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Abstract In this manuscript, the Landau-Ginzburg-Higgs (LGH) equation
is considered as an investigating model. To extract novel results from the
governing equation, the G′/(bG′ + G + a)-expansion approach has been em-
ployed. Utilizing this approach, the outcomes are attained as hyperbolic and
trigonometric functions. Kink, periodic and singular soliton solutions have
been recovered by selecting the appropriate values for the parameters. The
obtained findings for the LGH equation are displayed in 3-D, contour and 2-D
profiles. Using Galilean transformation, the model is converted into a planar
dynamical system, and qualitative analysis is investigated. Moreover, chaotic
and quasi-periodic patterns have been addressed after including the perturbed
term. Simulated results reveal that by modifying amplitude and frequency
parameters, the dynamic behavior of the system can also be changed. The
recorded results are novel and show the effectiveness and feasibility of the sug-
gested technique for assessing soliton solutions and phase visualizations for
different nonlinear models.
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1. Introduction

In many scientific domains, nonlinear partial differential equations (NLPDEs) are
beneficial in simulating complicated events that describe our day-to-day challenges.
The use of nonlinear models has become increasingly pervasive in the fields of math-
ematics and engineering. The NLPDE covers an extensive variety of phenomena in
nonlinear optics [39], plasma physics [1], population ecology [14], electromagnetic
interactivity in plasma [38], and quantum theory [8]. Finding trustworthy analyti-
cal solutions for the NLPDE is a crucial research area since exact solutions capture
the physical characteristics of nonlinear systems. A variety of potent techniques
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have been implemented to retrieve analytical solutions for NLPDEs; a few of them
are the homotopy perturbation technique [17], Sardar sub-equation approach [29],
residual power series technique [32], q-homotopy analysis approach [7], and Ado-
mian decomposition approach [3].

The construction of soliton wave solutions for a broad range of NLPDEs has
been exciting and inconceivable over the past few years. John Scott Russell’s in-
spection of the translational wave marks the beginning of the history of solitons.
Before Russell’s theory was ultimately validated in the 1870s, eminent researchers
and philosophers lauded its implications for science. In his 1872 research, Boussi-
nesq widely used and anticipated key ideas that are still used today by futuristic
scientists and thinkers. On the water wave equation, Boussinesq presented his per-
spective. His analysis reveals that the movement may be duplex as a result. Yet,
the work of Boussinesq and Rayleigh continues to demonstrate the crucial prob-
lems of non-linearity and dispersion. Boussinesq’s contribution was significant as it
established the groundwork for constructing soliton wave solutions applicable to a
wide range of NLPDEs. Optical solitons [15] are the basic molecules that keep the
communications sector afloat. These underlying molecules provide the rules for how
the internet industry, social networking sites, and other areas operate [16], [24].

Several strategies, including power series approach [34], F-expansion method
[37], Hirota bilinear approach [2], Kudryashov approach [36] and many others [4,13,
26–28,35] have been designed to guarantee precise analytical solutions for NLPDEs
in order to locate soliton solutions.

Investigating the LGH model is our primary goal in order to find soliton so-
lutions. The Landau-Ginzburg-Higgs model has applications in several scientific
and technical disciplines, including fiber optics, fluid mechanics, and chemical ki-
netics, among others. The LGH model has been examined using a few different
techniques in the literature. Islam and Akbar [21] derived stable wave solutions to
the LGH equation employing the improved Bernoulli sub-equation function tech-
nique (IBSEF); Iftikhar et al. [20] analyzed the LGH equation to extract traveling
wave solutions; Ahmad et al. [5] obtained new precise results of the LGH equation
utilizing the power index approach; Ali et al. [9] obtained traveling wave solutions
for the LGH model employing inverse scattering transformation method; and As-
jad et al. [12] analyzed the LGH model by using the generalized projective Riccati
method to obtain soliton solutions.

To our knowledge, the LGH equation has not been scrutinized employing the
G′/(bG′ + G + a)-expansion approach [18] in previous literature. The purpose
of this article is to employ the G′/(bG′ + G + a)-expansion technique to extract
analytical solutions for the LGH model. The current methodology offers certain
benefits over earlier examined methodologies, as solutions are produced in a more
general and explicit form, such as trigonometric functions and hyperbolic functions.
The findings are graphically depicted in 3-D, contour, and 2-D plots for particular
values of the involved parameters.

