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1. Introduction

Let m ∈ N. The m-th iterated commutator of singular integral is defined as

TmΩ,b(f)(x) = lim
ε→0+

TmΩ,b,ε(f)(x),

where

TmΩ,b,ε(f)(x) =

∫
|x−y|>ε

Ω(x− y)

|x− y|n
(b(x)− b(y))mf(y)dy.

Here b ∈ BMO(Rn) and Ω ∈ L1(Sn−1) is homogeneous of zero and satisfies∫
Sn−1

Ω(θ)dσ(θ) = 0. (1.1)

For convenience, we denote TmΩ,b = TΩ,b for m = 1 and TmΩ,b = TΩ for m = 0. Let
TΩ = {TΩ,ε}ε>0 and T mΩ,b = {TmΩ,b,ε}ε>0. For ρ > 2, the ρ-variation operator of TΩ

is defined by

Vρ(TΩ)(f)(x) := sup
εi↘0

( ∞∑
i=1

∣∣∣ ∫
εi+1<|x−y|≤εi

Ω(x− y)

|x− y|n
f(y)dy

∣∣∣ρ)1/ρ

,
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where the above sup is taken over all sequences {εi} decreasing to zero. Analogously,
the ρ-variation operator of T mΩ,b can be given as

Vρ(T mΩ,b)(f)(x)

:= sup
εi↘0

( ∞∑
i=1

∣∣∣ ∫
εi+1<|x−y|≤εi

(b(x)− b(y))m
Ω(x− y)

|x− y|n
f(y)dy

∣∣∣ρ)1/ρ

,

where the above sup is taken over all sequences {εi} decreasing to zero. For conve-
nience, we denote Vρ(T mΩ,b) = Vρ(TΩ) when m = 0.

Over the last several years, a considerable amount of research has been done
to study variational inequalities of various integral operators. This study was ini-
tiated by Lépingle [18] who established the variational inequality for general mar-
tingales (see [23] for a simple proof). Similar variational inequalities for the er-
godic averages were obtained by Bourgain [1] via Lépingle’s result. Since then,
Bourgain’s work has inaugurated a lot of investigations on the variational inequal-
ities in harmonic analysis (see [3, 5, 6, 8, 14, 19, 20, 22]). The study of the variation
operators for rough singular integrals began with Campbell, Jones, Reinhdd and
Wierdl [3] who established the Lp(Rn) (1 < p < ∞) bounds for Vρ(TΩ), provided
that Ω ∈ L log+ L(Sn−1). This result was essentially improved by Ding, Hong and
Liu [8] to the case Ω ∈ H1(Sn−1) since L log+ L(Sn−1) ( H1(Sn−1), which is a
proper inclusion. The weighted result for Vρ(TΩ) was first studied by Ma, Torrea
and Xu [22] who proved that Vρ(TΩ) is bounded on Lp(w) for 1 < p < ∞ and
w ∈ Ap(Rn), provided that Ω ∈ Lipα(Sn−1) for α > 0. Later on, the above re-
sult was improved by Chen, Ding, Hong and Liu [5] to the case Ω ∈ Lq(Sn−1) for
some q > 1. More precisely, the authors of [5] showed that if Ω ∈ Lq(Sn−1) for
some q > 1 satisfying (1.1), then Vρ(TΩ) is bounded on Lp(w) for q′ < p < ∞ and
w ∈ Ap/q′(Rn). For the commutators of rough singular integrals, Chen, Ding, Hong
and Liu [6] proved that if b ∈ BMO(Rn) and Ω ∈ Lq(Sn−1) for some q > 1 satisfy-
ing (1.1), then Vρ(TΩ,b) is bounded on Lp(w) for q′ < p < ∞ and w ∈ Ap/q′(Rn).
Recently, Liu and Cui [19] investigated the boundedness and compactness for the
ρ-variation operators for commutators of singular integrals on the weighted Mor-
rey spaces. For more progresses on commutators of some integrals, we refer to the
papers [2, 4, 10,11,13,25,26].

Let us recall the definition of weighted Morrey spaces.

