply velocity averaging lemma.
Finally, for system (1.6), a natural entropy can be given by

η(ρ, J) = ρ ln ρ− ρ ln[F ◦G−1(J/ρ)] + JG−1(J/ρ),

the corresponding flux is

q(ρ, J) = J ln ρ− J ln[F ◦G−1(J/ρ)] + ρψ(J/ρ)G−1(J/ρ),

but this entropy-flux pair is not sufficient to gain the convergence of viscous solu-
tions.

The rest of this paper is organized as follows. In section 2, we first review some
basic lemmas that will be used in our proof. In section 3, we prove the existence
of weak solutions to (1.1) by using the time splitting method with a free transport
step followed by a projection partially on the equilibrium. In the last section, we
establish the existence of weak solutions to the approximate equation (1.6).

2. Preliminaries

In this section, we will recall some known facts and elementary lemmas that will be
used in our proof.

As a bounded subset of L1(Rn) may not be weakly compact, we need the fol-
lowing Dunford-Pettis theorem to establish the weak compactness.

Lemma 2.1 ([9]). A bounded subset F ⊂ L1(Rn) is precompact with respect to the
weak topology of L1 if and only if the following hold:

(i) F is uniformly integrable:∫
A

|f(x)|dx→ 0, as |A| → 0, uniformly in f ∈ F ;

(ii) F is tight:∫
|x|>R

|f(x)|dx→ 0, as R→∞, uniformly in f ∈ F .

Remark 2.1. Note that F is uniformly integrable is equivalently to∫
|f(z)|>C

|f(x)|dx→ 0, as C →∞, uniformly in f ∈ F .

A metric space is compact if and only if it is complete and totally bounded,
and since we are interested in compactness results for subsets of L1, we need the
following Kolmogorov-Riesz theorem in [11].

Lemma 2.2 ([11]). Let 1 ≤ p <∞, a subset F ⊂ Lp(Rn) is totally bounded if and
only if the following hold:

(i) F is bounded;
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(ii) For any ε > 0, there exists some R such that for every f ∈ F∫
|x|>R

|f(x)|pdx < εp.

(iii) For any ε > 0, there exists some δ > 0 such that for every f ∈ F and
y ∈ Rn with |y| < δ, ∫

Rn
|f(x+ y)− f(x)|pdx < εp.

Corollary 2.1 ([11]). Let 1 ≤ p <∞, Ω ⊂ Rn be an open set. Define

fK(x) :=

{
f(x), x ∈ K,
0, otherwise.

A subset F ⊂ Lploc(Ω) is totally bounded if and only if
(i) For every compact set K ⊂ Ω, there exists some M such that∫

|fK(x)|pdx < M, f ∈ F .

(ii) For every ε > 0 and every compact set K ⊂ Ω , there exists some δ > 0,
such that ∫

|fK(x+ y)− fK(x)|pdx < εp, |y| < δ, f ∈ F .

Lemma 2.3 ([1]). Let 1 ≤ p < ∞ and Ω ⊂ Rn be an open set. A bounded subset
F ⊂ Lp(Ω) is precompact if and only if for every ε > 0, there exists some δ > 0
and a subset G b Ω, such that the following inequalities hold:∫

Ω\Ḡ
|f(x)|pdx < εp, f ∈ F ,∫

Ω

|f̃(x+ y)− f̃(x)|pdx < εp, |y| < δ, f ∈ F ,

where

f̃(x) :=

{
f(x), x ∈ G,
0, otherwise.

We use the following lemma given in [4] to prove strong compactness for the
moments of fn.

Lemma 2.4 ([4]). Let Ω be an open set of Rd+1
x,t , and fn be a bounded sequence in

L2
loc(Ω× Rdv) such that {∫

(∂tfn + divx(vfn))σ(v)dv
}

is precompact in H−1
loc (Ω) for any σ(v) ∈ C∞(Rdv). Then {

∫
fnσ(v)dv} is precompact

in L2
loc(Ω) for any σ(v) ∈ C∞(Rdv).

In order to apply the above lemma to our system we introduce the following
corollary.
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Corollary 2.2. Let Ω be an open set of Rd+1
x,t , D ⊂ Rdv be a bounded open set, and

fn be a bounded sequence in L2
loc(Ω×D) such that{∫

D

(∂tfn + divx(vfn))σ(v)dv
}

is precompact in H−1
loc (Ω) for any σ(v) ∈ C∞(D̄). Then {

∫
D
fnσ(v)dv} is precom-

pact in L2
loc(Ω) for any σ(v) ∈ C∞(D̄).