Employing chaos and bifurcation analysis to investigate differential equations
(DEs) has been a renowned research field in recent years. These domains are re-
garded as useful tools for comprehending any physical process that is regulated by
a DE. These nonlinear phenomena have been addressed in the field of engineering,
ecology, telecommunications, and many others [22, 25, 30]. Time series, phase di-
agrams, and Poincaré maps are frequently employed methods when investigating
dynamics of disturbed system and its chaotic nature [6].
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• Phase Plots: Phase plots offer a graphical depiction of how a dynamic system
behaves. They entail graphing one state variable against another. Analyzing the
structure of the resulting graph can provide us with valuable information about the
dynamics of the system, including its regularity, periodicity, or tendency towards
chaos.
• Time Series A time series is a collection of data points gathered sequentially

over a period of time. In this technique, the systemÂ’s state variables are examined,
and if they display random or unpredictable patterns, it is labeled as chaotic. On
the other hand, if the variables demonstrate fixed point, periodic, or quasi-periodic
behavior, they are considered non chaotic.
• Poincaré Maps Poincaré maps represent a specialized form of phase plot,

concentrating on the points where the system trajectory intersects a specific sur-
face or plane. Instead of plotting the whole trajectory, we concentrate solely on
the instances it crosses the surface. This map furnishes essential insights into the
system’s characteristics, such as periodic patterns, stable regions, and the presence
of bifurcations.

To our knowledge, the chaotic and qualitative analysis of the LGH model has
not been examined in prior studies. Recently, Kazmi et al. [23] investigated the q-
deformed Sinh-Gordon model by using bifurcation and chaos theory and obtained
traveling wave solutions. Salman et al. [31] analyzed the bifurcation of the nonlinear
Schrodinger equation and extracted soliton solutions. Alotaibi et al. [11] used bifur-
cation and chaotic patterns of the Fokas system to retrieve solitary wave solutions.
Some captivating and recent work in this domain can be viewed in [33] and [10].
For bifurcation and chaotic behavior, phase portraits have been displayed with the
aid of the mathematical application MATLAB.

The layout of the article is as follows: The Investigative Model is discussed
in Section 2. Section 3 provides a complete overview of the suggested technique.
Analytical solutions of the model under study are presented in Section 4, along
with graphical representations. Section 5 is reserved for results and discussion.
Qualitative analysis of the model is analyzed in section 6. The quasi-periodic and
chaotic pattern are addressed in Section 7, and Section 8 deals with concluding
remarks.

2. Investigating model

The Landau-Ginzburg-Higgs equation [19] is written as:

∂2V

∂x2
− ∂2V

∂t2
− d2V + e2V 3 = 0, (2.1)

where V (x, t) represents ion-cyclotron wave for electrostatic potential, x and t de-
note the spatial and temporal coordinates, d and e are non-zero real constants.

By assuming the transformation as;

V (x, t) = V (η), η = λx− µt. (2.2)

Here in Eq. (2.2), λ represents wave number and µ is the velocity of the traveling
wave.

By plugging Eq. (2.2) into Eq. (2.1), we get the following ordinary differential
equation; (

µ2 − λ2
)
V ′′(η)− d2V (η) + e2V 3(η) = 0, (2.3)
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where ′ denote the differentiation w.r.t η.

3. Premise of the suggested technique

With the aid of G′/(bG′ + G + a)-expansion method, we will extract the precise
solutions of the model under examination. By using this methodology, we can
extract the findings in the form of trigonometric and hyperbolic functions.

Step 1. By taking non-linear partial differential equation (NLPDE) in the following
manner;

F (x, t,<,<x,<t,<xx,<tt, ...<xp) = 0, p ≥ 0. (3.1)

Here F is the polynomial including the unknown function <(x, t). Then, by using
the transformation given in Eq. (2.2), Eq. (3.1) is converted to ordinary differential
equation as shown:

J(V, V ′, V ′′, ...) = 0, (3.2)

here ′ denoting the differentiation w.r.t η.

Step 2. Assume the solution of Eq. (3.2) is of the following form;

V (η) =

M∑
i=0

SiQ
i(η), (3.3)

where Q = Q(η) = G′

bG′+G+a , a and b are nonzero constants. S′is are arbitrary
parameters to be evaluated later, G = G(η) is the solution of following ODE:

G′′ = −%
b
G′ − ϑ

b2
G− ϑ

b2
a,

here % and ϑ are real numbers. Moreover, Q = Q(η) satisfying the following ODE:

Q′ =
dQ(η)

dη
= (%− ϑ− 1)Q2 +

(2ϑ− %)

b
Q− ϑ

b2
. (3.4)

Step 3. The positive integer M can be evaluated by utilizing homogeneous balance
principle between highest order derivative and non-linear term in Eq. (3.2).