Definition 1.1. (Weighed Morrey spaces). Let 1 ≤ p <∞ and 0 ≤ β < 1. For
a weight w defined on Rn, the weighted Morrey space Mp,β(w) is defined by

Mp,β(w) := {f ∈ Lploc(w) : ‖f‖Mp,β(w) <∞},

where

‖f‖Mp,β(w) := sup
B balls in Rn

( 1

w(B)β

∫
B

|f(x)|pw(x)dx
)1/p

,

where the supremum is taken over all balls in Rn.

The weighted Morrey spaces Mp,β(w) were originally introduced by Komori and
Shirai [16] who established the bounds for the Hardy–Littlewood maximal operator,
fractional integral operator and the Calderón–Zygmund singular integral operator
on Mp,β(w). When β = 0, the space Mp,β(w) is just the classical weighted Lebesgue
space Lp(w). When w ≡ 1, the space Mp,β(w) reduces to the classical Morrey
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space Mp,β(Rn). More progresses on Morrey spaces were much investigated in
[12,15,24,27,28].

We now introduce partial result of [19] as follows.

Theorem A ( [19]). Let Ω ∈ Lipα(Sn−1) for some α > 0 and Ω satisfy (1.1). Let
ρ > 2, 1 < p <∞, 0 ≤ β < 1 and w ∈ Ap(Rn). Then

(i) If m ∈ N and b ∈ BMO(Rn), then

‖Vρ(T mΩ,b)(f)‖Mp,β(w) ≤ C‖b‖mBMO(Rn)‖f‖Mp,β(w), ∀f ∈Mp,β(w).

(ii) If m ∈ N \ {0} and b ∈ CMO(Rn), then Vρ(T mΩ,b) is a compact operator on

Mp,β(w).

It is well known that

Lipα(Sn−1) ( Lq(Sn−1), ∀α > 0, 1 < q ≤ ∞.

Note that the above inclusion relationship is proper. Very recently, Zhang, Liu
and Zhang [30] investigated the boundedness and compactness for the ρ-variation
operators for commutators of singular integrals on Morrey spaces. In order to
introduce the main result of [30], let us introduce one notation. Let 1 ≤ q <∞ and
set

F (q) :=

∫ 1

0

wq(δ)

δ
(1 + | log δ|)dδ <∞. (1.2)

Here wq(δ) denotes the integral continuous modulus of Ω of degree q defined by

wq(δ) := sup
‖ρ‖<δ

(∫
Sn−1

|Ω(τx′)− Ω(x′)|qdσ(x′)
)1/q

and τ is a rotation in Rn and ‖τ‖ := supx′∈Sn−1 |τx′ − x′|. The main result of [30]
can be listed as follows.

Theorem B ( [30]). Let m ∈ N, ρ > 2, 0 ≤ β < 1 and 1 < p < ∞. Let
Ω ∈ Lq(Sn−1) for some q > 1 satisfying (1.1).

(i) If b ∈ BMO(Rn), then

‖Vρ(T mΩ,b)(f)‖Mp,β(Rn) .n,p,β,m ‖b‖mBMO(Rn)‖f‖Mp,β(Rn), ∀f ∈Mp,β(Rn).

(ii) If b ∈ CMO(Rn) and F (1) < ∞, then Vρ(T mΩ,b) is a compact operator on

Mp,β(Rn).

Based on the above, it is natural to ask the following

Question 1.2. Does Theorem A hold if Ω ∈ Lq(Sn−1) for some q > 1?

This question can be addressed by the following result.

Theorem 1.1. Let m ∈ N \ {0}, ρ > 2, 0 ≤ β < 1 and 1 < p < ∞. Let
Ω ∈ Lq(Sn−1) for some q > 1 satisfying (1.1), q′ < p < ∞ and w ∈ Ap/q′(Rn).
Then

(i) The operator Vρ(TΩ) is bounded on Mp,β(w).
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(ii) If b ∈ BMO(Rn), then

‖Vρ(T mΩ,b)(f)‖Mp,β(w) .n,p,β,m ‖b‖mBMO(Rn)‖f‖Mp,β(w), ∀f ∈Mp,β(w).

Theorem 1.2. Let m ∈ N \ {0}, ρ > 2, 0 ≤ β < 1 and 1 < p < ∞. Let
Ω ∈ Lq(Sn−1) for some q > 1 satisfying (1.1), q′ < p < ∞ and w ∈ Ap/q′(Rn). If

b ∈ CMO(Rn) and F (q) <∞, then Vρ(T mΩ,b) is a compact operator on Mp,β(w).

