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APPROACH FOR SOLVING

VARIABLE-ORDER CAPUTO-RIESZ
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Abstract This work deals with the variable-order Caputo-Riesz (VO-CR)
time-space fractional Schrödinger equations with the help of the Pell discretiza-
tion method. For the first step, we separate the proposed problem into real and
imaginary parts. Then, expanding the functions with respect to Pell polynomi-
als and utilizing the required operational matrices. The operational matrices,
together with the Pell discretization method, reduce the problem into a system
of algebraic equations. It should be noted that the technique of obtaining the
operational matrices strongly affects the precision of the numerical method
process. Finally, we implement the proposed approach in several numerical
experiments to confirm the theoretical scheme. And also, the comparison of
obtained results with some existing methods is displayed in tables.
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derivative.

MSC(2010) 35R11, 65M70.

1. Introduction

In recent years, fractional derivatives with various definitions and features have been
introduced. So that the mathematical models involving fractional derivatives are
powerful instruments to describe the behavior of real-life phenomena [5, 27,28,38].

The nonlinear Schrödinger equation has appeared in various fields in quantum
(quantum mechanics, quantum gravity, open quantum systems), photonics, plasma
physics, and other branches of physics [1, 11, 23, 24]. On the other hand, fractional
differential equations are used more frequently to describe the behaviour of physi-
cal phenomena, because fractional derivatives enable the description of the memory
and hereditary features of diverse substances [29]. Two decades ago, the fractional
Schrödinger equation was generalized by Laskin [20–22], which plays an important
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role in fractional quantum mechanics. The Schrödinger equation has been studied
by many researchers applying various numerical techniques. For instance, Bhrawy
et al. [3] applied the Jacobi spectral method for approximating the solution of multi-
dimensional time-fractional Schrödinger equations. Zhang et al. [39] provided the
residual power series method for time-fractional Schrödinger equations. Bhrawy
and Zaky [4] constructed the Jacobi-Gauss-Lobatto collocation approach with ex-
ponential accuracy to solve VO-fractional Schrödinger equations. Moreover, many
other methods for solving the fractional Schrödinger equations have been existed,
which can be found in Refs. [13,15,36,37,40]. Therefore, the Schrödinger equation
including the VO-fractional derivative has been studied in a limited number of pa-
pers. This issue motivated us to introduce an efficient numerical method to solve
this equation.

In this paper, we introduce a precision algorithm to calculate the approximate so-
lution of VO-CR-time-space fractional Schrödinger equations. To reach the desired
aim, we use the Pell polynomials together with the spectral approach and appro-
priate operational matrices. Due to the numerical process, the proposed problem
reduces to a system of algebraic equations and the approximate solution is deter-
mined. This work includes a new technique for obtaining the operational matrices.
In the procedure of presenting the components of these matrices, we apply the
properties of Pell polynomials. So that, the structure of these matrices plays an
important role in the accuracy of the proposed method.

It is worth noting that spectral methods are recognized as powerful and efficient
methods for solving diverse differential equations. Many researchers have illustrated
their interest in using these methods. For example, Babaei et al. [2] used the Sinc
collocation method for finding the approximate solution of VO-fractional integro-
partial differential equations. Dehestani and Ordokhani [7] provided a new method
based on Legendre–Gauss–Lobatto quadrature and discrete shifted Hahn polynomi-
als for solving Caputo–Fabrizio fractional Volterra partial integro-differential equa-
tions. Ghimire et al. [12] applied hybrid Chebyshev polynomial for elliptic partial
differential equations. Khader and Saad [18] solved the fractional Fisher equa-
tion with the help of the Chebyshev spectral collocation method. Liu et al. [26]
considered the fully discrete spectral methods for solving time fractional nonlinear
Sine–Gordon equation. Interested readers to this subject can observe more papers
in [8, 9, 14,34].

Pell polynomials have been derived from the Pell numbers, which were initially
examined by the Greek mathematician Archimedes around 200 BC [19]. Then, John
Pell’s work involved solving what are now known as Pell equations and discovering a
recursive relation that gave rise to the concept of Pell numbers. In recent years, Pell
polynomials have been recognized as important contributors to the field of number
theory, and they have found applications in various areas including cryptography,
coding theory, Astrophysics, and combinatorics [19, 31, 35]. The Pell polynomials
[16] have been used in a few research papers containing numerical analysis [32,33].
An important advantage of these polynomials is that the coefficients of individual
terms are integers. Therefore, the coefficients of these polynomials are not creating
a computational error.

We consider the variable-order Caputo-Riesz time-space fractional Schrödinger
equation as follows:

iD
α(x,t)
t ψ(x, t) = −η ∂β

∂|x|β
ψ(x, t) + ϑ|ψ|2ψ(x, t) + ϕ(x)ψ(x, t) +R(x, t), (1.1)
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0 < α(x, t) ≤ 1, 1 < β ≤ 2, (x, t) ∈ [0, 1]× [0, 1],

subject to the initial condition and boundary conditions

ψ(x, 0) = k(x), ψ(0, t) = s(t), ψ(1, t) = r(t). (1.2)

Here, η and ϑ are constants, ϕ(x) denotes trapping potential and, ψ(x, t), R(x, t),
k(x), s(t) and r(t) are complex functions. So that, we define the imaginary and real
parts of these functions as follows:

ψ(x, t) = U(x, t) + iV(x, t),

R(x, t) = f(x, t) + ig(x, t),

ϕ(x) = ϕ0(x) + iϕ1(x),

k(x) = k0(x) + ik1(x),

s(t) = s0(t) + is1(t),

r(t) = r0(t) + ir1(t).

Therefore, due to the above relations, Eq. (1.1) can be rewritten as follows:(
−D

α(x,t)
t V(x, t) + η

∂β

∂|x|β
U(x, t)− ϑ(U2 − V2)U(x, t)− ϕ0(x)U(x, t)− f(x, t)

)
+ i

(
D
α(x,t)
t U(x, t) + η

∂β

∂|x|β
V(x, t)− ϑ(U2 − V2)V(x, t)

−ϕ1(x)V(x, t)− g(x, t))

=0. (1.3)

Next, by separating the real and imaginary parts of the equation mentioned above
a couple system of variable-order Caputo-Riesz time-space fractional partial differ-
ential equations is obtained:

−D
α(x,t)
t V(x, t) = −η ∂β

∂|x|β
U(x, t) + ϑ(U2 + V2)U(x, t) + ϕ0(x)U(x, t) + f(x, t),

D
α(x,t)
t U(x, t) = −η ∂β

∂|x|β
V(x, t) + ϑ(U2 + V2)V(x, t) + ϕ1(x)V(x, t) + g(x, t),

(1.4)

with the initial and boundary conditions

U(x, 0) = k0(x), V(x, 0) = k1(x), (1.5)

U(0, t) = s0(t), V(0, t) = s1(t),

U(1, t) = r0(t), V(1, t) = r1(t).

The fractional derivatives in the main problem are in variable-order Caputo frac-
tional (VO-CF) [6] and Caputo-Riesz (CR) [30] sense, respectively. So that, these
derivatives are defined as follows:

D
α(x,t)
t f(t) =

1

Γ(1− α(x, t))

∫ t

0

f (q)(η)

(t− η)α(x,t)+1−q dη, q − 1 < α(x, t) ≤ q ∈ N,

(1.6)
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and
∂β

∂|x|β
h(x) =

1

2 cos πβ2

(
Dβ
∗+h(x) +Dβ

∗−h(x)
)
, β 6= 1. (1.7)

Here, Dβ
∗+ and Dβ

∗− denote the left- and right-sided Riemann-Liouville fractional
derivatives of order β, which are defined by left- and right-sided Caputo fractional
derivatives:

Dβ
∗+h(x) = Dβ

+h(x) +

dβe−1∑
i=0

h(i)(0)

Γ(i+ 1− β)
xi−β , (1.8)

Dβ
∗−h(x) = Dβ

−h(x) +

dβe−1∑
i=0

(−1)ih(i)(1)

Γ(i+ 1− β)
(1− x)i−β .