To prove the corollary, we first extend fn to f̃n by letting f̃n(t, x, v) = fn(t, x, v)
when v ∈ D and f̃n(t, x, v) = 0 otherwise, then apply Lemma 2.4 to f̃n.

3. Existence of the weak solutions to the kinetic
equation

Proof of Theorem 1.1. We use a few steps to prove the theorem.

Step 1. By time splitting method, we first construct a sequence of approximate
functions f ε∆t which will be proved converging to a weak solution of (1.1) in the
following steps. Then we derive some estimates for f ε∆t and Mfε∆t

.

Choose a positive integer N and let ∆t := T
N , we iteratively define f ε∆t(t, x, v)

in the time interval (k∆t, (k + 1)∆t], k = 0, 1, · · · , N − 1, through

t = 0 : f ε∆t(t, x, v) = f0(x, v), (3.1)

t ∈ (k∆t, (k + 1)∆t) : f ε∆t(t, x, v) = f ε∆t(k∆t, x− (t− k∆t)v, v), (3.2)

t = (k + 1)∆t : f ε∆t((k + 1)∆t, x, v) = e−
∆t
ε f ε∆t((k + 1)∆t−, x, v)

+ (1− e−∆t
ε )Mfε∆t((k+1)∆t−,x,v).

(3.3)

By construction, the above approximate functions satisfies∂tf
ε
∆t + v∂xf

ε
∆t = (1− e−∆t

ε )
∑
k

(
Mfε∆t(t,x,v) − f ε∆t(t, x, v)

)
δ(t− k∆t),

f ε∆t(0, x, v) = f0(x, v).

(3.4)

From (1.2), (1.5), (1.7) and the construction of f ε∆t(t, x, v), we know∫
R

∫ 1

−1

f ε∆t(t, x, v)dµ(v)dx =

∫
R

∫ 1

−1

f0(x, v)dµ(v)dx ≤ C0. (3.5)

Direct calculation yields that∫
R

∫ 1

−1

|x|f ε∆t(k∆t−, x, v)dµ(v)dx

≤
∫
R

∫ 1

−1

|x|f ε∆t((k − 1)∆t, x, v)dµ(v)dx+ ∆t

∫
R

∫ 1

−1

f0(x, v)dµ(v)dx,

then we can deduce iteratively that∫
R

∫ 1

−1

|x|f ε∆t(t, x, v)dµ(v)dx
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≤
∫
R

∫ 1

−1

|x|f0(x, v)dµ(v)dx+N∆t

∫
R

∫ 1

−1

f0(x, v)dµ(v)dx ≤ C0(1 + T ). (3.6)

Condition (1.7) is used to derive the last inequality.

On the other hand, multiply (ln f ε∆t(t, x, v)+1) to the first line of (3.4), integrate
with respect to v and x, we obtain that

d

dt

∫
R

∫ 1

−1

f ε∆t(t, x, v) ln f ε∆t(t, x, v)dµ(v)dx+
∑
k

(1− e−∆t
ε )δ(t− k∆t)

×
∫
R

∫ 1

−1

(
f ε∆t(t, x, v)−Mfε∆t(t,x,v)

)(
ln f ε∆t(t, x, v)− lnMfε∆t(t,x,v)

)
dµ(v)dx

=0,

since
∫

(f−Mf ) lnMfdv = 0 from the definition of equilibrium state. Then we have∫
R

∫ 1

−1

f ε∆t ln f ε∆tdµ(v)dx+ (1− e−∆t
ε )
∑
k

∫
R

∫ 1

−1

(
f ε∆t(k∆t, x, v)−Mfε∆t(k∆t,x,v)

)
×
(

ln f ε∆t(k∆t, x, v)− lnMfε∆t(k∆t,x,v)

)
dµ(v)dx

=

∫
R

∫ 1

−1

f0(x, v) ln f0(x, v)dµ(v)dx. (3.7)

Since the second term in the above equality is non-negative, we obtain from (1.8)
that∫

R

∫ 1

−1

f ε∆t(t, x, v) ln f ε∆t(t, x, v)dµ(v)dx ≤
∫
R

∫ 1

−1

f0(x, v) ln f0(x, v)dµ(v)dx ≤ C0.