Remark 1.1. There are some remarks as follows:

(i) It should be pointed out that the condition F (q) <∞ was firstly introduced
by Chen, Ding and Wang [7] who proved that if b ∈ CMO(Rn) and F (q) <∞,
then TΩ,b is a compact operator on Mp,β(Rn), provided that 0 < β < 1,
1 < p <∞ and Ω ∈ Lq(Sn−1) with q > 1/(1− β) satisfying (1.1).

(ii) We remark that the conditions Ω ∈ Lq(Sn−1) for some q ∈ (1,∞] and F (q) <
∞ are strictly weaker than the condition Ω ∈ Lipα(Sn−1) with some α > 0.
Thus, Theorems 1.1 and 1.2 essentially improve the conclusions of Theorem
A when q =∞.

(iii) Theorems 1.1 and 1.2 can be regarded as the weighted version of Theorem
B.

(iv) When β = 0, Theorem 1.2 implies the compactness of Vρ(T mΩ,b) with m ≥ 1
on Lp(w), which is new, even in the special case m = 1.

(v) When 0 < β < 1, Theorems 1.1 and 1.2 are new, even in the special case
m = 0.

(vi) Note that Lq(Sn−1) ( L(log+ L)β(Sn−1) ( H1(Sn−1) for any q > 1 and
β ≥ 1. It is unknown whether the corresponding results in Theorems 1.1 and
1.2 also hold under the condition that Ω ∈ L(log+ L)α(Sn−1) for some α ≥ 1
or more generally Ω ∈ H1(Sn−1)?

(vii) The corresponding results also hold for TmΩ,b under the same conditions of
Theorem 1.1.

Actually, we shall prove Theorem 1.1 by establishing a more general result. Let
us give one definition.

Definition 1.3. Let m ≥ 1 and ~b = (b1, . . . , bm) be a suitable vector function. Let
T m

Ω,~b
= {Tm

Ω,~b,ε
}ε>0 with m ≥ 1, where Tm

Ω,~b,ε
is given by

Tm
Ω,~b,ε

(f)(x) =

∫
|x−y|>ε

m∏
j=1

(bj(x)− bj(y))K(x, y)f(y)dy.

For ρ > 2, the ρ-variation operators of T m
Ω,~b

is defined by

Vρ(T mK,~b)(f)(x) := sup
εi↘0

( ∞∑
i=1

∣∣∣ ∫
εi+1<|x−y|≤εi

m∏
j=1

(bj(x)− bj(y))K(x, y)f(y)dy
∣∣∣ρ)1/ρ

,

where the above sup is taken over all sequences {εi} decreasing to zero. Clearly,
Vρ(T mΩ,~b) = Vρ(T mΩ,b) if bj = b for all 1 ≤ j ≤ m.

Theorem 1.1 follows from the following result.
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Theorem 1.3. Let m ∈ N, ρ > 2, 0 ≤ β < 1 and 1 < p < ∞. Let Ω ∈ Lq(Sn−1)

for some q > 1 satisfying (1.1). Let ~b = (b1, . . . , bm) with each bj ∈ BMO(Rn). If
q′ < p <∞ and w ∈ Ap/q′(Rn), then

‖Vρ(T mΩ,~b)(f)‖Mp,β(w) .n,p,β,m

m∏
j=1

‖bj‖BMO(Rn)‖f‖Mp,β(w), ∀f ∈Mp,β(w). (1.3)

Remark 1.2. By a slight modification of the proof of Theorem 1.2, it is not difficult
to conclude that the compactness result of Theorem 1.2 also holds in the multilinear
setting. That is, if ~b = (b1, . . . , bm) with each bj ∈ CMO(Rn), then Vρ(T mΩ,~b) is a

compact operator on Mp,β(w) for q′ < p < ∞ and w ∈ Ap/q′(Rn), provided that
Ω ∈ Lq(Sn−1) for some q > 1 satisfying (1.1) and F (q) <∞.

Remark 1.3. We believe this is the first time that such the boundedness and
compactness for variation operators for commutators of rough singular integrals on
weighted Morrey spaces are studied.