The outline of this paper is structured as follows. The next section is devoted to
the Pell polynomials and their attributes, which contain the relation between Pell
polynomials and Taylor polynomials. Section 3 presents the algorithm for obtain-
ing the pseudo operational matrix of VO-CF-derivative. The idea of presenting the
modified operational matrices of RF-derivative is discussed in Section 4. In Section
5, the modified operational matrix of integration with the help of the Pell polyno-
mials feature is presented. The numerical procedure for getting the approximation
solution of VO-CR-time-space fractional Schrödinger equations is provided in Sec-
tion 6. In Section 7, the theoretical approach is implemented in several examples.
Finally, conclusions and remarks are given in Section 8.

2. Pell polynomials

The Pell polynomials are defined by the following recurrence relation [16]:

Pm+1(x) = 2xPm(x) + Pm−1(x), P0(x) = 1, P1(x) = x, m ≥ 1. (2.1)

Also, the explicit formula of Pell polynomials is defined as follows [16]:

Pm(x) =

[m−1
2 ]∑

n=0

(
m− n− 1

n

)
(2x)m−2n−1, m 6= 0. (2.2)

The Binet formula to get Pell polynomials is defined as follows [19]:

Pm(x) =
Wm(x)− V m(x)

W (x)− V (x)
,

where

W (x) =
U(x) +

√
U2(x) + 4Q(x)

2
, V (x) =

U(x)−
√
U2(x) + 4Q(x)

2
.

By considering the above relation and W (x) = 2x,Q(x) = 1, the Pell polynomials
can be obtained

Pm(x) =

(
x+
√
x2 + 1

)m − (x−√x2 + 1
)m

2m
√
x2 + 1

, m ≥ 0.
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Due to the Pell polynomials statement, these polynomials can be defined with re-
spect to Taylor polynomials [10]. So that, the elements of the coefficient matrix are
obtained as follows [32]:

P (x) = QT (x), (2.3)

where
P (x) = [P0(x), P1(x), . . . , PM (x)]T , T (x) = [1, x, . . . , xM ]T ,

and

Q = [qnm], qn1 =

1, if n even,

0, otherwise,

qnm = 2qn−1,m−1 + 2qn−2,m, qnn = 2n−1, n > m.

Moreover, the components of the Taylor vector can be expanded with Pell polyno-
mials [32]:

xn =


21−n

[n2 ]∑
k=0

(−1)k
(
n

k

)
Pn−2k(x), n is odd,

21−n
[n2 ]∑
k=0

(−1)k
(
n

k

)
Pn−2k(x) + (−1)[n2 ]+12−n

(
n
n
2

)
P0(x), n is even.

(2.4)

A function f(x) defined over [0, 1] may be approximated by Pell polynomials as:

f(x) =

∞∑
i=0

ciPi(x),

If the infinite expansion in the above equation is truncated, we get

f(x) '
M∑
i=0

ciPi(x) = CTP (x),

where the elements of the coefficient vector are calculated by applying the regular
grid points. According to Taylor expansion and Eq. (2.4), we get the expansion in
terms of Pell polynomials as follows:

f(x) =

∞∑
j=0

[ 2j+1
2 ]∑

k=0

(−1)k
(

2j + 1

k

)
2−2jf (2j+1)(0)

(2j + 1)!
P2j+1−2k(x) (2.5)

+

∞∑
j=0

[j]∑
k=0

(−1)k
(

2j

k

)
21−2jf (2j)(0)

(2j)!
P2j−2k(x)

+

∞∑
j=0

(−1)[j]+1

(
2j

j

)
2−2jf (2j)(0)

(2j)!
P0(x).

Also, the truncated form of the above series with M + 1 sentences is defined as
follows:

fM (x) =

M∑
j=0

[ 2j+1
2 ]∑

k=0

(−1)k
(

2j + 1

k

)
2−2jf (2j+1)(0)

(2j + 1)!
P2j+1−2k(x) (2.6)
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+

M∑
j=0

[j]∑
k=0

(−1)k
(

2j

k

)
21−2jf (2j)(0)

(2j)!
P2j−2k(x)

+

M∑
j=0

(−1)[j]+1

(
2j

j

)
2−2jf (2j)(0)

(2j)!
P0(x).

Hence, we have

|f(x)− fM (x)| ≤
[ 2M+3

2 ]∑
k=0

(
2M + 3

k

)
C1

22M+2(2M + 3)!
|P2M+3−2k(x)|

+

[M+1]∑
k=0

(
2M + 2

k

)
C2

22M+1(2M + 2)!
|P2M+2−2k(x)|

+

(
2M + 2

M + 1

)
C2

22M+2(2M + 2)!
|P0(x)|, (2.7)

where

C1 ≥ sup
x∈[0,1]

|f (2M+3)(x)|, C2 ≥ sup
x∈[0,1]

|f (2M+2)(x)|.

Therefore, the following inequality can be obtained:

‖f(x)− fM (x)‖∞ ≤
[ 2M+3

2 ]∑
k=0

(
2M + 3

k

)
C1Q1

22M+2(2M + 3)!
(2.8)

+

[M+1]∑
k=0

(
2M + 2

k

)
C2Q2

22M+1(2M + 2)!

+

(
2M + 2

M + 1

)
C2

22M+2(2M + 2)!
,

where Q1 ≥ supx∈[0,1] |P2M+3−2k(x)|, and Q2 ≥ supx∈[0,1] |P2M+2−2k(x)|.

3. Pseudo operational matrix of VO-CF-derivative

This section aims to present details of the method to obtain the pseudo operational
matrix of VO-CF-derivative. So that we obtain

D
α(x,t)
t P (t) ' tq−α(x,t)Λ(x, t)P (t), q − 1 < α(x, t) ≤ q, (3.1)

where Λ(x, t) denotes the pseudo operational matrix of VO-CF-derivative. Now, to
calculate the elements of the proposed matrix, we use Eq. (2.2) and the feature of
VO-CF-derivative:

D
α(x,t)
t Pn(t)

=

[n−1
2 ]∑

m=0

(
n−m− 1

m

)
2n−2m−1D

α(x,t)
t

(
tn−2m−1

)
(3.2)
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=

[n−1
2 ]∑

m=dn−1−q
2 e

2n−2m−1

(
n−m− 1

m

)
Γ(n− 2m)

Γ(n− 2m− α(x, t))
tn−2m−1−α(x,t)

= tq−α(x,t)

[n−1
2 ]∑

m=dn−1−q
2 e

µn,m(x, t)tn−2m−1−q,

where

µn,m(x, t) = 2n−2m−1

(
n−m− 1

m

)
Γ(n− 2m)

Γ(n− 2m− α(x, t))
.

Next, to continue the process of obtaining the component of the considered matrix,
we evaluate tn−2m−1−q in view of Pell polynomials:

tn−2m−1−q '
N∑
i=0

aiPi(t).

As a result, by substituting the above approximation in Eq. (3.2), we get

D
α(x,t)
t Pn(t) (3.3)

' tq−α(x,t)
N∑
i=0

 [n−1
2 ]∑

m=dn−1−q
2 e

µn,m(x, t)ai

Pi(t)

= tq−α(x,t)

[∑[n−1
2 ]

m=dn−1−q
2 e λ0,n,m(x, t) . . .

∑[n−1
2 ]

m=dn−1−q
2 e λN,n,m(x, t)

]
P (t),

where λi,n,m(x, t) = µn,m(x, t)ai. To clarify the above process, we consider N = 2
and α(x, t) = 0.5. Then, we obtain

D0.5
t P (t) ' t1−0.5Λ(x, t)P (t),

where

Λ(x, t) =


0 0 0

2.256758334191025 0 0

0 3.0090111122547 0

 .