(3.8)

Moreover, we have from (3.6) and (3.8) that∫ T

0

∫
R

∫ 1

−1

f ε∆t(t, x, v)
∣∣ ln f ε∆t(t, x, v)

∣∣dµ(v)dxdt

=

∫ T

0

∫
R

∫ 1

−1

f ε∆t(t, x, v) ln f ε∆t(t, x, v)dµ(v)dxdt

− 2

∫
{(t,x,v)|fε∆t(t,x,v)<1}

f ε∆t(t, x, v) ln f ε∆t(t, x, v)dµ(v)dxdt

≤
∫ T

0

∫
R

∫ 1

−1

f ε∆t(t, x, v) ln f ε∆t(t, x, v)dµ(v)dxdt

+ 2

∫
{e−|x|≤fε∆t(t,x,v)<1}

f ε∆t(t, x, v)
∣∣ ln f ε∆t(t, x, v)

∣∣dµ(v)dxdt

+ 2

∫
{fε∆t(t,x,v)<e−|x|}

f ε∆t(t, x, v)
∣∣ ln f ε∆t(t, x, v)

∣∣dµ(v)dxdt

≤C0T + 2

∫ T

0

∫
R

∫ 1

−1

f ε∆t(t, x, v)|x|dµ(v)dxdt+ C

∫ T

0

∫
R

∫ 1

−1

e−
|x|
2 dµ(v)dxdt

≤C(C0, T ). (3.9)



BGK equation & approximate conservation laws 171

Combining (3.5), (3.6) and (3.9), we have proved for any T > 0 that∫ T

0

∫
R

∫ 1

−1

(
1 + |x|+ | ln f ε∆t(t, x, v)|

)
f ε∆t(t, x, v)dµ(v)dxdt ≤ C(C0, T ). (3.10)

Using similar method we can also obtain∫ T

0

∫
R

∫ 1

−1

(
1 + |x|+ | lnMfε∆t(t,x,v)|

)
Mfε∆t(t,x,v)dµ(v)dxdt ≤ C(C0, T ). (3.11)

Step 2. Now we prove weak compactness of f ε∆t and Mfε∆t
in L1([0, T ) × R ×

(−1, 1)).
Note that for any R,M > 1 we have from (3.10) that∫ T

0

∫
|x|>R

∫ 1

−1

|f ε∆t(t, x, v)|dµ(v)dxdt

=

∫ T

0

∫
|x|>R

∫ 1

−1

f ε∆t(t, x, v)dµ(v)dxdt

≤ 1

R

∫ T

0

∫
|x|>R

∫ 1

−1

|x|f ε∆t(t, x, v)dµ(v)dxdt

≤C(C0, T )

R
→ 0, as R→ +∞,∫

|fε∆t|>M
|f ε∆t(t, x, v)|dµ(v)dxdt

=

∫
fε∆t>M

f ε∆t(t, x, v)dµ(v)dxdt

≤ 1

| lnM |

∫ T

0

∫
Rx

∫ 1

−1

| ln f ε∆t|f ε∆tdµ(v)dxdt

≤C(C0, T )

| lnM |
→ 0, as M → +∞.

From Lemma 2.1 and Remark 2.1 (Dunford-Pettis theorem), we know that f ε∆t
is weakly compact in L1([0, T ) × R × (−1, 1)). Similarly, by using (3.11), we can
deduce Mfε∆t(t,x,v) is weakly compact in L1([0, T ) × R × (−1, 1)). Therefore, there
exist subsequences of {f ε∆t}, {Mfε∆t

}, still denoted using the same subscript, and
functions f ε, gε such that

f ε∆t
w−⇀ f ε in L1([0, T )× R× (−1, 1)), as ∆t→ 0, (3.12)

Mfε∆t

w−⇀ gε in L1([0, T )× R× (−1, 1)), as ∆t→ 0. (3.13)

Step 3. Set Ω := (0, T )× R. Now we prove precompactness of∫ 1

−1

σ(v)f ε∆t(t, x, v)dµ(v)

in L2
loc(Ω) for any σ(v) ∈ C∞([−1, 1]).
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We introduce the cut-off function χα ∈ C∞(R+) such that

χα(s) :=


s, if 0 ≤ s ≤ α,
∈ [α, α+ 2], if s ∈ [α, α+ 4],

α+ 2, if s ≥ α+ 4,

(3.14)

and χ′α(s) ≤ 1.
Due to the construction of f ε∆t in (3.1)-(3.3), function χα(f ε∆t(t, x, v)) satisfies

the following for t ∈ [k∆t, (k + 1)∆t):∂tχα(f ε∆t) + v∂xχα(f ε∆t) = 0, t ∈ (k∆t, (k + 1)∆t),

χα(f ε∆t)|t=k∆t = χα(f ε∆t(k∆t, x, v)).