The rest of this paper is organized as follows. In Section 2 we present the proof
of Theorem 1.3. The proof of Theorem 1.2 will be given in Section 3. We would
like to point out that Theorem 1.3 is based on a criterion on the weighted Mor-
rey space boundedness of a class of operators (see Proposition 2.1). The proof
of Theorem 1.2 is based on Theorem 1.3, some approximation arguments followed
from [29], smooth truncated techniques followed from [17], some compactness char-
acterizations of Lp(w) and Mp,β(w) and some known techniques following from [19].
However, some new techniques are needed in the weighted setting. The main novelty
is on how to accommodate these ideas to prove the main results.

2. Proof of Theorem 1.3

Before establishing the proof of Theorem 1.3, let us present some notation and
lemmas, which are the ingredients of proving Theorem 1.3.

Throughout this paper, the letter C or c, sometimes with certain parameters,
will stand for positive constants not necessarily the same one at each occurrence,
but are independent of the essential variables. If there exists a constant c > 0
depending only on ϑ such that A ≤ cB, we then write A .ϑ B. For any p ∈ (1,∞),
we let p′ denote the dual exponent to p defined as 1/p+ 1/p′ = 1. For x ∈ Rn and
r > 0, we denote by B(x, r) the open ball centered at x with radius r. For t > 0 and

B := B(x, r) with x ∈ Rn and r > 0, we denote tB = B(x, tr). Let ~b = (b1, . . . , bm)
and Q be a cube of Rn. For 1 ≤ j ≤ m, we denote bj,Q = 1

|Q|
∫
Q
bj(x)dx. Let

A ⊂ Rn, we use χA to denote the characteristic function on A. We now introduce
an useful inequality:

( ∞∑
i=1

∣∣∣ ∫
εi+1<|x−y|≤εi

F (x, y)dy
∣∣∣ρ)1/ρ

≤
∫
Rn
|F (x, y)|dy, (2.1)

for all x ∈ Rn, any arbitrary functions F defined on Rn×Rn, where ρ > 1 and {εi}
is an increasing or decreasing sequence of positive numbers.

We start with the definition of Ap weight class.
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Definition 2.1. (Ap weight). A weight is a nonnegative, locally integrable func-
tion on Rn that takes values in (0,∞) almost everywhere. For 1 < p <∞, a weight
w is said to be in the Muckenhoupt weight class Ap(Rn) if there exists a positive
constant C such that

sup
Q cubes in Rn

( 1

|Q|

∫
Q

w(x)dx
)( 1

|Q|

∫
Q

w(x)1−p′dx
)p−1

≤ C. (2.2)

The smallest constant C in inequality (2.2) is the corresponding Ap constant of w,
which is denoted by [w]Ap .

We now recall the definition of BMO(Rn).

Definition 2.2. (BMO(Rn) space). The BMO(Rn) space is given by

BMO(Rn) := {f ∈ L1
loc(Rn) : ‖f‖BMO(Rn) := ‖M ]f‖L∞(Rn) <∞},

where M ] is the sharp maximal function, i.e.

M ]f(x) = sup
Q3x

1

|Q|

∫
Q

|f(y)− fQ|dy,

where the supremum is taken over all cubes Q in Rn that contain the given point
x.

The following result presents some properties for Ap(Rn) weights and BMO(Rn)
functions, which are very useful in the proofs of main results.

Lemma 2.1. ( [19]). Let 1 < p <∞ and w ∈ Ap(Rn). Then

(i) There exists a constant θ ∈ (0, 1) such that w1+θ ∈ Ap(Rn). Both θ and
[w1+θ]Ap depend only on n, p and the Ap constant of w.

(ii) There exists a constant ε ∈ (0, 1) such that w ∈ Ap−ε(Rn).

(iii) The measure w(x)dx is doubling, i.e. for all λ > 1 we have

sup
Q cubes in Rn

w(λQ)

w(Q)
≤ [w]Apλ

np.

(iv) There exists a constant γw > 1 such that

inf
Q cubes in Rn

w(2Q)

w(Q)
≥ γw.

(v) If b ∈ BMO(Rn), then

sup
Q cubes in Rn

( 1

w(Q)

∫
Q

|b(x)− bQ|pw(x)dx
)1/p

'p,[w]Ap
‖b‖BMO(Rn).