4. Modified operational matrices of RF-derivative

In this section, our goal is to present the technique of obtaining the modified oper-
ational matrices of RF-derivative for basis function. Thus, we achieve

∂β

∂|x|β
P (x) ' x−βΘP (x) + (1− x)−β∆P (x), 1 < β < 2. (4.1)

Herein, Θ and ∆ are the modified operational matrices of RF-derivative. To reach
the desired goal, we apply the Eqs. (2.1), (2.2) and definition of RF-derivative on
Pell polynomials:

∂β

∂|x|β
P0(x) =

1

2 cos πβ2

(
1

Γ(1− β)
x−β +

1

Γ(1− β)
(1− x)−β

)
(4.2)
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= x−β
1

2 cos πβ2 Γ(1− β)
P0(x) + (1− x)−β

1

2 cos πβ2 Γ(1− β)
P0(x)

= x−β
[

1
2 cos πβ2 Γ(1−β)

0 0 . . . 0

]
P (x)

+(1− x)−β
[

1
2 cos πβ2 Γ(1−β)

0 0 . . . 0

]
P (x).

And also, for m = 1, 2, . . . ,M, we have

∂β

∂|x|β
Pm(x) =

1

2 cos πβ2

{
Dβ
∗+Pm(x) +Dβ

∗−Pm(x)
}

(4.3)

=
1

2 cos πβ2


[m−1

2 ]∑
i=0

ηi

(
Dβ
∗+
[
xm−2i−1

]
+Dβ

∗−
[
xm−2i−1

]) ,

where ηi =

(
m− i− 1

i

)
2m−2i−1. Besides, the right- and left-sided Riemann-

Liouville fractional derivatives of xm−2i−1 are expanded in view of Pell polynomials
as follows:

Dβ
∗+
[
xm−2i−1

]
= Dβ

+x
m−2i−1 +

dβe−1∑
j=0

(xm−2i−1)(j)
∣∣
x=0

Γ(j + 1− β)
xj−β (4.4)

=
1

Γ(1− β)

∫ x

0

(ξm−2i−1)′′

(x− ξ)β−1
dξ +

dβe−1∑
j=0

(xm−2i−1)(j)
∣∣
x=0

Γ(j + 1− β)
xj−β

' x−β
M∑
j=0

ajPj(x),

and

Dβ
∗−
[
xm−2i−1

]
= Dβ

−x
m−2i−1 +

dβe−1∑
j=0

(−1)i(xm−2i−1)(j)
∣∣
x=1

Γ(j + 1− β)
(1− x)j−β

=
−1

Γ(1− β)

∫ 1

x

(ξm−2i−1)′′

(ξ − x)β−1
dξ (4.5)

+

dβe−1∑
j=0

(−1)i(xm−2i−1)(j)
∣∣
x=1

Γ(j + 1− β)
(1− x)j−β

' (1− x)−β
M∑
j=0

bjPj(x).

Therefore, by replacing Eqs. (4.4) and (4.5) in Eq. (4.3), we get

∂β

∂|x|β
Pm(x)
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' 1

2 cos πβ2


[m−1

2 ]∑
i=0

ηi

x−β M∑
j=0

ajPj(x) + (1− x)−β
M∑
j=0

bjPj(x)




= x−β
M∑
j=0

[m−1
2 ]∑
i=0

ηiaj

2 cos πβ2

Pj(x) + (1− x)−β
M∑
j=0

[m−1
2 ]∑
i=0

ηibj

2 cos πβ2

Pj(x)

= x−β
M∑
j=0

θβijmPj(x) + (1− x)−β
M∑
j=0

δβijmPj(x). (4.6)

Ultimately, we obtain the general form of proposed matrices as follows:

Θ =


1

2 cos πβ2 Γ(1−β)
0 0 . . . 0

...
...

...
. . .

...

Θβ
i0M Θβ

i1M Θβ
i2M . . . Θβ

iMM

 ,
and

∆ =


1

2 cos πβ2 Γ(1−β)
0 0 . . . 0

...
...

...
. . .

...

δβi0M δβi1M δβi2M . . . δβiMM

 .
In this method, two elements x−β and (1 − x)−β are excluded from the approxi-
mation process. This technique greatly enhances the precision of finding the oper-
ational matrices of the RF-derivative.

5. Modified operational matrix of integration

The objective of this section is to introduce an accurate integral operational matrix
for Pell polynomials. To achieve this purpose, we divide the integral of Pell polyno-
mials into two parts. The first part consists of an operational matrix of integration,
while the second part involves a complement vector. We consider∫ x

0

P (ξ)dξ = ΥP (x) + Y (x), (5.1)

where Υ denotes the modified operational matrix of integration and Y (x) is called
complement vector. By applying classical integration to these polynomials, the
desired matrix and vector are obtained. Thus, the components of Υ are computed
as follows:

Υ = [γi,j ], i, j = 1, 2, . . . ,M + 1, (5.2)

where

γi,j =



−1
4 , i = 2, j = 1,

−1
i , j = 1, i is even,

1
2i , j = i+ 1, or j = i− 1,

0, otherwise,

i, j = 1, 2, . . . ,M + 1.
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And also, we have

Y (x) = [yi(x)], yi(x) =

0, i = 1, 2, . . . ,M,

1
2iPi(x), i = M + 1.

(5.3)

Similarly, the above process is established for variable t. Hence, we have∫ t

0

P (η)dη = Υ̃P (t) + Ỹ (t). (5.4)

Therefore, according to the above formula, for M = 5, we get

Υ =



0 1
2 0 0 0 0

−1
4 0 1

4 0 0 0

0 1
6 0 1

6 0 0

−1
4 0 1

8 0 1
8 0

0 0 0 1
10 0 1

10

−1
6 0 0 0 1

12 0


, Y (x) =



0

0

0

0

0

1
12P6(x)


.

6. Numerical procedure

In this section, we aim is to introduce the numerical algorithm for solving VO-CR-
time-space fractional Schrödinger equations defined in Eq. (8.4). First, we take

approximations of ∂3U
∂x2∂t (x, t) and ∂3V

∂x2∂t (x, t) in view of Pell polynomials as follows:

∂3U
∂x2∂t

(x, t) ' PT (x)AP (t),
∂3V
∂x2∂t

(x, t) ' PT (x)BP (t). (6.1)

Then, to find the approximation of other functions that exist in the proposed prob-
lem, we use the introduced operational matrices. Hence, by integrating Eq. (6.1)
with respect to variable t and using the operational matrix of integration, we obtain

∂2U
∂x2

(x, t) ' PT (x)A
(

Υ̃P (t) + Ỹ (t)
)

+ k′′0 (x), (6.2)

∂2V
∂x2

(x, t) ' PT (x)B
(

Υ̃P (t) + Ỹ (t)
)

+ k′′1 (x).

Next, by integrating Eq. (6.2) with respect to the variable x and utilizing the
modified operational matrix of integration, we can deduce

∂U
∂x

(x, t) '
(
PT (x)ΥT + Y T (x)

)
A
(

Υ̃P (t) + Ỹ (t)
)

+ k′0(x)− k′0(0) +
∂U
∂x

(0, t),

∂V
∂x

(x, t) '
(
PT (x)ΥT + Y T (x)

)
B
(

Υ̃P (t) + Ỹ (t)
)

+ k′1(x)− k′1(0) +
∂V
∂x

(0, t).