Step 4. Equation.(3.4) possesses following types of solutions,

• Type 1. If κ = %2 − 4ϑ > 0, then G = −a+ n1e
1
2b (−%−

√
κ)η + n2e

1
2b (−%+

√
κ)η, n1

and n2 are arbitrary constants satisfying a2 + n21 + n22 6= 0.
In this type, Q = Q(η) has the following representation:

Q1 =
n1(%+

√
κ) + n2(%−

√
κ)e

√
κ
b η

b n1(%− 2 +
√
κ) + b n2(%− 2−

√
κ)e

√
κ
b η

.

We can also write Q = Q(η) as;

Q1 =
C1 sinh(

√
κ

2b η) + C2 cosh(
√
κ

2b η)

C3 sinh(
√
κ

2b η) + C4 cosh(
√
κ

2b η)
.
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Here
C1 = %(n2 − n1)−

√
κ(n2 + n1),

C2 = %(n2 + n1)−
√
κ(n2 − n1),

C3 = b ((%− 2)(n2 − n1)−
√
κ(n2 + n1)),

C4 = b ((%− 2)(n2 + n1)−
√
κ(n2 − n1)),

Q1 =


Q1,1 = %−2ϑ

2b(%−ϑ−1) −
√
κ

2b(%−ϑ−1) tanh(
√
κ

2b η),

if (%− 2)(n2 − n1)−
√
κ(n2 + n1) = 0,

Q1,2 = %−2ϑ
2b(%−ϑ−1) −

√
κ

2b(%−ϑ−1) coth(
√
κ

2b η),

if (%− 2)(n2 + n1)−
√
κ(n2 − n1) = 0.

• Type 2. If κ = %2−4ϑ < 0, then G = −a+e
−%
2b η
(
n1 cos(

√
−κ
2b η) + n2 sin(

√
−κ
2b η)

)
.

In this type, Q = Q(η) has the following representation:

Q2 =

(
%n1 −

√
−κn2

)
cos(

√
−κ
2b η) +

(
%n2 +

√
−κn1

)
sin(

√
−κ
2b η)

b
(
(%− 2)n1 −

√
−κn2

)
cos(

√
−κ
2b η) + b

(
(%− 2)n2 +

√
−κn1

)
sin(

√
−κ
2b η)

,

Q2 =

{
Q2,1 = %−2ϑ

2b(%−ϑ−1) +
√
−κ

2b(%−ϑ−1) tan(
√
−κ
2b η), if (%− 2)n2 +

√
−κn1 = 0,

Q2,2 = %−2ϑ
2b(%−ϑ−1) −

√
−κ

2b(%−ϑ−1) cot(
√
−κ
2b η), if (%− 2)n1 −

√
−κn2 = 0.

Step 5. By plugging Eq. (3.3) and Eq. (3.4) into Eq. (3.2) and reducing the
coefficients of Qi to zero yields a system of equations for S′is. By solve the system
of equations utilizing mathematical tool like Maple and plugging values of Qi along
with Eq. (3.3) and Eq. (2.2) into Eq. (2.1), we get solutions to Eq. (2.1).

The following section will provide the analytical solutions to the suggested model
by employing G′/(bG′ +G+ a)-expansion approach.

4. Analytical solutions for the LGH model

In this portion, we will extract exact solutions of the proposed model by employing
G′/(bG′ + G + a)-expansion approach. By balancing the terms V 3 and V ′′ in Eq.
(2.3) results M = 1.

4.1. The G′/(bG′ +G+ a)-expansion method

The G′/(bG′+G+a)-expansion approach is used for suggested model to get soliton
solutions. According to given technique for M = 1, we make following assumption
about initial solution:

V (η) = S0 + S1Q(η), (4.1)

where S0 and S1 are constants to be evaluated later. By plugging Eq. (3.4) and
Eq. (4.1) into Eq. (2.3) and reducing the coefficients of Qi to zero yields:

Q0 : e2S0
3 − d2S0 = 0,

Q1 : 2
(
−λ2 + µ2

)
S1 (%− ϑ− 1)

(
2ϑ− %− ϑ

b2

)
− d2S1 + 3 e2S0

2S1 = 0,

Q2 : 3 e2S0S1
2 = 0,

Q3 : 2
(
−λ2 + µ2

)
S1 (%− ϑ− 1)

2
+ e2S1

3 = 0.
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With aid of mathematical tools, the following solutions can be determined.