For t ∈ (0, T ), function χα(f ε∆t) satisfies
∂tχα(f ε∆t) + v∂xχα(f ε∆t) =

∑
k

(
χα
(
f ε∆t(t)

)
− χα

(
f ε∆t(t−)

))
δ(t− k∆t),

χα(f ε∆t)|t=0 = χα(f0).

For any σ(v) ∈ C∞([−1, 1]), we have∫ 1

−1

σ(v)
(
∂tχα(f ε∆t) + v∂xχα(f ε∆t)

)
dµ(v)

=

∫ 1

−1

σ(v)
∑
k

(
χα
(
f ε∆t(t, x, v)

)
− χα

(
f ε∆t(t−, x, v)

))
δ(t− k∆t)dµ(v). (3.15)

Now we claim that the right hand side of (3.15) is bounded in Mloc(Ω), the space
of Radon measures.

In fact, for any φ(t, x) ∈ Cc(Ω), we have∑
k

∫
Ω

∫ 1

−1

σ(v)
(
χα
(
f ε∆t(t)

)
− χα

(
f ε∆t(t−)

))
δ(t− k∆t)dµ(v)φ(t, x)dxdt

=
∑
k

∫
R

∫ 1

−1

σ(v)
(
χα
(
f ε∆t(k∆t)

)
− χα

(
f ε∆t(k∆t−)

))
dµ(v)φ(k∆t, x)dx

≤C‖φ‖Cc(Ω)

∑
k

∫
R

∫ 1

−1

∣∣∣χα(f ε∆t(k∆t)
)
− χα

(
f ε∆t(k∆t−)

)∣∣∣dµ(v)dx

≤C‖φ‖Cc(Ω)

∑
k

∫
R

∫ 1

−1

∣∣∣f ε∆t(k∆t)− f ε∆t(k∆t−)
∣∣∣dµ(v)dx

≤C‖φ‖Cc(Ω)(1− e−
∆t
ε )
∑
k

∫
R

∫ 1

−1

∣∣∣Mfε∆t(k∆t−) − f ε∆t(k∆t−)
∣∣∣dµ(v)dx

≤C‖φ‖Cc(Ω)

∑
k

(1− e−∆t
ε )

∫
R

∫ 1

−1

∣∣∣√Mfε∆t(k∆t−) −
√
f ε∆t(k∆t−)

∣∣∣2dµ(v)dx

+ C‖φ‖Cc(Ω)

∑
k

(1− e−∆t
ε )

∫
R

∫ 1

−1

∣∣∣√Mfε∆t(k∆t−) +
√
f ε∆t(k∆t−)

∣∣∣2dµ(v)dx.

(3.16)
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For the first term in the last line of the above inequality, we obtain from (1.10),
(3.7) and (3.9) that

2(1− e−∆t
ε )
∑
k

∫
R

∫ 1

−1

(√
f ε∆t(k∆t)−

√
Mfε∆t(k∆t)

)2

dµ(v)dxdt

≤(1− e−∆t
ε )
∑
k

∫
R

∫ 1

−1

(
f ε∆t(k∆t)−Mfε∆t(k∆t)

)
×
(

ln f ε∆t(k∆t)− lnMfε∆t(k∆t)

)
dµ(v)dx

≤
∫
R

∫ 1

−1

f ε∆t(t)| ln f ε∆t(t)|dµ(v)dx+

∫
Rx

∫ 1

−1

f0(x, v)| ln f0|dµ(v)dx ≤ C(C0, T ).

(3.17)

For the second term in the last line of (3.16), it is easy to see from (3.5) that∑
k

(1− e−∆t
ε )

∫
R

∫ 1

−1

∣∣∣√Mfε∆t(k∆t−) +
√
f ε∆t(k∆t−)

∣∣∣2dµ(v)dx

≤2
∑
k

(1− e−∆t
ε )

∫
R

∫ 1

−1

(
Mfε∆t(k∆t−) + f ε∆t(k∆t−)

)
dµ(v)dx

≤C(C0, T )

ε
, (3.18)

since 1− e−∆t
ε ≤ ∆t

ε and T = N∆t.
Substitute estimates (3.17) and (3.18) into (3.16), we know that∑

k

∫
Ω

∫ 1

−1

σ(v)
(
χα
(
f ε∆t(t)

)
− χα

(
f ε∆t(t−)