(6.3)
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In the above relations, the values of ∂U
∂x (0, t) and ∂V

∂x (0, t) are unknown. So, we
take integral from these equations according to variable x on the interval 0 to 1 as
follows:

∂U
∂x

(0, t) ' r0(t)− s0(t)−
(∫ 1

0

PT (x)dxΥT +

∫ 1

0

Y T (x)dx

)
A
(

Υ̃P (t) + Ỹ (t)
)

−k0(1) + k0(0) + k′0(0), (6.4)

and

∂V
∂x

(0, t) ' r1(t)− s1(t)−
(∫ 1

0

PT (x)dxΥT +

∫ 1

0

Y T (x)dx

)
B
(

Υ̃P (t) + Ỹ (t)
)

−k1(1) + k1(0) + k′1(0). (6.5)

By substituting these two aforementioned relations into Eq. (6.3), we can fully
calculate ∂U

∂x (x, t) and ∂V
∂x (x, t). At last, by integrating from Eq. (6.3) concerning

to x, we get

U(x, t) '
([
PT (x)ΥT + Y T (x)

]
ΥT + ZT (x)

)
A
(

Υ̃P (t) + Ỹ (t)
)

+ k0(x)− k0(0)

−xk′0(0) + x

[
r0(t)− s0(t)−

(∫ 1

0

PT (x)dxΥT +

∫ 1

0

Y T (x)dx

)
× A

(
Υ̃P (t) + Ỹ (t)

)
− k0(1) + k0(0) + k′0(0)

]
+ s0(t), (6.6)

and

V(x, t) '
([
PT (x)ΥT + Y T (x)

]
ΥT + ZT (x)

)
B
(

Υ̃P (t) + Ỹ (t)
)

+ k1(x)− k1(0)

−xk′1(0) + x

[
r1(t)− s1(t)−

(∫ 1

0

PT (x)dxΥT +

∫ 1

0

Y T (x)dx

)
× B

(
Υ̃P (t) + Ỹ (t)

)
− k1(1) + k1(0) + k′1(0)

]
+ s1(t), (6.7)

where

Z(x) = [zi(x)] , zi(x) =

0, i = 1, 2, . . . ,M,

1
2i

∫ x
0
Pi(ξ)dξ, i = M + 1.

Next, from Eqs. (6.6), (6.7) and pseudo operational matrix of VO-CF-derivative,
we will have

D
α(x,t)
t U(x, t)

'
([
PT (x)ΥT + Y T (x)

]
ΥT + ZT (x)

)
A
(
t1−α(x,t)Υ̃Λ(x, t)P (t) +W (t)

)
+x

[
D
α(x,t)
t r0(t)−D

α(x,t)
t s0(t)−

(∫ 1

0

PT (x)dxΥT +

∫ 1

0

Y T (x)dx

)
A

×
(
t1−α(x,t)Υ̃Λ(x, t)P (t) +W (t)

)]
+ D

α(x,t)
t s0(t), (6.8)

and

D
α(x,t)
t V(x, t)
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'
([
PT (x)ΥT + Y T (x)

]
ΥT + ZT (x)

)
B
(
t1−α(x,t)Υ̃Λ(x, t)P (t) +W (t)

)
+x

[
D
α(x,t)
t r1(t)−D

α(x,t)
t s1(t)−

(∫ 1

0

PT (x)dxΥT +

∫ 1

0

Y T (x)dx

)
B

×
(
t1−α(x,t)Υ̃Λ(x, t)P (t) +W (t)

)]
+ D

α(x,t)
t s1(t), (6.9)

where

W (t) = [wi(t)] , wi(x) =

0, i = 1, 2, . . . , N,

1
2iD

α(x,t)
t Pi(t), i = N + 1.

Also, from Eqs. (6.6), (6.7), Riesz fractional derivative and modified operational
matrices of RF-derivative, we obtain the following relations:

∂β

∂|x|β U(x, t)

'
([{

x−βPT (x)ΘT + (1− x)−βPT (x)∆T
}

ΥT +
∂β

∂|x|β Y
T (x)

]
ΥT +

∂β

∂|x|β Z
T (x)

)
×A

(
Υ̃P (t) + Ỹ (t)

)
+

∂β

∂|x|β
{
k0(x)− k0(0)− xk′0(0)

}
(6.10)

+

{
∂β

∂|x|β x
}[

r0(t)− s0(t)−
(∫ 1

0

PT (x)dxΥT +

∫ 1

0

Y T (x)dx

)
A
(

Υ̃P (t) + Ỹ (t)
)

− k0(1) + k0(0) + k′0(0)
]

+ s0(t)

{
1

2 cos πβ
2

(
1

Γ(1− β)
x−β +

1

Γ(1− β)
(1− x)−β

)}
,

and

∂β

∂|x|β V(x, t)

'
([{

x−βPT (x)ΘT + (1− x)−βPT (x)∆T
}

ΥT +
∂β

∂|x|β Y
T (x)

]
ΥT +

∂β

∂|x|β Z
T (x)

)
×B

(
Υ̃P (t) + Ỹ (t)

)
+

∂β

∂|x|β
{
k1(x)− k1(0)− xk′1(0)

}
(6.11)

+

{
∂β

∂|x|β x
}[

r1(t)− s1(t)−
(∫ 1

0

PT (x)dxΥT +

∫ 1

0

Y T (x)dx

)
B
(

Υ̃P (t) + Ỹ (t)
)

− k1(1) + k1(0) + k′1(0)
]

+ s1(t)

{
1

2 cos πβ
2

(
1

Γ(1− β)
x−β +

1

Γ(1− β)
(1− x)−β

)}
.

Now, to find the approximate solutions, we substitute Eqs. (6.1)-(6.11) in Eq.
(1.4) and collocate the obtained system at nodal points of Newton–Cotes [10]. This
process provides a system of algebraic equations with 2(M + 1)(N + 1) unknown
coefficients. Finally, by using Newton’s iteration method and Eqs. (6.6) and (6.7),
the approximate solutions are gained.

7. Error analysis and convergence

This section demonstrates the convergence of Pell polynomials expansion of the
function u(x, t). Hence, to reach the goal, we apply the multi-variable Taylor for-
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mula [17]:

u(x, t) =

∞∑
i=0

∞∑
j=0

xitj

Γ(i+ 1)Γ(j + 1)

∂i+ju(x, t)

∂xi∂tj

∣∣∣∣∣∣
(0,0)

.

Next, by replacing the expansion of xi and tj defined in Eq. (2.4) in the above
formula, we deduce

u(x, t) (7.1)

=

∞∑
i=0

∞∑
j=0

[ 2i+1
2 ]∑

k=0

[ 2j+1
2 ]∑
l=0

2−2i−2j(−1)k+l

Γ(2i+ 2)Γ(2j + 2)

(
2i+ 1

k

)(
2j + 1

l

)

×P2i−2k+1(x)P2j−2l+1(t)
∂2i+2j+2u(x, t)

∂x2i+1∂t2j+1

∣∣∣∣
(0,0)

+

∞∑
i=0

∞∑
j=0

[ 2i+1
2 ]∑

k=0

[j]∑
l=0

21−2j(−1)k+l

Γ(2i+ 2)Γ(2j + 1)

(
2i+ 1

k

)(
2j

l

)

×P2i−2k+1(x)P2j−2l(t)
∂2i+2j+1u(x, t)

∂x2i+1∂t2j

∣∣∣∣
(0,0)

+

∞∑
i=0

∞∑
j=0

[ 2i+1
2 ]∑

k=0

2−2j(−1)k+[j]+1

Γ(2i+ 2)Γ(2j + 1)

(
2i+ 1

k

)(
2j

j

)

×P2i−2k+1(x)P0(t)
∂2i+2j+1u(x, t)

∂x2i+1∂t2j

∣∣∣∣
(0,0)

+

∞∑
i=0

∞∑
j=0

[i]∑
k=0

[ 2j+1
2 ]∑
l=0

21−2i(−1)k+l

Γ(2i+ 1)Γ(2j + 2)