S0 = 0, S1 =
bd

e

√
− −%+ ϑ+ 1

%b2 − 2ϑb2 + ϑ
,

µ =

√
−−2 b2λ2(%2 + 6 %ϑ− 4ϑ2 + 2 %− 4ϑ)− ϑλ2(2 %+ 2ϑ+ 2)− b2d2

2 b2%2 − 6 b2%ϑ+ 4 b2ϑ2 − 2 %b2 + 4ϑb2 + 2 %ϑ− 2ϑ2 − 2ϑ
.

• Type 1. For κ = %2 − 4ϑ > 0, we have following solutions,

V1(x, t) =
bd

e

√
− −%+ ϑ+ 1

%b2 − 2ϑb2 + ϑ
Q1, (4.2)

where

Q1 =
C1 sinh(

√
κ

2b η) + C2 cosh(
√
κ

2b η)

C3 sinh(
√
κ

2b η) + C4 cosh(
√
κ

2b η)
.

Here
C1 = %(n2 − n1)−

√
κ(n2 + n1),

C2 = %(n2 + n1)−
√
κ(n2 − n1),

C3 = b ((%− 2)(n2 − n1)−
√
κ(n2 + n1)),

C4 = b ((%− 2)(n2 + n1)−
√
κ(n2 − n1)).

If (%− 2)(n2 − n1)−
√
κ(n2 + n1) = 0, then Eq. (4.2) becomes

V1,1(x, t) =
bd

e

√
− −%+ ϑ+ 1

%b2 − 2ϑb2 + ϑ
Q1,1, (4.3)

here

Q1,1 =
%− 2ϑ

2b(%− ϑ− 1)
−

√
κ

2b(%− ϑ− 1)
tanh(

√
κ

2b
η).

Moreover, if (%− 2)(n2 + n1)−
√
κ(n2 − n1) = 0, then Eq. (4.2) becomes

V1,2(x, t) =
bd

e

√
− −%+ ϑ+ 1

%b2 − 2ϑb2 + %
Q1,2, (4.4)

where

Q1,2 =
%− 2%

2b(%− ϑ− 1)
−

√
κ

2b(%− ϑ− 1)
coth(

√
κ

2b
η),

with η = λx− µt.
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Figure 1. 3D, Contour and 2D plot for V1,1(x, t) by taking % = 2, λ = 2, ϑ = 0.5, b = 1, d = 2.1, e = 1
and µ = 1.

• Type 2. For κ = %2 − 4ϑ < 0, we have

V2(x, t) =
bd

e

√
− −%+ ϑ+ 1

%b2 − 2ϑb2 + ϑ
Q2, (4.5)

where

Q2 =

(
%n1 −

√
−κn2

)
cos(

√
−κ
2b η) +

(
%n2 −

√
−κn1

)
sin(

√
−κ
2b η)

b
(
(%− 2)n1 −

√
−κn2

)
cos(

√
−κ
2b η) + b

(
(%− 2)n2 +

√
−κn1

)
sin(

√
−κ
2b η)

.

If (%− 2)n2 +
√
−κn1 = 0, then Eq. (4.5) becomes

V2,1(x, t) =
bd

e

√
− −%+ ϑ+ 1

%b2 − 2ϑb2 + ϑ
Q2,1, (4.6)

here

Q2,1 =
%− 2ϑ

2b(%− ϑ− 1)
+

√
−κ

2b(%− ϑ− 1)
tan(

√
−κ
2b

η)).

Further, if (%− 2)n1 −
√
−κn2 = 0, then Eq. (4.5) becomes

V2,2(x, t) =
bd

e

√
− −%+ ϑ+ 1

%b2 − 2ϑb2 + ϑ
Q2,2, (4.7)
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Figure 2. 3D, Contour and 2D plot for V1,2(x, t) by taking % = 2, λ = 2, ϑ = 0.5, b = 1, d = 2.1, e = 1
and µ = 1.

where

Q2,2 =
%− 2ϑ

2b(%− ϑ− 1)
−

√
−κ

2b(%− ϑ− 1)
cot(

√
−κ
2b

η),

with η = λx− µt.