For convenience, we always use the weighted Morrey spaces associated to cubes.
Let 1 ≤ p <∞ and 0 ≤ β < 1. For a weight w defined on Rn, the weighted Morrey
space associated to cubes is defined by

M̃p,β(w) := {f ∈ Lploc(w) : ‖f‖
M̃p,β(w)

<∞},



Variation operators for commutators of rough singular integrals 269

where

‖f‖
M̃p,β(w)

:= sup
Q cubes in Rn

( 1

w(Q)β

∫
Q

|f(x)|pw(x)dx
)1/p

,

where the supremum is taken over all cubes in Rn. In [19], the authors pointed out

that if the weight w is doubling, then M̃p,β(w) = Mp,β(w), i.e.

‖f‖
M̃p,β(w)

' ‖f‖Mp,β(w). (2.3)

For Ω ∈ L1(Sn−1), the maximal operator with rough kernel Ω is defined by

MΩ(f)(x) = sup
r>0

1

rn

∫
|y|≤r

|Ω(y′)f(x− y)|dy.

The following lemmas were proved by Lu, Ding and Yan [21].

Lemma 2.2. ( [21]). Let Ω ∈ Lq(Sn−1) for some q > 1 satisfying (1.1). If q′ <
p <∞ and w ∈ Ap/q′(Rn), then MΩ is bounded on Lp(w).

Lemma 2.3. ( [21]). Let Ω ∈ Lq(Sn−1) for some q ∈ [1,∞) satisfying (1.1). Then
for R > 0, there exists a constant C > 0 independent of R such that for x ∈ Rn
with |x| < R/2,

(∫
R<|y|<2R

∣∣∣Ω(y − x)

|y − x|n
− Ω(y)

|y|n
∣∣∣qdy)1/q

≤ CR−
n
q′
( |x|
R

+

∫ |x|/R
|x|/(2R)

wq(δ)

δ
dδ
)
.

Here wq(δ) is given as in Theorem 1.1.

Applying Lemma 2.3, we have

Lemma 2.4. Let η > 0 and |h| < η
4e
−1/η. Suppose that Ω satisfies (1.1) and

F (q) < ∞ with q ∈ (1,∞). Then there exists a constant C > 0 independent of η
and h such that∫

|x−y|>η

∣∣∣Ω(x− y + h)

|x− y + h|n
− Ω(x− y)

|x− y|n
∣∣∣|f(y)|dy ≤ Cη(1 + F (q))(M(|f |q

′
)(x))1/q′ .

(2.4)
Here M is the Hardy-Littlewood maximal operator defined on Rn.

Proof. By a change of variable and Hölder’s inequality, we have∫
|x−y|>η

∣∣∣Ω(x− y + h)

|x− y + h|n
− Ω(x− y)

|x− y|n
∣∣∣|f(y)|dy

≤
∞∑
k=0

∫
2kη<|x−y|≤2k+1η

∣∣∣Ω(x− y + h)

|x− y + h|n
− Ω(x− y)

|x− y|n
∣∣∣|f(y)|dy

≤
∞∑
k=0

∫
2kη<|z|≤2k+1η

∣∣∣Ω(z + h)

|z + h|n
− Ω(z)

|z|n
∣∣∣|f(x− z)|dz

≤
∞∑
k=0

(∫
2kη<|z|≤2k+1η

∣∣∣Ω(z + h)

|z + h|n
− Ω(z)

|z|n
∣∣∣qdz)1/q

×
(∫

2kη<|z|≤2k+1η

|f(x− z)|q
′
dz
)1/q′

.

(2.5)
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Invoking Lemma 2.3, we have(∫
2kη<|z|≤2k+1η

∣∣∣Ω(z + h)

|z + h|n
− Ω(z)

|z|n
∣∣∣qdz)1/q

≤ C(2kη)−n/q
′
( |h|

2kη
+

∫ |h|/(2kη)

|h|/(2k+1η)

wq(δ)

δ
dδ
)

≤ C(2kη)−n/q
′
(

2−ke−1/η

+
1

1 + k + η−1

∫ |h|/(2kη)

|h|/(2k+1η)

wq(δ)

δ
(1 + | log δ|)dδ

)
.

