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A MODIFIED BLOCK PRECONDITIONER
FOR COMPLEX SYMMETRIC INDEFINITE

LINEAR SYSTEMS∗

Wenbin Bao1,† and Shuxin Miao2

Abstract To solve the real equivalent 2 × 2 block linear system of complex
symmetric indefinite linear systems, by introducing a preconditioning matrix
in the NB preconditioner (which was proposed in [Numerical Algorithm, 74
(2017) 889-903]), a modified block preconditioner is proposed. Compared with
the NB one, when choose a suitable preconditioning matrix for the new pre-
conditioner to get faster convergence than the NB preconditioner. The uncon-
ditional convergence of the new iteration method is discussed. The eigenvalue
distribution and an upper bound of the degree of the minimal polynomial of
the preconditioned matrix are given. Finally, a numerical example is carried
out to demonstrate the effectiveness and robustness of the proposed precondi-
tioner.
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1. Introduction

We consider the following large sparse nonsingular complex symmetric linear sys-
tems

(W + iT )(x− iy) = g + if, (1.1)

where W ∈ Rn×n is symmetric indefinite and T ∈ Rn×n is symmetric positive
definite, the vectors x, y, f, g ∈ Rn and i =

√
−1. Such complex linear system

(1.1) has varied applications in sciences and engineering, such as diffuse optical
tomography [1], the frequency analysis of linear mechanical systems [19], electrical
power system modeling [21] and so on; see [2–4,11,12,23,25] and references therein
for other applications.

In order to avoid the complex arithmetic, one approach is to deal with one
of the several real equivalent formulations of complex linear system (1.1), see for
example [2–4,9–11,18,20,24–26,30,32]. We can transform the complex linear system
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(1.1) into the following real 2× 2 block system [2,17,25]:

Au =

 T −W
W T

x
y

 =

 f
g

 = b. (1.2)

Since the structure is large and sparse of coefficient matrix A of the 2×2 block linear
system (1.2), the direct methods may destroy the sparsity of the coefficient matrix
A, increase the storage capacity of the computer, and reduce the computational
efficiency, which is not conducive to the solution of the practical problems. In
order to solve the system (1.2) effectively and fast, scholars made fully utilize the
sparsity of coefficient matrix A and proposed Krylov subspace iterative method
(such as GMRES [28]), it is very competitive than other methods. The reason is
that their computational processes involve only the product between the vector and
the coefficient matrix.

As we known, an efficient preconditioner can improve the computational ef-
ficiency of the preconditioned Krylov subspace iteration methods. Therefore, in
recent years, many research works have been developed to various efficient precon-
ditioners. Based on the HSS iteration method [7], the HSS iteration scheme that
may be suitable for solving the real equivalent 2 × 2 block linear system (1.2), as
follows 

αI + T 0

0 αI + T

xk+ 1
2

yk+ 1
2

 =

 αI W

−W αI

xk
yk

+

 f
g

 ,αI −W
W αI

xk+1

yk+1

 =

αI − T 0

0 αI − T

xk+ 1
2

yk+ 1
2

+

 f
g

 ,
(1.3)

where k = 0, 1, 2, · · · , one can deduce that the HSS preconditioner for (1.2) is

PHSS =
1

2α

αI + T 0

0 αI + T

αI −W
W αI

 =
1

2

 αI + T − 1
α (αI + T )W

1
α (αI + T )W αI + T

 ,
(1.4)

where α > 0 is a real parameter. The difference between PHSS and A is given by

QHSS = PHSS −A =
1

2

 αI − T 1
α (αI − T )W

− 1
α (αI − T )W αI − T

 , (1.5)

theoretical analysis shows that all eigenvalues of the HSS preconditioned matrix
P−1
HSSA are located in a circle centered at (1,0) with radius strictly less than one.