(
2i

k

)(
2j + 1

l

)

×P2i−2k(x)P2j−2l+1(t)
∂2i+2j+1u(x, t)

∂x2i∂t2j+1

∣∣∣∣
(0,0)

+

∞∑
i=0

∞∑
j=0

[j]∑
l=0

2−2i(−1)[i]+l+1

Γ(2i+ 1)Γ(2j + 2)

(
2i

i

)(
2j + 1

l

)

×P0(x)P2j−2l+1(t)
∂2i+2j+1u(x, t)

∂x2i∂t2j+1

∣∣∣∣
(0,0)

+

∞∑
i=0

∞∑
j=0

[i]∑
k=0

[j]∑
l=0

22−2i−2j(−1)k+l

Γ(2i+ 1)Γ(2j + 1)

(
2i

k

)(
2j

l

)

×P2i−2k(x)P2j−2l(t)
∂2i+2ju(x, t)

∂x2i∂t2j

∣∣∣∣
(0,0)

+

∞∑
i=0

∞∑
j=0

[i]∑
k=0

21−2i−2j(−1)k+[j]+1

Γ(2i+ 1)Γ(2j + 1)

(
2i

k

)
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×
(

2j

j

)
P2i−2k(x)P0(t)

∂2i+2ju(x, t)

∂x2i∂t2j

∣∣∣∣
(0,0)

+

∞∑
i=0

∞∑
j=0

[j]∑
l=0

21−2i−2j(−1)[i]+1+l

Γ(2i+ 1)Γ(2j + 1)

(
2i

i

)(
2j

l

)
P0(x)P2j−2l(t)

∂2i+2ju(x, t)

∂x2i∂t2j

∣∣∣∣∣∣
(0,0)

+

∞∑
i=0

∞∑
j=0

2−2i−2j(−1)[i]+[j]+2

Γ(2i+ 1)Γ(2j + 1)

(
2i

i

)(
2j

j

)
P0(x)P0(t)

∂2i+2ju(x, t)

∂x2i∂t2j

∣∣∣∣∣∣
(0,0)

.

Therefore, the error bound of the approximate function uMN (x, t), which is obtained
by truncating the function u(x, t) to M + 1 sentences with respect to x and N + 1
sentences with respect to t, is calculated as follows:

|u(x, t)− uMN (x, t)| (7.2)

≤
[ 2M+3

2 ]∑
k=0

[ 2N+3
2 ]∑
l=0

2−2M−2N−4C1

Γ(2M + 4)Γ(2N + 4)

(
2M + 3

k

)(
2N + 3

l

)
× |P2M+3−2k(x)| |P2N+3−2l(t)|

+

[ 2M+3
2 ]∑

k=0

[N+1]∑
l=0

2−2N−1C2

Γ(2M + 4)Γ(2N + 3)

(
2M + 3

k

)

×
(

2N + 2

l

)
|P2M+3−2k(x)| |P2N+2−2l(t)|

+

[ 2M+3
2 ]∑

k=0

2−2N−2C2

Γ(2M + 4)Γ(2N + 3)

(
2M + 3

k

)

×
(

2N + 2

N + 1

)
|P2M+3−2k(x)|

+

[M+1]∑
k=0

[ 2N+3
2 ]∑
l=0

2−2M−1C3

Γ(2M + 3)Γ(2N + 4)

(
2M + 2

k

)(
2N + 3

l

)
× |P2M+2−2k(x)| |P2N+3−2l(t)|

+

[N+1]∑
l=0

2−2M−2C3

Γ(2M + 3)Γ(2N + 4)

(
2M + 2

M + 1

)(
2N + 3

l

)
|P2N+3−2l(t)|

+

[M+1]∑
k=0

[N+1]∑
l=0

2−2M−2N−2C4

Γ(2M + 3)Γ(2N + 3)

(
2M + 2

k

)(
2N + 2

l

)
× |P2M+2−2k(x)| |P2N+2−2l(t)|

+

[M+1]∑
k=0

2−2M−2N−3C4

Γ(2M + 3)Γ(2N + 3)

(
2M + 2

k

)(
2N + 2

N + 1

)
|P2M+2−2k(x)|

+

[N+1]∑
l=0

2−2M−2N−3C4

Γ(2M + 3)Γ(2N + 3)

(
2M + 2

M + 1

)(
2N + 2

l

)
|P2N+2−2l(t)|
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+
2−2M−2N−4C4

Γ(2M + 3)Γ(2N + 3)

(
2M + 2

M + 1

)(
2N + 2

N + 1

)
,

where C1 ≥ supx∈[0,1]×[0,1]

∣∣∣∂2i+2j+2u(x,t)
∂x2i+1∂t2j+1

∣∣∣ , C2 ≥ supx∈[0,1]×[0,1]

∣∣∣∂2i+2j+1u(x,t)
∂x2i+1∂t2j

∣∣∣ , C3 ≥

supx∈[0,1]×[0,1]

∣∣∣∂2i+2j+1u(x,t)
∂x2i∂t2j+1

∣∣∣ , C4 ≥ supx∈[0,1]×[0,1]

∣∣∣∂2i+2ju(x,t)
∂x2i∂t2j

∣∣∣ . Consequently, ac-

cording to the above result, we get

‖u(x, t)− uMN (x, t)‖∞ (7.3)

≤
[ 2M+3

2 ]∑
k=0

[ 2N+3
2 ]∑
l=0

2−2M−2N−4C1V1V̄1

Γ(2M + 4)Γ(2N + 4)

(
2M + 3

k

)(
2N + 3

l

)

+

[ 2M+3
2 ]∑

k=0

[N+1]∑
l=0

2−2N−1C2V1V̄2

Γ(2M + 4)Γ(2N + 3)

(
2M + 3

k

)(
2N + 2

l

)

+

[ 2M+3
2 ]∑

k=0

2−2N−2C2V2

Γ(2M + 4)Γ(2N + 3)

(
2M + 3

k

)(
2N + 2

N + 1

)

+

[M+1]∑
k=0

[ 2N+3
2 ]∑
l=0

2−2N−1C3V̄1V2

Γ(2M + 3)Γ(2N + 4)

(
2M + 2

k

)(
2N + 3

l

)

+

[N+1]∑
l=0

2−2M−2C3V̄1

Γ(2M + 3)Γ(2N + 4)

(
2M + 2

M + 1

)(
2N + 3

l

)

+

[M+1]∑
k=0

[N+1]∑
l=0

2−2M−2N−2C4V2V̄2

Γ(2M + 3)Γ(2N + 3)

(
2M + 2

k

)(
2N + 2

l

)

+

[M+1]∑
k=0

2−2M−2N−3C4V2

Γ(2M + 3)Γ(2N + 3)

(
2M + 2

k

)(
2N + 2

N + 1

)

+

[N+1]∑
l=0

2−2M−2N−3C4V̄2

Γ(2M + 3)Γ(2N + 3)

(
2M + 2

M + 1

)(
2N + 2

l

)

+
2−2M−2N−4C4

Γ(2M + 3)Γ(2N + 3)

(
2M + 2

M + 1

)(
2N + 2

N + 1

)
= ΠMN ,

where

V1 ≥ sup
x∈[0,1]

|P2M+3−2k(x)|, V̄1 ≥ sup
t∈[0,1]

|P2N+3−2l(t)|,

V2 ≥ sup
x∈[0,1]

|P2M+2−2k(x)| , V̄2 ≥ sup
t∈[0,1]

|P2N+2−2l(t)| .