))
δ(t− k∆t)dµ(v)φ(t, x)dxdt

≤C(f0, T )(1 +
1

ε
)

for any σ(v) ∈ C∞([−1, 1]) and φ(t, x) ∈ Cc(Ω). Therefore, the right hand side
of (26) is bounded in Mloc(Ω) (the space of Radon measures), by using the em-

bedding Mloc(Ω) ↪→ W−1,p(Ω), p ∈ [1, 2), we could deduce
∫ 1

−1
σ(v)[∂tχα(f ε∆t) +

v∂xχα(f ε∆t)]dµ(v) is compact in W−1,p(Ω).
On the other hand, since χα(f ε∆t(t, x, v)) ∈ L∞([0, T )× (−1, 1)× Rx), so∫ 1

−1

σ(v)[∂tχα(f ε∆t) + v∂xχα(f ε∆t)]dµ(v)

is bounded in W−1,∞
loc (Ω).

By using the embedding theorem Theorem 2.3.2 in [18], we could deduce
∫ 1

−1
σ(v)(

∂tχα(f ε∆t)+v∂xχα(f ε∆t)
)
dµ(v) is precompact in H−1

loc (Ω). Finally, by Corollary 2.2,

we obtain
∫ 1

−1
σ(v)χα(f ε∆t)dµ(v) is precompact in L2

loc(Ω).

Step 4. Now, we prove the precompactness of
∫ 1

−1
σ(v)f ε∆tdµ(v) in L1

loc(Ω). It is
sufficient to prove, for any compact set K ⊂ Ω, that

lim
(τ,h)→(0,0)

∫
K

∣∣∣ ∫ 1

−1

σ(v)
(
f ε∆t(t+ τ, x+ h, v)− f ε∆t(t, x, v)

)
dµ(v)

∣∣∣dxdt = 0
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uniformly.
We omit the superscript ε, and denote fα∆t := χα(f ε∆t), f

1−α
∆t := f ε∆t − χα(f ε∆t).

Then for any K ⊂ Ω,∫
K

∣∣∣ ∫ 1

−1

σ(v)
(
f ε∆t(t+ τ, x+ h, v)− f ε∆t(t, x, v)

)
dµ(v)

∣∣∣dxdt
≤
∫
K

∣∣∣ ∫ 1

−1

σ(v)
(
fα∆t(t+ τ, x+ h, v)− fα∆t(t, x, v)

)
dµ(v)

∣∣∣dxdt
+

∫
K

∣∣∣ ∫ 1

−1

σ(v)
(
f1−α

∆t (t+ τ, x+ h, v)− f1−α
∆t (t, x, v)

)
dµ(v)

∣∣∣dxdt
=I1 + I2.

The estimate of I2 comes from the equintegrability (3.10). For any κ > 0, there
exists a suitably large constant α, such that

I2 =

∫
K

∣∣∣ ∫ 1

−1

σ(v)
(
f1−α

∆t (t+ τ, x+ h, v)− f1−α
∆t (t, x, v)

)
dµ(v)

∣∣∣dxdt
≤C

∫
f∆t≥α

|f∆t|dµ(v)dxdt

<
κ

2
.

For the above fixed α, from precompactness of
∫ 1

−1
σ(v)χα(f ε∆t)dµ(v) in L2

loc(Ω),

there exists δ > 0, such that for any h2 + τ2 < δ2, we have

I1 =

∫
Ω

∣∣∣ ∫ 1

−1

σ(v)
(
fα∆t|K(t+ τ, x+ h, v)− fα∆t|K(t, x, v)

)
dµ(v)

∣∣∣dxdt
≤ C(K)(

∫
Ω

∣∣∣ ∫ 1

−1

σ(v)
(
fα∆t|K(t+ τ, x+ h, v)− fα∆t|K(t, x, v)

)
dµ(v)

∣∣∣2dxdt) 1
2

<
κ

2
.

Combining the above argument, we know that for any κ > 0, there exists δ > 0
such that for any h2 + τ2 < δ2∫

K

∣∣∣ ∫ 1

−1

σ(v)
(
f ε∆t(t+ τ, x+ h, v)− f ε∆t(t, x, v)

)
dµ(v)

∣∣∣dxdt < κ.

Then from Corollary 2.1, the Kolmogorov-Riesz theorem, we obtain the precom-
pactness of {∫ 1

−1

σ(v)f ε∆t(t, x, v)dµ(v)
}

in L1
loc(Ω). There exists a subsequence, still denoted by {

∫ 1

−1
σ(v)f ε∆t(t, x, v)dµ(v)},

satisfying

lim
∆t→0

∥∥∥∫ 1

−1

σ(v)f ε∆tdµ(v)−
∫ 1

−1

σ(v)f εdµ(v)
∥∥∥
L1
loc(Ω)

= 0,

where f ε is the weak limit of {f ε∆t} obtained in (3.12).
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By tightness and uniform integrability of f ε∆t(t, x, v), we know from Lemma 2.1
that

lim
∆t→0

∥∥∥∫ 1

−1

σ(v)f ε∆tdµ(v)−
∫ 1

−1

σ(v)f εdµ(v)
∥∥∥
L1(Ω)

= 0.