Recently, Shen and Shi [29] by simply switching positions of some sub-matrices of
the HSS preconditioner PHSS (1.4), proposed a new variant of the HSS (VHSS)
preconditioner as follows

PV HSS =
1

2α

αI + T 0

0 2αI

αI −W
W T

 =
1

2

αI + T − 1
α (αI + T )W

2W 2T

 . (1.6)
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From (1.6) and (1.2), we get the difference matrices

QV HSS = PV HSS −A =
1

2

αI − T 1
α (αI − T )W

0 0

 . (1.7)

The preconditioner PV HSS improves the performance of the HSS preconditioner
PHSS . In order to obtain a better approximation to the coefficient matrix A,
based on the relaxed techniques, Zhang and Dai [31] presented a new block (NB)
preconditioner

PNB =
1

α

αI −W
W T

αI + T 0

0 αI

 =

 αI + T −W

W
(
I + 1

αT
)

T

 (1.8)

for the 2×2 block linear system (1.2), theoretical analysis shows that all eigenvalues
of the new block preconditioned matrix P−1

NBA are located in the interval (0,1]. From
(1.8), we have

QNB = PNB −A =

 αI 0

1
αWT 0

 . (1.9)

It is easy to observe that the VHSS preconditioner PV HSS and NB preconditioner
PNB may be better approximation to the coefficient matrix A than the HSS pre-
conditioner PHSS .

To further generalize the NB preconditioner and accelerate its preconditioning
efficiency, in this paper, we propose a new modified NB preconditioner for the 2× 2
block linear system (1.2). The proposed preconditioner is obtained by introducing a
preconditioned matrix in the NB preconditioner PNB . We study the spectral prop-
erties, the eigenvalues, the eigenvector distribution and the degree of the minimal
polynomial of the corresponding new preconditioned matrix. The remainder of the
present paper is organized as follows. In Section 2, we propose the new precon-
ditioner and analyze the spectral radius of the iteration matrix. In Section 3, we
discuss some properties of the new preconditioned matrix and the implementation
details. A numerical example is given to show the effectiveness and robustness of
the proposed new preconditioner in Section 4. Finally, we end this paper with some
conclusions in Section 5.

2. The proposed new preconditioner

In this section, we present a new modified NB preconditioner (MNB) for the 2× 2
block linear system (1.2). It is known that the preconditioning strategy can improve
the computational efficiency of a preconditioner [16], so the new preconditioner is
defined as follows

PMNB =
1

α

 αI −W

WP−1 T

αP + T 0

0 αI

 =

 αP + T −W

W (I + 1
αP
−1T ) T

 , (2.1)

where P ∈ Rn×n is symmetric positive definite preconditioning matrix. If P = I,
then the MNB precontioner PMNB becomes the NB preconditioner PNB (1.8). In
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actual computation, the matrix P can be specially chosen so that the computation
cost is as little as possible. The difference between PMNB and A is given by

QMNB = PMNB −A =

 αP 0

1
αWP−1T 0

 . (2.2)

Compared QMNB with QNB , when choose a suitable symmetric positive definite
matrix P for the PMNB preconditioner, we can see that the MNB preconditioner
PMNB (2.1) is a better approximation to the 2×2 block real matrix A than the NB
preconditioner PNB (1.8).

Actually, the MNB preconditioner PMNB is induced by the following matrix
splitting:

A = PMNB −QMNB =

 αP + T −W

W (I + 1
αP
−1T ) T

−
 αP 0

1
αWP−1T 0

 , (2.3)

which produces the following MNB stationary iteration method.

Method 2.1. (The MNB Iteration Method). Let α be a given positive constant andx(0)

y(0)

 be an initial guess vector. For k = 0, 1, 2, · · · , until the iteration sequence

x(k)

y(k)

 converges, compute

 αP + T −W

W (I + 1
αP
−1T ) T

x(k+1)

y(k+1)

 =

 αP 0

1
αWP−1T 0

x(k)

y(k)

+

 f
g

 . (2.4)

Hence the MNB iteration method can be written in the following fixed-point
form x(k+1)

y(k+1)

 = P−1
MNBQMNB

x(k)

y(k)

+ P−1
MNB

 f
g

 , (2.5)

where

R(α) = P−1
MNBQMNB =

 αP + T −W

W (I + 1
αP
−1T ) T

−1  αP 0

1
αWP−1T 0

 (2.6)

is the iteration matrix of the MNB iteration method.
ρ(Γ) denotes the spectral radius of the matrix Γ. It is known that the itera-

tion method (2.4) converges if the spectral radius of the iteration matrix R(α) =
P−1
MNBQMNB satisfies ρ (R (α)) < 1. Now we discuss the unconditional convergence

theory of the MNB iteration method in the following Theorem 2.1.