From the above inequality, it can be inferred that the approximate solution con-
verges to the exact solution by increasing the number of Pell polynomials (M,N).
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8. Numerical results

In this section, we implement the proposed approach, which was explained in the
previous section, in several examples. To verify the accuracy and applicability of
the proposed numerical algorithm, we obtain the maximum absolute error and least
square error in some examples:

L∞ − error = max
0≤x,t≤S

|u(x, t)− uMN (x, t)| ,

L2 − error =

(
S∑
i=0

|u(xi, ti)− uMN (xi, ti)|2
) 1

2

,

RMS =

(
1

S

S∑
i=1

|u(xi, ti)− uMN (xi, ti)|2
) 1

2

,

where u(x, t) and uMN (x, t) represent the exact solution and approximate solution,
respectively. Additionally, to demonstrate the substantial accuracy improvement
achieved by increasing the number of basis functions, we determine the convergence
order by using the following formula:

CO =

∣∣∣log(E2

E1
)
∣∣∣

log

([
M+1
M̄+1

]2) ,
where E1 and E2 represent the first and second absolute errors obtained by the
proposed method, and M (or N) and M̄ (or N̄) are the number of basis functions in
each implementation of the numerical algorithm. All numerical computations were
performed on a personal computer and codes were written in MATLAB software.

Example 8.1. For the first example, we consider following linear VO-CR-time-
space fractional Schrödinger equation:

iD
α(x,t)
t ψ(x, t)− ∂β

∂|x|β
ψ(x, t)

= 2(i− 1) sin(πx)
t2−α(x,t)

Γ(3− α(x, t))

+
∂β

∂|x|β
(1 + i)t2 sin(πx), 0 < α(x, t) ≤ 1, 1 < β < 2,

subject to the initial condition ψ(x, 0) = 0 and boundary conditions ψ(0, t) =
ψ(1, t) = 0. The corresponding analytical solution of the problem ψ(x, t) = (1 +
i)t2 sin(πx). The results of this example are demonstrated in Tables 1 and 2 and,
Figures 1 and 2. The errors of the real part and imaginary part of the approximate
solution for different choices of α(x, t) are listed in Tables 1 and 2. Also, the
graphical representations of the absolute error of the real part and imaginary part
of the approximate solution for various values of α(x, t) and M,N are shown in
Figures 1 and 2. As you see in the results, the error tends to zero as the basis
functions term increases.
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Table 1. Errors of the real part and imaginary part of the approximate solution with α(x, t) = 0.5,
β = 1.3 and N = 3 of Example 8.1.

Re-part Im-part

M L2-error L∞-error RMS L2-error L∞-error RMS

3 4.4717× 10−3 2.7221× 10−3 1.3482× 10−3 3.3273× 10−3 2.1918× 10−3 1.0032× 10−3

5 1.0074× 10−4 5.7579× 10−5 3.0377× 10−5 7.2466× 10−5 4.3899× 10−5 2.1849× 10−5

7 1.4873× 10−6 7.7813× 10−7 4.4845× 10−7 1.0555× 10−6 6.0691× 10−7 3.1824× 10−7

Table 2. Errors for the real part and imaginary part of the approximate solution with α(x, t) =
1− 0.5 exp(−xt), β = 1.6 and N = 3 of Example 8.1.

Re-part Im-part

M L2-error L∞-error RMS L2-error L∞-error RMS

3 3.8396× 10−3 2.3418× 10−3 1.1576× 10−3 2.5550× 10−3 1.7257× 10−3 7.7036× 10−4

5 9.0530× 10−5 5.2245× 10−5 2.7295× 10−5 5.8825× 10−5 3.6780× 10−5 1.7736× 10−5

7 1.4124× 10−6 7.4366× 10−7 4.2587× 10−7 9.1203× 10−7 5.0859× 10−7 2.7498× 10−7

Figure 1. The absolute error of the real part (left) and imaginary part of the approximate solution
(right) obtained with α(x, t) = 0.2, β = 1.8 and M = N = 3 of Example 8.1.

Figure 2. The absolute error of the real part (left) and imaginary part of the approximate solution
(right) obtained with α(x, t) = 0.2, β = 1.8 and M = 3, N = 7 of Example 8.1.

Example 8.2. We consider the following linear VO-CR-time-space fractional
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Table 3. Errors for the real part and imaginary part of the approximate solution with α(x, t) = 1 and
β = 1.9 of Example 8.2.

Present method

Re-part Im-part

M = N L2-error L∞-error L2-error L∞-error

3 7.8761× 10−4 5.4589× 10−3 2.9942× 10−3 1.6666× 10−3

5 2.32139× 10−5 1.1740× 10−5 6.1491× 10−5 3.1698× 10−5

7 2.6602× 10−7 1.3291× 10−7 8.8129× 10−7 4.2117× 10−7

Jacobi-Gauss-Lobatto collocation method [4]

Re-part Im-part

M L∞-error L∞-error

5 1.987× 10−3 1.423× 10−3

10 1.725× 10−7 1.355× 10−7

Schrödinger equation:

iD
α(x,t)
t ψ(x, t) =

∂β

∂|x|β
ψ(x, t) +R(x, t), 0 < α(x, t) ≤ 1, 1 < β < 2,

subject to the initial condition ψ(x, 0) = sin(πx) and boundary conditions ψ(0, t) =
ψ(1, t) = 0. The corresponding R(x, t) are computed according to the analytical
solution of the problem ψ(x, t) = sin(πx) exp(it). Tables 3 and 4 show the numerical
results of this example. In Table 3, the least square error and maximum absolute
error for the real and imaginary parts of the approximate solution are presented.
Also, the comparison of the maximum absolute error obtained with the present
method and the Jacobi-Gauss-Lobatto collocation method [4] are listed in Table
3. The results from this table demonstrate that the proposed method, with fewer
basis functions, achieves higher accuracy compared to the Jacobi-Gauss-Lobatto
collocation method. In addition, the absolute errors of the real and imaginary parts
of the approximate solution for different choices of α(x, t) are presented in Table 4.

Example 8.3. We consider the following nonlinear VO-C-time-fractional
Schrödinger equation:

iD
α(x,t)
t ψ(x, t) +

∂2

∂x2
ψ(x, t) + |ψ|2ψ(x, t) = R(x, t), 0 < α(x, t) ≤ 1,

subject to the initial condition ψ(x, 0) = x2(1 − x)2 and boundary conditions
ψ(0, t) = ψ(1, t) = 0. The R(x, t) are computed according to the analytical solu-
tion of the problem ψ(x, t) = x2(1− x)2 exp(it). To demonstrate the role of α(x, t)
and the numbers of basis functions M and N , we present the least square error,
maximum absolute error and root mean square error in Table 5. From Table 5, it
is evident that, as N is increased, the error decreases. Figures 3 and 4 depict the
approximation of the real and imaginary parts at various times and the absolute
error of the real and imaginary parts at t = 1. These graphical representations
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Table 4. The absolute errors for the real part and imaginary part of the approximate solution with
β = 1.5 and M = N = 5 of Example 8.2.

α(x, t) = 0.2 α(x, t) = 0.8 α(x, t) = 0.8 + 0.005 cos(xt) sin(x)

x = t Re-part Im-part Re-part Im-part Re-part Im-part

0 0 0 0 0 0 0

0.1 3.1776× 10−7 4.6641× 10−6 1.8043× 10−6 3.5307× 10−6 1.8075× 10−6 3.5184× 10−6

0.2 3.9903× 10−7 1.5134× 10−5 4.7357× 10−6 1.4212× 10−5 4.7683× 10−6 1.4199× 10−5

0.3 2.0039× 10−7 2.2976× 10−5 5.9877× 10−6 2.4002× 10−5 6.0383× 10−6 2.4021× 10−5

0.4 1.3342× 10−6 3.3407× 10−5 3.7771× 10−6 3.6019× 10−5 3.8048× 10−6 3.6068× 10−5

0.5 4.4978× 10−6 4.4553× 10−5 7.9589× 10−7 4.7561× 10−5 8.0365× 10−7 4.7606× 10−5

0.6 7.5601× 10−6 4.9310× 10−5 4.8053× 10−6 5.2204× 10−5 4.8211× 10−6 5.2223× 10−5

0.7 1.1339× 10−5 5.1813× 10−5 9.4364× 10−6 5.4661× 10−5 9.4379× 10−6 5.4668× 10−5

0.8 1.7803× 10−5 5.6819× 10−5 1.7176× 10−5 5.9252× 10−5 1.7175× 10−5 5.9267× 10−5

0.9 1.5003× 10−5 3.8325× 10−5 1.5203× 10−5 3.9571× 10−5 1.5210× 10−5 3.9583× 10−5

1.0 6.8921× 10−40 2.5029× 10−40 4.9177× 10−40 1.3076× 10−40 3.8988× 10−40 1.3752× 10−40

indicate that the approximate solutions have excellent agreement with the exact
solution.