5. Results and discussion

In this portion, the obtained results for the LGH model have been illustrated graph-
ically. By accepting various specific values ofÂ the parameters for each outcome,
we created a variety of soliton profiles by employing G′/(bG′ + G + a)-expansion
approach. The recorded results are displayed as 3D, contour and 2D graphical
patterns. It is worth noting that the findings presented in this paper have been
compared with [12]. The comparison revealed that the extracted outcomes are
novel and have not been previously documented.

• In Fig.(1) kink solitons of V1,1 have been detected for % = 2, λ = 2, ϑ = 0.5,
b = 1, d = 2.1, e = 1 and µ = 1.
• Fig.(2) illustrates singular soliton patterns for V1,2 by selecting appropriate
parameters.
• The graphical visualization for V2,1 has been addressed in Fig.(3) by selecting
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Figure 3. 3D, Contour and 2D plot for V2,1(x, t) by taking % = 1, λ = 1, ϑ = 1, b = 2, d = 1, e = 1
and µ = 0.6.

% = 1, λ = 1, ϑ = 1, b = 2, d = 1, e = 1 and µ = 0.6.
• In Fig.(4), singular solitons have been retrieved for V2,2 by adjusting particular
values for parameters: % = 1, λ = 1, ϑ = 1, b = 2, d = 1, e = 1 and µ = 0.6.

6. Bifurcation analysis of the LGH model

In this section, we shall analyze Eq. (2.1) using qualitative analysis. Applying the
Galilean transformation, Eq. (2.3) may be expressed as a planar dynamical system.{

dV
dη = U,
dU
dη = ζ1V − ζ2V 3,

(6.1)

where ζ1 = d2

µ2−λ2 and ζ2 = e2

µ2−λ2 . The above system of ODEs is Hamiltonian, and
has the integral as follows;

R(V,U) =
U2

2
− ζ1

V 2

2
+ ζ2

V 4

4
= r, (6.2)

where r is the Hamiltonian parameter. Now, we will investigate bifurcation and
phase visualization for system (6.1). The outcomes of our qualitative analysis are
as follows. Firstly, observe that system (6.1) possesses three equilibrium points as
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Figure 4. 3D, Contour and 2D plot for V2,2(x, t) by taking % = 1, λ = 1, ϑ = 1, b = 2, d = 1, e = 1
and µ = 0.6.

follows:

N1 = (0, 0), N2 = (

√
ζ1
ζ2
, 0), N3 = (−

√
ζ1
ζ2
, 0).

Moreover, the system’s Jacobian will be:

J(V,U) =

 0 1

ζ1 − 3ζ2V
2 0

 . (6.3)

Let F and C represent the determinant and trace of the Jacobian matrix (6.3)
at the fixed point Ni, and they are given as:

C = trace(J)|Ni = 0, F = det(J)|Ni = −ζ1 + 3ζ2V
2.

For phase plots at equilibrium points, it is known that a point is saddle if F < 0,
a cusp if F > 0, and a center if F = 0. The following results are possible by giving
the parameters varying values.

• Case 5.1. Let ζ1 > 0 and ζ2 > 0
For d = 4, e = 4, µ = 5 and λ = 3, system (6.1) possess three points N1 = (0, 0),
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N2 = (1, 0), N3 = (−1, 0) as equilibrium points. Considering such case N1 is
saddle point and N2, N3 depict a center. These points are displayed in Fig.(5).

• Case 5.2. Let ζ1 < 0 and ζ2 < 0
For d = 4, e = 4, µ = 3 and λ = 5, system (6.1) possess three points N1 = (0, 0),
N2 = (1, 0), N3 = (−1, 0) as equilibrium points. Considering such case N1 is
central point and N2, N3 are saddle points. These points are presented in
Fig.(6).

Figure 5. Phase portrait for system (6.1), when ζ1 > 0 and ζ2 > 0.

Figure 6. Phase portrait for system (6.1), when ζ1 < 0 and ζ2 < 0.