Lemma 2.1. [8] Let VQ = (αI +Q)
−1

(αI −Q) and α > 0 is a positive real
constant. If Q ∈ Rn×n is a symmetric positive semi-definite matrix, then ‖VQ‖2 ≤
1. Furthermore, If Q ∈ Rn×n is a symmetric positive definite matrix, then ‖VQ‖2 <
1.
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Theorem 2.1. Assume that W ∈ Rn×n is a symmetric indefinite matrix, T ∈
Rn×n is a symmetric positive definite matrix and α > 0 is a positive real constant.
Assume that the preconditioning matrix P is symmetric positive definite, then the
MNB iteration method is convergent unconditionally to the exact solution of the
block two-by-two real linear system (1.2).

Proof. From the iteration scheme (2.5), we have

R(α) = P−1
MNBQMNB

= α

 αP + T −W

W
(
I + 1

αP
−1T

)
T

−1  αP 0

1
αWP−1T 0


= α

αP + T 0

0 αI

−1  αI −W

WP−1 T

−1  αP 0

1
αWP−1T 0


=

 α (αP + T )
−1
P + (αP + T )

−1
WX 0(

T + 1
αWP−1W

)−1 ( 1
αWP−1T −W

)
0


=

 (αP + T )
−1

(αP +WX) 0

X 0

 ,
where X =

(
T + 1

αWP−1W
)−1

W
(

1
αP
−1T − I

)
. Hence, for any α > 0, in order to

prove ρ (R (α)) < 1, we only need to verify ρ
(

(αP + T )
−1

(αP +WX)
)
< 1. Since

T is symmetric positive definite, the matrix (αP + T )−1 (αP +WX) is similar

to
(
αI + T̂

)−1
[
αI + Ŵ

(
T̂ + 1

αŴ
2
)−1

Ŵ
(

1
α T̂ − I

)]
with T̂ = P−

1
2TP−

1
2 and

Ŵ = P−
1
2WP−

1
2 .

By making use of the Sherman-Morrison-Woodbury formula, it has(
T̂ +

1

α
Ŵ 2

)−1

= T̂−1 − T̂−1Ŵ
(
αI + Ŵ T̂−1Ŵ

)−1

T̂−1Ŵ .

Hence, we have

T =
(
αI + T̂

)−1
[
αI + Ŵ

(
T̂ +

1

α
Ŵ 2

)−1

Ŵ

(
1

α
T̂ − I

)]

=
(
αI + T̂

)−1 (
αI + Ŵ T̂−1Ŵ

)−1 (
α2I + Ŵ T̂−1Ŵ T̂

)
which is similar to the matrix

T̂ =
(
αI + Ŵ T̂−1Ŵ

)−1 (
α2I + Ŵ T̂−1Ŵ T̂

)(
αI + T̂

)−1

.

By adopting the technique applied of [15], we have

T̂ =
(
αI + Ŵ T̂−1Ŵ

)−1 (
α2I + Ŵ T̂−1Ŵ T̂

)(
αI + T̂

)−1
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=
1

2

(
αI + Ŵ T̂−1Ŵ

)−1 (
αI + Ŵ T̂−1Ŵ

)(
αI + T̂

)(
αI + T̂

)−1

+
1

2

(
αI + Ŵ T̂−1Ŵ

)−1 (
αI − Ŵ T̂−1Ŵ

)(
αI − T̂

)(
αI + T̂

)−1

=
1

2

[
I +

(
αI + Ŵ T̂−1Ŵ

)−1 (
αI − Ŵ T̂−1Ŵ

)(
αI − T̂

)(
αI + T̂

)−1
]
.

Then we can consider the spectral radius of the matrix T̂ , such that

ρ
(
T̂
)
≤ 1

2

[
I + ρ

((
αI + Ŵ T̂−1Ŵ

)−1 (
αI − Ŵ T̂−1Ŵ

)(
αI − T̂

)(
αI + T̂

)−1
)]

≤ 1

2

[
I + ‖

(
αI + Ŵ T̂−1Ŵ

)−1 (
αI − Ŵ T̂−1Ŵ

)(
αI − T̂

)(
αI + T̂

)−1

‖2
]

≤ 1

2

[
I + ‖

(
αI + Ŵ T̂−1Ŵ

)−1 (
αI − Ŵ T̂−1Ŵ

)
‖2‖

(
αI − T̂

)(
αI + T̂

)−1

‖2
]
.