Table 5. Errors for the real part and imaginary part of the approximate solution with M = 4 of
Example 8.3.

α(x, t) = 0.2

N = 2 N = 4

Re-part Im-part Re-part Im-part

L2-error 2.5022× 10−5 1.1653× 10−5 3.5619× 10−8 1.8414× 10−8

L∞-error 1.6434× 10−5 7.8161× 10−6 2.5915× 10−8 1.4345× 10−8

RMS 7.5446× 10−6 3.5137× 10−6 1.0739× 10−8 5.5523× 10−9

α(x, t) = 0.85

N = 2 N = 4

Re-part Im-part Re-part Im-part

L2-error 4.2045× 10−5 3.6184× 10−5 1.8133× 10−7 1.8523× 10−7

L∞-error 2.1635× 10−5 2.2711× 10−5 1.0943× 10−7 1.0162× 10−7

RMS 1.2677× 10−5 1.0910× 10−5 5.4673× 10−8 5.5851× 10−8

α(x, t) = 3+sin(x) cos(t)
4

N = 2 N = 4

Re-part Im-part Re-part Im-part

L2-error 3.0901× 10−5 2.3907× 10−5 5.3283× 10−8 5.5854× 10−8

L∞-error 1.7922× 10−5 1.4965× 10−5 2.6443× 10−8 3.2744× 10−8

RMS 9.3172× 10−6 7.2082× 10−6 1.6065× 10−8 1.6841× 10−8

Example 8.4. We consider the following nonlinear VO-CR-time-space fractional
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Figure 3. The approximation of the real part at different time (left) and absolute error of real part at
t = 1 (right) for α(x, t) = 0.5 and M = 4, N = 5 of Example 8.3.
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Figure 4. The approximation of the imaginary part at different time (left) and absolute error of
imaginary part at t = 1 (right) for α(x, t) = 0.5 and M = 4, N = 5 of Example 8.3.

Schrödinger equation [25]:

iD
α(x,t)
t ψ(x, t)

=− ∂β

∂|x|β
ψ(x, t)− 2|ψ|2ψ(x, t) +R(x, t), 0 < α(x, t) ≤ 1, 1 < β < 2,

subject to the initial condition ψ(x, 0) = 0 and boundary conditions ψ(0, t) =
ψ(1, t) = 0. The corresponding R(x, t) are computed according to the analytical
solution of the problem ψ(x, t) = t3x2(1−x)2. The comparison of least square error
obtained by the present scheme and finite difference method [25] are represented in
Table 6. Based on the results from the table, it can be concluded that the proposed
method exhibits greater accuracy compared to the finite difference method. More-
over, the approximation of the real and imaginary parts at various times and the
absolute error of the real and imaginary parts at t = 1 are depicted in Figures 5
and 6. In Figures 5 and 6 (right), we demonstrated the behavior of the approximate
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solution in different values of time t with various choices of α(x, t). In addition, to
illustrate the accuracy of the method, we plotted the absolute error in Figures 5
and 6 (left).

Table 6. L2-error of the approximate solution obtained with M = 4, N = 3 and α(x, t) = 0.2 of
Example 8.4.

β = 1.3 β = 1.5 β = 1.7 β = 1.9

Present method 6.7511× 10−15 4.1838× 10−13 3.7891× 10−13 9.0541× 10−13

Finite difference method [25] with h = 1
128 8.4784× 10−6 8.6193× 10−6 9.1175× 10−6 1.0282× 10−5
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Figure 5. The approximation at different time (left) and absolute error at t = 1 (right) for α(x, t) = 0.5,
β = 1.5 and M = 4, N = 5 of Example 8.4.
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Figure 6. The approximation at different time (left) and absolute error at t = 1 (right) for α(x, t) =
2+sin(xt)

400 , β = 1.5 and M = 4, N = 5 of Example 8.4.

Example 8.5. We consider the following nonlinear VO-C-time fractional
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Schrödinger equation [25]:

iD
α(x,t)
t ψ(x, t) +

∂2

∂x2
ψ(x, t) + |ψ|2ψ(x, t) + sin(x)ψ(x, t)

=R(x, t), 0 < α(x, t) ≤ 1,

subject to the initial condition ψ(x, 0) = 0 and boundary conditions ψ(0, t) =
t3, ψ(1, t) = t3 exp(i). The corresponding R(x, t) are computed according to the
analytical solution of the problem ψ(x, t) = t3 exp(ix). According to the proposed
method, we assume

∂3U
∂x2∂t

(x, t) ' PT (x)AP (t),
∂3V
∂x2∂t

(x, t) ' PT (x)BP (t).

Then, by integrating from the above relation with respect to t and x, respectively.
We infer

∂2U
∂x2

(x, t) ' PT (x)A
(

Υ̃P (t) + Ỹ (t)
)
,

∂2V
∂x2

(x, t) ' PT (x)B
(

Υ̃P (t) + Ỹ (t)
)
,

and

∂U
∂x

(x, t) '
(
PT (x)ΥT + Y T (x)

)
A
(

Υ̃P (t) + Ỹ (t)
)

+
∂U
∂x

(0, t), (8.1)

∂V
∂x

(x, t) '
(
PT (x)ΥT + Y T (x)

)
B
(

Υ̃P (t) + Ỹ (t)
)

+
∂V
∂x

(0, t).

In view of the method, we obtain

∂U
∂x

(0, t) ' t3 cos(1)− t3 −
(∫ 1

0

PT (x)dxΥT +

∫ 1

0

Y T (x)dx

)
A
(

Υ̃P (t) + Ỹ (t)
)
,

∂V
∂x

(0, t) ' t3 sin(1)−
(∫ 1

0

PT (x)dxΥT +

∫ 1

0

Y T (x)dx

)
B
(

Υ̃P (t) + Ỹ (t)
)
. (8.2)

By substituting Eq. (8.2) in Eq. (8.1), we get

∂U
∂x

(x, t) '
(
PT (x)ΥT + Y T (x)

)
A
(

Υ̃P (t) + Ỹ (t)
)

+ t3 cos(1)− t3

−
(∫ 1

0

PT (x)dxΥT +

∫ 1

0

Y T (x)dx

)
A
(

Υ̃P (t) + Ỹ (t)
)
,

∂V
∂x

(x, t) '
(
PT (x)ΥT + Y T (x)

)
B
(

Υ̃P (t) + Ỹ (t)
)

+ t3 sin(1)

−
(∫ 1

0

PT (x)dxΥT +

∫ 1

0

Y T (x)dx

)
B
(

Υ̃P (t) + Ỹ (t)
)
.