Hence there exists a further subsequence, still denoted by
∫ 1

−1
σ(v)f ε∆t(t, x, v)dµ(v),

that converges almost everywhere to
∫ 1

−1
σ(v)f ε(t, x, v)dµ(v).

Step 5. Now we prove that the macroscopic quantities of f ε∆t converge to those of
f ε, and Mfε∆t

→Mfε .

Let ρε∆t(t, x) :=
∫ 1

−1
f ε∆tdµ(v), and Jε∆t(t, x) :=

∫ 1

−1
vf ε∆tdµ(v), then we have

from the results of Step 4 that

ρε∆t(t, x)→ ρε(t, x), Jε∆t(t, x)→ Jε(t, x), a.e. in Ω,

where ρε, Jε are the macroscopic quantities of f ε.
Set E := {(t, x)|ρε(t, x) > 0}. For any fixed (t, x) ∈ E, let

uε∆t(t, x) :=
Jε∆t(t, x)

ρε∆t(t, x)
→ Jε(t, x)

ρε(t, x)
= uε(t, x), a.e. in Ω ∩ E,

and obviously uε∆t, u
ε ∈ (−1, 1) by mean value theorem. Then we have the equilib-

rium state of f ε∆t

Mfε∆t(t,x,v) →Mfε(t,x,v) as ∆t→ 0, a.e. in (Ω ∩ E)× (−1, 1),

where Mfε are the equilibrium state of f ε.
For any (t, x) ∈ Ec, ρε = 0 and for any compact set K ⊂ Ω,∫

K

∫ 1

−1

|Mfε∆t(t,x,v) − 0|dµ(v)dxdt→ 0 as ∆t→ 0,

so we have

Mfε∆t(t,x,v) → 0, a.e. in (Ω ∩ Ec)× (−1, 1), as ∆t→ 0.

Finally, we arrive at

Mfε∆t(t,x,v) →Mfε(t,x,v) a.e. in Ω× (−1, 1), as ∆t→ 0.

Step 6. Now we prove that the approximate solution of (3.4) tends to weak solution
of (1.1).

In fact, from (3.4), for any smooth function φ(t, x, v) with compact support in
[0, T )× R× (−1, 1), we have∫ T

0

∫
R

∫ 1

−1

f ε∆t(φt + vφx)dµ(v)dxdt+

∫
R

∫ 1

−1

f0(x, v)φ(0, x, v)dµ(v)dx

+
1− e−∆t

ε

∆t

∑
k

∆t

∫
R

∫ 1

−1

(
Mfε∆t

(k∆t)− f ε∆t(k∆t)
)
φ(k∆t)dµ(v)dx

=0. (3.19)
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By Lemma 2.3 and the fact 0 ≤ t− [ t∆t ]∆t ≤ ∆t, we have that∣∣∣∑
k

∆t

∫
R

∫ 1

−1

(
Mfε∆t

− f ε∆t
)
φdµ(v)dx(k∆t)

−
∫ T

0

∫
R

∫ 1

−1

(
Mfε − f ε

)
φdµ(v)dxdt

∣∣∣
=
∣∣∣ ∫ T

0

∫
R

∫ 1

−1

(
Mfε∆t

− f ε∆t
)
([
t

∆t
]∆t, x, v)φ([

t

∆t
]∆t, x, v)−

(
Mfε∆t

− f ε∆t
)
(t, x, v)

× φ(t, x, v)dµ(v)dxdt
∣∣∣+
∣∣∣ ∫ T

0

∫
R

∫ 1

−1

(
Mfε∆t

− f ε∆t −Mfε + f ε
)
φdµ(v)dxdt

∣∣∣
→0.

Therefore, we have by passing ∆t to zero in (3.19) that∫ T

0

∫
R

∫ 1

−1

f ε
(
φt + vφx

)
dµ(v)dxdt+

∫
R

∫ 1

−1

f0(x, v)φ(0, x, v)dµ(v)dx

+
1

ε

∫ T

0

∫
R

∫ 1

−1

(
Mfε − f ε

)
φdµ(v)dxdt

=0.