Since both matrices T̂ and Ŵ T̂−1Ŵ are positive semidefinite and positive defi-

nite, respectively. According to Lemma 2.1, it has ‖
(
αI − T̂

)(
αI + T̂

)−1

‖2 =

‖
(
αI + T̂

)−1 (
αI − T̂

)
‖2 < 1 and ‖

(
αI + Ŵ T̂−1Ŵ

)−1 (
αI − Ŵ T̂−1Ŵ

)
‖2 ≤ 1

for any α > 0, so that

‖
(
αI + Ŵ T̂−1Ŵ

)−1 (
αI − Ŵ T̂−1Ŵ

)(
αI − T̂

)(
αI + T̂

)−1

‖2 < 1, ∀α > 0.

As a result, we have ρ (R(α)) = ρ
(
T̂
)
< 1, which demonstrates the unconditional

convergence of the MNB iteration method.
According to the Theorem 2.1, we know that if α > 0, the MNB iteration method

converges unconditionally.

3. Theoretical analysis of the preconditioned ma-
trix

In this section, we discuss some properties of the preconditioned matrix P−1
MNBA,

give an upper bound of the degree of the minimal polynomial and discuss upon some
computational aspects of the preconditioner PMNB . Based on Theorem 2.1, the
following theorem describes the eigenvalue distribution of the MNB preconditioned
matrix P−1

MNBA.

Theorem 3.1. Assume that the conditions of Theorem 2.1 are satisfied, then for
the preconditioned matrix P−1

MNBA, the following results hold.

(i) P−1
MNBA has an eigenvalue 1 with multiplicity at least n;

(ii) the remaining eigenvalues are the eigenvalues of the matrix

Y = (αP + T )
−1
[
T −W

(
αT +WP−1W

)−1
W
(
P−1T − αI

)]
and located in (0, 1).
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Proof. It follows from (2.2) and (3.5) that

P−1
MNBA = P−1

MNB (PMNB −QMNB)

= I − P−1
MNBQMNB

= I −

 α (αP + T )
−1
P + (αP + T )

−1
WX 0(

T + 1
αWP−1W

)−1 ( 1
αWP−1T −W

)
0


=

 I − α (αP + T )
−1
P − (αP + T )

−1
WX 0

−
(
T + 1

αWP−1W
)−1 ( 1

αWP−1T −W
)
I


=

 Y 0

−X I

 , (3.1)

where X =
(
T + 1

αWP−1W
)−1

W
(

1
αP
−1T − I

)
. So, the expression of P−1

MNBA
in (3.1) implies that it has an eigenvalue 1 with multiplicity at least n and the
remaining eigenvalues are the same as those of the matrix Y.

Moreover, the matrix Y is similar to

Ŷ =
(
αI + T̂

)−1
[
T̂ − Ŵ

(
αT̂ + Ŵ 2

)−1

Ŵ
(
T̂ − αI

)]
with T̂ = P−

1
2TP−

1
2 and Ŵ = P−

1
2WP−

1
2 . As T̂ and Ŵ are symmetric positive

definite and symmetric indefinite, respectively, it follows from [31, Theorem 1] that

the eigenvalues of Ŷ are located in (0, 1). Hence, the eigenvalues of Y are located
in (0, 1).

Owing to the fact that the convergence of Krylov subspace methods is not only
dependent on the eigenvalue distribution of the preconditioned matrix, but also on
the corresponding eigenvectors of the preconditioned matrix [5, 6, 27]. Let rank(·)
and range(·) denote the rank and the range space of the corresponding matrix,
respectively. We discuss the eigenvector distribution of the preconditioned matrix
P−1
MNBA in the following theorem.

Theorem 3.2. Let the MNB preconditioner PMNB be defined as in (2.1). Assume
that the conditions of Theorem 2.1 are satisfied, then the preconditioned matrix
P−1
MNBA has n+ j (0 ≤ j ≤ n) linearly independent eigenvectors. There are

(1) n linearly independent eigenvectors

 0

vl

 (l = 1, · · · , n) corresponding to the

eigenvalue 1, where vl (l = 1, · · · , n) are arbitrary linearly independent vec-
tors.