Therefore, by integrating the above formula with respect to x, we obtain the real
and imaginary parts of the approximate solution as follows:

U(x, t)

'
([
PT (x)ΥT + Y T (x)

]
ΥT + ZT (x)

)
A
(

Υ̃P (t) + Ỹ (t)
)

(8.3)

+x

(
t3 cos(1)− t3 −

(∫ 1

0

PT (x)dxΥT +

∫ 1

0

Y T (x)dx

)
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×A
(

Υ̃P (t) + Ỹ (t)
))

+ t3,

V(x, t)

'
([
PT (x)ΥT + Y T (x)

]
ΥT + ZT (x)

)
B
(

Υ̃P (t) + Ỹ (t)
)

+x

(
t3 sin(1)−

(∫ 1

0

PT (x)dxΥT +

∫ 1

0

Y T (x)dx

)
B
(

Υ̃P (t) + Ỹ (t)
))

.

With the assistance of the pseudo operational matrix of VO-CF-derivative and Eq.
(8.3), we obtain:

D
α(x,t)
t U(x, t)

'
([
PT (x)ΥT + Y T (x)

]
ΥT + ZT (x)

)
A
(
t1−α(x,t)Υ̃Λ(x, t)P (t) +W (t)

)
+x

(
Γ(4)

Γ(4− α(x, t))
t3−α(x,t) cos(1)− Γ(4)

Γ(4− α(x, t))
t3−α(x,t)

−
(∫ 1

0

PT (x)dxΥT +

∫ 1

0

Y T (x)dx

)
A
(
t1−α(x,t)Υ̃Λ(x, t)P (t) +W (t)

))
+

Γ(4)

Γ(4− α(x, t))
t3−α(x,t),

and

D
α(x,t)
t V(x, t)

'
([
PT (x)ΥT + Y T (x)

]
ΥT + ZT (x)

)
B
(
t1−α(x,t)Υ̃Λ(x, t)P (t) +W (t)

)
+x

(
Γ(4)

Γ(4− α(x, t))
t3−α(x,t) sin(1)−

(∫ 1

0

PT (x)dxΥT +

∫ 1

0

Y T (x)dx

)
B

×
(
t1−α(x,t)Υ̃Λ(x, t)P (t) +W (t)

))
.

Also, by utilizing the modified operational matrices of RF-derivative and Eq. (8.3),
we get

∂β

∂|x|β
U(x, t)

'
([{

x−βPT (x)ΘT + (1− x)−βPT (x)∆T
}

ΥT +
∂β

∂|x|β
Y T (x)

]
ΥT +

∂β

∂|x|β
ZT (x)

)
×A

(
Υ̃P (t) + Ỹ (t)

)
+

{
∂β

∂|x|β
x

}(
t3 cos(1)− t3 −

(∫ 1

0
PT (x)dxΥT +

∫ 1

0
Y T (x)dx

)
A
(

Υ̃P (t) + Ỹ (t)
))

+t3

{
1

2 cos πβ
2

(
1

Γ(1− β)
x−β +

1

Γ(1− β)
(1− x)−β

)}
,

and

∂β

∂|x|β
V(x, t)

'
([{

x−βPT (x)ΘT + (1− x)−βPT (x)∆T
}

ΥT +
∂β

∂|x|β
Y T (x)

]
ΥT +

∂β

∂|x|β
ZT (x)

)
×B

(
Υ̃P (t) + Ỹ (t)

)
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Table 7. Errors for the real part and imaginary part of the approximate solution with α(x, t) =
2+sin(xt)

400
and N = 3 of Example 8.5.

M = 3 M = 6

Re-part Im-part Re-part Im-part

L2-error 9.1663× 10−7 6.1757× 10−7 1.0753× 10−11 2.1291× 10−11

L∞-error 6.9541× 10−7 4.6015× 10−7 9.3471× 10−12 1.7410× 10−11

RMS 2.7637× 10−7 1.8621× 10−7 3.2422× 10−12 6.4197× 10−12

+

{
∂β

∂|x|β
x

}(
t3 sin(1)−

(∫ 1

0
PT (x)dxΥT +

∫ 1

0
Y T (x)dx

)
B
(

Υ̃P (t) + Ỹ (t)
))

.

Finally, by substituting the aforementioned approximation relations into the prob-
lem, we obtain a system of equations. By considering the proposed method for
α(x, t) = 0.75 + 0.2 exp(−xt) and M = N = 3, we obtain

U(x, t)

= 4.48254715× 10−7tx3 − 9.32423071× 10−8tx2 − 2.16448669× 10−8tx4

−2.97548156× 10−9tx5 − 1.35588257× 10−7tx+ 7.93509567× 10−7t2x2

−2.275562× 10−6t2x3 − 0.49951534t3x2 + 1.65741381× 10−6t2x4

−2.17917575× 10−3t3x3 + 2.86803747× 10−6t4x2 − 3.77099928× 10−7t2x5

+0.045994907t3x4 − 1.08899919× 10−5t4x3 − 0.00396327t3x5

+6.32634849× 10−6t4x4 − 6.24147275× 10−7t4x5 + 2.01739089× 10−7t2x

−3.48113691× 10−5t3x+ 2.31975325× 10−6t4x+ t3,

and

V(x, t)

= 3.25696787× 10−7tx3 − 2.17428054× 10−8tx2 − 5.385105192× 10−9tx4

−1.01640368× 10−7tx5 − 1.96928508× 10−7tx+ 7.41767571× 10−7t2x2

−3.48209618× 10−6t2x3 + 2.06107326× 10−4t3x2 + 1.42413001× 10−7t2x4

−0.167553541t3x3 + 1.98394158× 10−7t4x2 + 1.01522004× 10−6t2x5

+0.00158145t3x4 − 2.45692854× 10−6t4x3 + 0.00725267t3x5

−4.08437306× 10−6t4x4 + 3.43564331× 10−6t4x5

+1.58269557× 10−6t2x+ 0.99998429t3x+ 2.90726414× 10−6t4x.

Table 7 displays the least square error, maximum absolute error and root mean

square error for a different choice of M with α(x, t) = 2+sin(xt)
400 and N = 3. Also,

the absolute error of the real part and imaginary part of the approximate solution
are illustrated in Figure 7. From this table, it can be concluded that by increasing
the value of basis functions M , the error tends to zero. Furthermore, we listed the
convergence order for different values of M in Table 8. Table 8 indicates more Pell
polynomials improve the accuracy rapidly.
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Table 8. Convergence order for the real part and imaginary part of the approximate solution with

α(x, t) =
2+sin(xt)

400 and N = 3 of Example 8.5.

x = t M = 3, M̄ = 6 M = 5, M̄ = 6

Re-part Im-part Re-part Im-part

0.2 8.815267 9.305897 14.482894 11.929048

0.4 9.658216 10.297097 16.332050 14.076232

0.6 10.047746 10.395906 16.186109 14.549069

0.8 9.736902 9.277343 14.541508 11.814301

Figure 7. The absolute error of the real part (left) and imaginary part (right) of approximate solution
obtained with α(x, t) = 0.75 + 0.2 exp(−xt) and M = 6, N = 3 of Example 8.5.

9. Conclusion

This paper deals with the discretization method combined with Pell polynomials
for solving variable-order Caputo-Riesz time-space fractional Schrödinger equations.
In order to achieve an accurate and convenient technique for solving the proposed
problem, we applied a novel method to obtain the operational matrix. It is also
worth mentioning that the algorithm considered in this study leads to the con-
version of the problem into a system of equations. Finally, several test problems
have been included to demonstrate the validity and accuracy of the numerical tech-
nique. Furthermore, the obtained results have been compared with those from the
Jacobi-Gauss-Lobatto collocation method [4] and the finite difference method [25].
The proposed technique offers several advantages, including the accurate relation-
ship between Pell polynomials and Taylor polynomials, as well as accurate opera-
tional matrices. These properties contribute to the superiority of this method when
compared to the Jacobi-Gauss-Lobatto collocation method and the finite difference
method. The comparison tables clearly show that the Pell spectral method yields
more accurate results compared to the two aforementioned methods.
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