The limiting function f ε is a weak solution of (1.1). The proof of Theorem 1.1 is
complete.

4. Approximate equation

We expect that f ε tends to Mfε as ε tends to 0, and the conservation laws∫ 1

−1

(
1

v

)(
∂tf

ε(t, x, v) + v∂xf
ε(t, x, v)

)
dµ(v) = 0 (4.1)

decay to the closed system of the compressible Euler equations (1.6) of gas-dynamics.
However, as stated in the introduction, it is difficult to obtain strong compactness.

For any fixed constant ζ > 0, define

D(t, x) :=

{
(t, x)

∣∣∣ ∫ 1

−1

(√
Mfε(t,x,v) −

√
f ε(t, x, v)

)2

dµ(v)

≥ζ
∫ 1

−1

(√
Mfε(t,x,v) +

√
f ε(t, x, v)

)2

dµ(v)

}
,

and consider the following modified equation:f εt + v∂xf
ε =

1

ε

(
Mfε − f ε

)
1D(t,x),

f ε(0, x, v) = f0(x, v),
(4.2)

where 1D represents the characteristic function of D. We still use f ε to denote the
solution of (4.2).

Proof of Theorem 1.2. We use three steps to prove the theorem.

Step 1. Weak compactness of f ε(t, x, v) and Mfε(t,x,v) in L1([0, T )×R× (−1, 1)).
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Multiply (ln f ε + 1) to (4.2), integrate with respect to v and x, then we have

d

dt

∫
R

∫ 1

−1

f ε(t, x, v) ln f ε(t, x, v)dµ(v)dx

+
1

ε

∫
(t,x)∈D(t,x)

∫ 1

−1

(
ln f ε(t, x, v)− lnMfε(t,x,v)

)
×
(
f ε(t, x, v)−Mfε(t,x,v)

)
dµ(v)dxdt

=0.

Using a similar method as in the proof of Theorem 1.1, we obtain estimates∫ T

0

∫
R

∫ 1

−1

(1 + |x|+ | ln f ε(t, x, v)|)f ε(t, x, v)dµ(v)dxdt ≤ C(f0(x, v), T ),∫ T

0

∫
R

∫ 1

−1

(1 + |x|+ | lnMfε(t,x,v)|)Mfε(t,x,v)dµ(v)dxdt ≤ C(f0(x, v), T ),

and the entropy inequality

1

ε

∫
(t,x)∈D(t,x)

∫ 1

−1

(ln f ε(t, x, v)− lnMfε(t,x,v))

× (f ε(t, x, v)−Mfε(t,x,v))dµ(v)dxdt

≤C(f0(x, v), T ).

From the entropy inequality we have

1

ε

∫
(t,x)∈D(t,x)

∫ 1

−1

(
√
f ε(t, x, v)−

√
Mfε(t,x,v))

2dµ(v)dxdt ≤ C(f0(x, v), T ).

From Dunford-Pettis theorem, we obtain f ε(t, x, v) and Mfε(t,x,v) are weakly com-
pact in L1([0, T )×R×(−1, 1)). Therefore, there exist subsequences of {f ε}, {Mfε},
still denoted using the same subscript, and functions f , g such that

f ε
w−⇀ f in L1([0, T )× R× (−1, 1)), as ε→ 0, (4.3)

Mfε
w−⇀ g in L1([0, T )× R× (−1, 1)), as ε→ 0. (4.4)

Step 2. Precompactness of
∫ 1

−1
σi(v)f ε(t, x, v)dµ(v) in L2

loc(Ω) for i = 0, 1.
Using the cutoff function χα defined in (3.14), we obtain∂tχα(f ε) + v∂xχα(f ε) =

1

ε
χ′α(f ε)

(
Mfε − f ε

)
1D(t,x),

χα(f ε(0, x, v)) = χα(f0(x, v)).
(4.5)

Due to the definition of D(t, x), the term on right hand side of (4.5) satisfies

1

ε

∫
(t,x)∈D(t,x)

∫ 1

−1

∣∣∣χ′α(f ε)(Mfε − f ε)
∣∣∣dµ(v)dxdt

≤1

ε

∫
(t,x)∈D(t,x)

∫ 1

−1

(√
Mfε −

√
f ε
)(√

Mfε +
√
f ε
)
dµ(v)dxdt
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≤1

ζ

1

ε

∫
(t,x)∈D(t,x)

∫ 1

−1

(√
f ε −

√
Mfε

)2

dµ(v)dxdt

≤1

ζ
C(f0(x, v), T ).