(2) j (0 ≤ j ≤ n) linearly independent eigenvectors

uζl
vζl

 (1 ≤ l ≤ jζ) cor-

responding to the nonunit eigenvalues ζ 6= 1, where uζl (1 ≤ l ≤ jζ) sat-

isfies
[
T +W

(
αT +WP−1W

)−1
W
(
P−1T − αI

)]
uζl = ζ (αP + T )uζl and

vζl (1 ≤ l ≤ jζ) satisfies vζl = 1
ζ−1

(
αT +WP−1W

)−1
W
(
αI − P−1T

)
uζl .
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Proof. Let ζ be an eigenvalue of the preconditioned matrix P−1
MNBA and

u
v


be the corresponding eigenvector. From (3.1), this is equivalent to

u
v

 6= 0, and

we have  Y 0

−X I

u
v

 = ζ

u
v

 ,
or, equivalently,

[
T −W

(
αT +WP−1W

)−1
W
(
P−1T − αI

)]
u = ζ (αP + T )u,(

αT +WP−1W
)−1

W
(
αI − P−1T

)
u = (ζ − 1) v.

(3.2)

If ζ = 1, then the second equation of (3.2) becomes W
(
αI − P−1T

)
u = 0.

Substituting W
(
αI − P−1T

)
u = 0 into the first equation of (3.2), we have αPu =

0. As α > 0 and P is nonsingular, αPu = 0 leads to u = 0. Hence, there

are n linearly independent eigenvectors

 0

vl

 (l = 1, · · · , n) corresponding to the

eigenvalue 1, where vl (l = 1, · · · , n) are arbitrary linearly independent vectors.
If ζ 6= 1, it follows from the second equation of (3.2) that

v =
1

ζ − 1

(
αT +WP−1W

)−1
W
(
αI − P−1T

)
u. (3.3)

In this case u 6= 0, for otherwise, we have v = 0 from (3.3), which contradicts withu
v

 being an eigenvector. If there exists u 6= 0 such that the first equation in

(3.2) is satisfied, then there will be j (0 ≤ j ≤ n) linearly independent eigenvectorsuζl
vζl

 (1 ≤ l ≤ jζ) corresponding to the eigenvalues ζ 6= 1, where uζl (1 ≤ l ≤ jζ)

satisfies
[
T −W

(
αT +WP−1W

)−1
W
(
P−1T − αI

)]
uζl = ζ (αP + T )uζl and

vζl (1 ≤ l ≤ jζ) satisfies (3.3).
Finally, we prove that the n+ j eigenvectors are linearly independent.
The proof of this theorem is completed.
In the following, we obtain an upper bound of the degree of the minimal polyno-

mial of the preconditioned matrix P−1
MNBA. It is well known that Krylov subspace

theory states that iteration with any method of optimality property [27] in ex-
act arithmetic will terminate as soon as the degree of the minimal polynomial is
attained.

Theorem 3.3. Let the MNB preconditioner PMNB be defined as in (2.1). Assume
that the conditions of Theorem 2.1 are satisfied, then the degree of the minimal
polynomial of the preconditioned matrix P−1

MNBA is at most n+ 1.
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Proof. It follows from (3.1) that the preconditioned matrix P−1
MNBA has the form

P−1
MNBA =

 Y 0

−X I

 .
Let µi(i = 1, · · · , n) be the eigenvalues of the matrix Y. Then the characteristic

polynomial of the preconditioned matrix P−1
MNBA is

ΦP−1
MNBA

(µ) = (µ− 1)
n

n∏
i=1

(µ− µi) .

Let Ψ (µ) = (µ− 1)
∏n
i=1 (µ− µi), then

Ψ
(
P−1
MNBA

)
=
(
P−1
MNBA− I

) n∏
i=1

(
P−1
MNBA− µiI

)
=

 (Y − I)
∏n
i=1 (Y − µiI) 0

−X
∏n
i=1 (Y − µiI) 0

 .
It follows from Hamilton-Caylay theorem that

∏n
i=1 (Y − µiI) = 0. Therefore, the

degree of the minimal polynomial of the preconditioned matrix P−1
MNBA is at most

n+ 1.
Next, we discuss upon some computational aspects of the preconditioner PMNB .

At each step of the MNB iteration method 2.1 or applying PMNB within a Krylov
subspace method, we need to solve the following linear system:

1

α

 αI −W

WP−1 T

αP + T 0

0 αI

 z1

z2

 =

 r1

r2

 , (3.4)

where [zT1 , z
T
2 ]T and [rT1 , r

T
2 ]T are the current and the generalized residual vectors,

respectively. It is easy to verify that αI −W

WP−1 T

−1

=

 I 1
α
W

0 I

 1
α
I 0

0
(
T + 1

α
WP−1W

)−1

 I 0

− 1
α
WP−1 I

 . (3.5)

Therefore, we can obtain the following algorithm to solve the generalized residual
equation (3.4).