7. Chaotic and quasi periodic behaviors

In this portion, we will analyze the quasi periodic and chaotic patterns of Eq.
(2.1). To investigate these patterns, we will add a periodic term δ0 cos(ωη) to the
dynamical system (6.1), where δ0 is the amplitude and ω is the frequency of the
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perturbed term. In this way, the dynamical system (6.1) with perturbed term is as
follows: 

dV
dη = U,

dU
dη = ζ1V − ζ2V 3 + δ0 cos(ωη),

(7.1)

where ζ1 = d2

µ2−λ2 and ζ2 = e2

µ2−λ2 .

Several random physical parameter values are tried in order to identify Â dy-
namical behaviors of the perturbed Â equation, Â and various result are recorded.
We have explored the quasi-periodic and chaotic nature described of system (7.1)
using a range of tools like phase plots, time plots, and Poincaré maps. To thoroughly
investigate the issue, we will assess how the parameters ζ1, ζ2, δ0, and ω affect it
in two distinct scenarios. In the first case, we will hold all parameters constant
except the amplitude δ0, while in the second, we will investigate the consequences
of changing both δ0 and ω while keeping the other parameters unchanged.

• 3D, time analysis graph, 2D and Poincaré maps are displayed in Fig.(7) for ζ1 =
−3.2, ζ2 = 1.1, δ0 = 0.5 and ω = π. In this case both amplitude and frequency
of external force are very small and it is observed that the perturbed system (7.1)
exhibits periodic behavior.

• Fig.(8) presents the 3D, 2D, time analysis graph and Poincaré maps by increasing
amplitude as δ0 = 1.5, and it is detected that the modified dynamical system (7.1)
exhibits quasi-periodic behavior.

• In Fig.(9), 3D and 2D phase images, time analysis and Poincaré maps are pre-
sented for ζ1 = −3.2, ζ2 = 1.1, δ0 = 4.5 and ω = 2π. It is revealed that by changing
these parameters, the disturbed system (7.1) shows quasi-periodic chaotic pattern.

• In Fig.(10), the influence of varying amplitude and frequency is analyzed as in
this case δ0 = 5.5 and ω = 3π, and it is observed that the modified system (7.1)
exhibits chaotic behavior. Additionally, the Poincaré map displays numerous scat-
tered points, providing further confirmation of the chaotic nature of the system.

8. Conclusion

In this manuscript, the Landau-Ginzburg-Higgs (LGH) equation was considered as
an investigating model. To extract novel results from the governing equation, the
G′/(bG′ +G+ a)-expansion approach had been employed. Utilizing this approach,
the outcomes were attained as hyperbolic and trigonometric functions. Kink, sin-
gular and periodic soliton solutions had been recovered by selecting the appropriate
values for the parameters. The obtained findings for the LGH equation were dis-
played in 3-D, Contour and 2-D profiles. Using Galilean transformation, the model
was converted into a planar dynamical system, and qualitative analysis was investi-
gated. Bifurcation of the governing model has been analyzed for system (6.1) at the
fixed points. Also the phase plots have been presented in Figs.(5)-(6). Moreover, an
external periodic force has been added into dynamical system, and different tools,
such as phase plots, Poincaré map, and time plots, has been utilized for investi-
gating the quasi-periodic and chaotic nature of disturbed system (7.1). Simulated
results reveal that by modifying amplitude and frequency parameters, the dynamic
behavior of the system can also be changed. The recorded results were novel and
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(a) 2D-Plot (b) 3D-Plot

(c) Time Analysis (d) Poincare map

Figure 7. For ζ1 = −3.2, ζ2 = 1.1, δ0 = 0.5 and ω = π, the system (7.1) is displayed for initial
condition (0.5,0.5).

(a) 2D-Plot (b) 3D-Plot

(c) Time Analysis (d) Poincare map

Figure 8. For ζ1 = −3.2, ζ2 = 1.1, δ0 = 1.5 and ω = π, the system (7.1) is displayed for initial
condition (0.5,0.5).
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(a) 2D-Plot (b) 3D-Plot

(c) Time Analysis (d) Poincare map

Figure 9. For ζ1 = −3.2, ζ2 = 1.1, δ0 = 4.5 and ω = 2π, the system (7.1) is displayed for initial
condition (0.5,0.5).

(a) 2D-Plot (b) 3D-Plot

(c) Time Analysis (d) Poincare map

Figure 10. For ζ1 = −3.2, ζ2 = 1.1, δ0 = 5.5 and ω = 3π, the system (7.1) is displayed for initial
condition (0.5,0.5).

show the effectiveness and feasibility of the suggested technique for assessing soliton
solutions and phase visualizations for different nonlinear models.
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