So it is bounded in L1
loc(Ω), hence precompact in W−1.p(Ω) for any 1 ≤ p < 2.

On the other hand, the left hand side of (4.5) is bounded in W−1,∞
loc (Ω) because

χα(f ε(t, x, v)) ∈ L∞(Ω× (−1, 1)). Therefore,∫ 1

−1

σ(v)
(
∂tχα(f ε) + v∂xχα(f ε)

)
dµ(v)

is precompact in H−1
loc (Ω).

By similar argument as in the proof of Theorem 1.1, it yields that

ρε =

∫ 1

−1

f εdµ(v)→
∫ 1

−1

fdµ(v) = ρ in L1
loc(Ω), as ε→ 0,

Jε =

∫ 1

−1

vf εdµ(v)→
∫ 1

−1

vfdµ(v) = J in L1
loc(Ω), as ε→ 0.

It is obvious that

ρεψ(uε)− ρψ(u) =(ρε − ρ)ψ(uε) + ρψ′(η)(uε − u)

=(ρε − ρ)ψ(uε) + (Jε − J)ψ′(η) + (ρε − ρ)uεψ′(η),

where ψ(uε), ψ′(η) and uε are uniformly bounded, and η lies between u and uε.
Therefore∫ 1

−1

v2Mfε(t,x,v)dµ(v) = ρεψ(uε)→ ρψ(u) =

∫ 1

−1

v2Mf(t,x,v)dµ(v), in L1
loc(Ω).

Step 3. To prove that ‖
∫ 1

−1
v2
(
Mf(t,x,v) − f(t, x, v)

)
dµ(v)‖L1

loc(Ω) ≤ Cζ.

In fact, ∥∥∥∫ 1

−1

v2
(
Mf − f

)
dµ(v)

∥∥∥
L1
loc(Ω)

≤
∥∥∥∫ 1

−1

v2
(
Mf(t,x,v) −Mfε(t,x,v)

)
dµ(v)

∥∥∥
L1
loc(Ω)

+
∥∥∥∫ 1

−1

v2
(
Mfε(t,x,v) − f ε(t, x, v)

)
dµ(v)

∥∥∥
L1
loc(Ω)

+
∥∥∥∫ 1

−1

v2
(
f ε(t, x, v)− f(t, x, v)

)
dµ(v)

∥∥∥
L1
loc(Ω)

.

From the precompactness of ∫ 1

−1

σ(v)f ε(t, x, v)dµ(v)
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in L1
loc(Ω), we have∥∥∥∫ 1

−1

v2
(
Mf(t,x,v) −Mfε(t,x,v)

)
dµ(v)

∥∥∥
L1
loc(Ω)

→ 0, as ε→ 0,

and ∥∥∥∫ 1

−1

v2
(
f ε(t, x, v)− f(t, x, v)

)
dµ(v)

∥∥∥
L1
loc(Ω)

→ 0, as ε→ 0.

For any compact set K ⊂ Ω,∫
K

∣∣∣ ∫ 1

−1

v2
(
Mfε(t,x,v) − f ε(t, x, v)

)
dµ(v)

∣∣∣dxdt
≤
∫
K∩D(t,x)

∣∣∣ ∫ 1

−1

v2
(
Mfε(t,x,v) − f ε(t, x, v)

)
dµ(v)

∣∣∣dxdt
+

∫
K∩Dc(t,x)

∣∣∣ ∫ 1

−1

v2
(
Mfε(t,x,v) − f ε(t, x, v)

)
dµ(v)

∣∣∣dxdt
=

1

ζ

∫
K∩D(t,x)

∣∣∣ ∫ 1

−1

(√
Mfε(t,x,v) −

√
f ε(t, x, v)

)2

dµ(v)
∣∣∣dxdt

+ ζ

∫
K∩Dc(t,x)

∣∣∣ ∫ 1

−1

(√
Mfε(t,x,v) +

√
f ε(t, x, v)

)2

dµ(v)
∣∣∣dxdt

≤Cζ as ε→ 0.

This completes the proof of Theorem 1.2.

Remark 4.1. In the last step of the above proof we can also obtain that∥∥∥∫ 1

−1

v2
(
Mf(t,x,v) − f(t, x, v)

)
dµ(v)

∥∥∥
L1(Ω)

≤ Cζ,

but what we consider is weak solutions of conservation laws, so it is enough to prove

‖
∫ 1

−1

v2
(
Mf(t,x,v) − f(t, x, v)

)
dµ(v)‖L1

loc(Ω) ≤ Cζ.
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