Algorithm 3.1. For a given generalized residual vector [rT1 , r
T
2 ]T , the current

vector [zT1 , z
T
2 ]T is computed by the following steps:

(i) compute u1 = r2 − 1
αWP−1r1;

(ii) solve
(
T + 1

αWP−1W
)
z2 = u1;

(iii) compute u2 = r1 +Wz2;

(iv) solve (αP + T ) z1 = u2.
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From Algorithm 3.1, it is known that at each iteration step, it is required to
solve two linear subsystems with coefficient matrices T + 1

αWP−1W and αP + T .
Since the matrix T + 1

αWP−1W and αP + T are symmetric positive definite for
all α > 0. Therefore, the conjugate gradient (CG) or the preconditioned conjugate
gradient (PCG) method can be employed to solve the sub-system of linear equations
with the coefficient matrix T + 1

αWP−1W by a prescribed accuracy in practice. In
addition, the sub-linear equations with the coefficient matrix T + 1

αWP−1W can
also be solved by some iterative methods such as the Cholesky or LU factorization
in combination with AMD or column AMD reordering [13].

4. Numerical experiments

In this section, a numerical example is presented to illustrate the feasibility and
effectiveness of the proposed MNB iteration method and the MNB preconditioner
for the equivalent real block two-by-two linear system (1.2). To demonstrate the
advantages of the MNB preconditioner over the HSS preconditioner [7], the VHSS
preconditioner [29] and the NB preconditioner [31], we compare these iteration
methods from aspects of the number of iteration steps (denoted by “IT”) and the
elapsed CPU times in seconds (denoted by “CPU”). In actual implementations, the
initial guess is chosen to be the zero vector and the iteration is terminated once

the current residuals satisfies RES = ‖b−Au‖2
‖b‖2 ≤ 10−6 or the number of iteration

steps exceeds kmax = 1500. In additional, all codes are run in MATLAB (version
R2016b) in double precision and all experiments are performed on an Intel Core
(i3-2310M CPU, 6G RAM) Windows 7 system.

We know that the convergent rate of Krylov subspace methods with an ideal
preconditioner should be dependent of the suitable selection of the parameter α.
Choosing an optimal parameter α to implement the preconditioner PMNB is defi-
nitely important in actual computation. Enlightened by the idea of [22], we inves-
tigate the choice for the parameter α of PMNB by minimizing the Frobenius norm
of the difference between PMNB and A.

The Frobenius norm of QMNB is

‖QMNB‖F =

∥∥∥∥∥∥
 αP 0

1
αWP−1T 0

∥∥∥∥∥∥
F

= α2tr
(
P 2
)

+
1

α2
tr
(
TP−1W 2P−1T

)
= min, (4.1)

where tr(·) denotes the trace of a given matrix. Then, from (4.1) we obtain the
parameter

αMNB =

(
tr(TP−1W 2P−1T )

tr(P 2)

) 1
4

(4.2)

for the MNB preconditioner PMNB .
Similarly, the parameters α in different preconditioners are selected by the ways

• for the HSS preconditioner [7, Corollary 2.3]:

αHSS =
√
µminµmax;
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Table 1. Parameters α for Example 4.1

Grids 8× 8 16× 16 32× 32 48× 48

αHSS 1.5303 0.8194 0.4235 0.2854

αNB 2.7734 4.2550 4.8735 4.9920

αV HSS 1.5303 0.8194 0.4235 0.2854

αMNB 8.1041 8.1544 9.5218 9.7848

• for the VHSS preconditioner [29, Theorem 3.3]:

αV HSS =
√
µminµmax;

• for the NB preconditioner [31]:

αNB =

(
tr(TW 2T )

n

) 1
4

.

Here µmin and µmax are the smallest and the largest eigenvalues of the symmetric
positive definite matrix T .

Example 4.1. Let the submatrices in A be given by W = − (3−
√

3)ω2

(m+1)2
I + I ⊗Vm +

Vm ⊗ I and T =
(3+
√

3)τ2

(m+1)2
I + I ⊗ Vm + Vm ⊗ I, where ω and τ are two positive

parameters, and Vm = 1
h2 tridiag (−1, 2, − 1) ∈ Rm×m.

In fact, the submatrices W and T arise from the complex symmetric linear
system [(

K −
(

3−
√

3
)
ω2I

)
+ i
(
K + (3 +

√
3)τ2I

)]
z = c,

where K is the five-point center difference matrix approximating the negative Lapla-
cian operator with homogeneous Dirichlet boundary conditions, on a uniform mesh
in the unit square [0, 1] × [0, 1] with the mesh-size h = 1

m+1 , and has the form
K = I ⊗ Vm + Vm ⊗ I, see [14,25,31] for more details.

It was shown [29] that the matrix T is symmetric positive definite, and the
matrix W is symmetric indefinite when

2 (m+ 1)

√
1− cos π

m+1

3−
√

3
< ω < 2 (m+ 1)

√
1− cos mπ

m+1

3−
√

3
.

In actual computations, we take grids m = 8, 16, 32, 48, and set ω = 20 and
τ = 1, which leads to symmetric indefinite matrices W . We set the preconditioning
matrix P in the MNB preconditioner as P = 1

10T . The parameters αHSS , αV HSS ,
αNB and αMNB for Example 4.1 are listed in Table 1.

In Table 2, we report the numerical results of the preconditioned GMRES meth-
ods for Example 4.1, in which, “I”denotes the GMRES method without precondi-
tioning.

In Figure 1, the residual curves of these preconditioned GMRES iteration meth-
ods for 32× 32 grids and 48× 48 grids are plotted.
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Table 2. Numerical results for Example 4.1

Preconditioners 8 16 32 48

IT 19 48 139 243

I CPU 0.5430 0.0466 0.3964 2.1481

RES 6.0975e-7 5.9261e-7 9.8885e-7 9.8990e-7

IT 14 30 46 58

PHSS CPU 0.1112 0.0343 0.1742 0.4973

RES 5.0855 9.1730e-7 8.5704e-7 9.6066e-7

IT 7 11 19 26

PNB CPU 0.0580 0.0171 0.0504 0.2002

RES 5.9350e-7 2.3300e-7 8.0364e-7 9.2139e-7

IT 7 12 18 21

PV HSS CPU 0.0067 0.0211 0.0539 0.1531

RES 7.7071e-7 6.5798e-7 6.3403e-7 9.9609e-7

IT 6 7 5 5

PMNB CPU 0.0056 0.0090 0.0357 0.1077

RES 9.0508e-7 6.7195e-7 6.8945e-7 4.0270e-7

From Table 2 and Figure 1, we can see that all the HSS, the VHSS, the NB
and the MNB preconditioners improve computing efficiency of the original GMRES
method greatly. The iteration steps indicate that the MNB preconditioned GMRES
method returns better results than the VHSS, the NB and the HSS preconditioned
GMRES methods. In addition, the numbers of iteration steps of the MNB precon-
ditioned GMRES method grow slower with the grid size than those of the HSS, the
VHSS and the NB preconditioned GMRES methods.

To further show the efficiency of the proposed MNB preconditioner, a typical
eigenvalues distribution (32×32 grids) of the HSS preconditioned matrix, the VHSS
preconditioned matrix, the NB preconditioned matrix and the MNB preconditioned
matrix are plotted in Figure 2.
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Figure 1. Residual curves of different preconditioned iteration methods for Example 4.1: 32× 32 grids
(left) and 48× 48 grids (right)
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Figure 2. The eigenvalue distributions of preconditioned matrices for Example 4.1

From Figure 2, we can see that both the eigenvalues of the HSS preconditioned
matrix, the VHSS preconditioned matrix, the NB preconditioned matrix and the
MNB preconditioned matrix are located in a circle centered at (1, 0) with radius
strictly less than 1. Moreover, the eigenvalues of the MNB preconditioned matrix
are more clustered than that of the HSS preconditioned matrix, the VHSS precon-
ditioned matrix and the NB preconditioned matrix.

5. Concluding remarks

By applying matrix preconditioning and relaxation techniques, based on the NB
preconditioner, we proposed a new modified block preconditioner for a class of 2×2
block linear systems. When choose a suitable symmetric positive definite matrix P
for the new preconditioner, we observe that the new preconditioner may be better
approximation to the coefficient matrix A than the NB preconditioner. The conver-
gence theories for the new iteration method and some properties of the proposed new
preconditioned matrix were studied. Finally, a numerical example with a particular
choice of the preconditioning matrix P showed that our proposed the new precondi-
tioner outperforms the existing HSS preconditioner, the VHSS preconditioner and
the NB preconditioner. However, in order to improve the computational efficiency
of the new preconditioner, searching a more efficient preconditioning matrix P and
the optimal parameter α is a further work for us.
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