(2.6)

Combining (2.5) with (2.6) implies that∫
|x−y|>η

∣∣∣Ω(x− y + h)

|x− y + h|n
− Ω(x− y)

|x− y|n
∣∣∣|f(y)|dy

≤ C
∞∑
k=0

(
2−ke−1/η +

1

1 + k + η−1

∫ |h|/(2kη)

|h|/(2k+1η)

wq(δ)

δ
(1 + | log δ|)dδ

)
×
( 1

(2kη)n

∫
2kη<|z|≤2k+1η

|f(x− z)|q
′
dz
)1/q′

≤ C(M(|f |q
′
)(x))1/q′

( ∞∑
k=0

2−ke−1/η + η

∞∑
k=0

∫ |h|/(2kη)

|h|/(2k+1η)

wq(δ)

δ
(1 + | log δ|)dδ

)
≤ C(1 + F (q))η(M(|f |q

′
)(x))1/q′ .

This proves (2.4) and completes the proof.
In order to prove Theorem 1.3, we shall establish the following result.

Proposition 2.1. Let 0 < β < 1, m ∈ N and Ω ∈ Lq(Sn−1) for some q > 1

satisfying (1.1). Let ~b = (b1, . . . , bm) with each bj ∈ BMO(Rn) for 1 ≤ j ≤ m and
T be a linear or sublinear operator satisfying

|T (f)(x)| ≤ C1

∫
Rn

|Ω(x− y)|
|x− y|n

m∏
j=1

|bj(x)− bj(y)||f(y)|dy (2.7)

and

‖T (f)‖Lp(w) ≤ C2

m∏
j=1

‖bj‖BMO(Rn)‖f‖Lp(w), ∀f ∈ Lp(w) (2.8)

for q′ < p <∞ and w ∈ Ap/q′(Rn). Then we have

‖T (f)‖Mp,β(w) .m,n,p,β,Ω,C1,C2

m∏
j=1

‖bj‖BMO(Rn)‖f‖Mp,β(w), ∀f ∈Mp,β(w).

(2.9)

Proof. Let f ∈ M̃p,β(w) and β ∈ (0, 1). Fix a cube Q = Q(x0, r). To prove (2.9),
by (2.3), it suffices to show that

( 1

w(Q)β

∫
Q

|T (f)(x)|pw(x)dx
)1/p

≤ C
m∏
j=1

‖bj‖BMO(Rn)‖f‖M̃p,β(w)
, (2.10)
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where C > 0 is independent of x0, r and b1, . . . , bm.
Let us decompose f as f = fχ2Q + fχ(2Q)c . Then we have( 1

w(Q)β

∫
Q

|T (f)(x)|pw(x)dx
)1/p

≤
( 1

w(Q)β

∫
Q

|T (fχ2Q)(x)|pw(x)dx
)1/p

+
( 1

w(Q)β

∫
Q

|T (fχ(2Q)c)(x)|pw(x)dx
)1/p

=: I1 + I2.

(2.11)

By (2.8) and Lemma 2.1 (iii), we have

I1 .C2,p

m∏
j=1

‖bj‖BMO(Rn)

( 1

w(Q)β

∫
2Q

|f(x)|pw(x)dx
)1/p

.C2,p

m∏
j=1

‖bj‖BMO(Rn)

((w(2Q)

w(Q)

)β 1

w(2Q)β

∫
2Q

|f(x)|pw(x)dx
)1/p

.C2,n,β,p

m∏
j=1

‖bj‖BMO(Rn)‖f‖M̃p,β(w)
.

(2.12)

In view of (2.11) and (2.12), for (2.10) it suffices to show that

I2 .n,β,p

m∏
j=1

‖bj‖BMO(Rn)‖f‖M̃p,β(w)
. (2.13)

Fix x ∈ Q. Note that for any k ≥ 1 and z ∈ 2k+1Q \ 2kQ. It holds that

2k+2r ≥ (2k+1 + 1)r ≥ |z − x0|∞ + |x− x0|∞

≥ |x− z|∞ ≥ |z − x0|∞ − |x− x0|∞ ≥ (2k − 1)r ≥ 2k−1r.
(2.14)

It follows from (2.7) and (2.14) that

|T (fχ(2B)c)(x)|

≤ C1

∫
(2Q)c

|Ω(x− z)|
|x− z|n

m∏
j=1

|bj(x)− bj(z)||f(z)|dz

= C1

∞∑
k=1

1

|2k+1Q|

∫
2k+1Q\2kQ

|Ω(x− z)|
m∏
j=1

|bj(x)− bj(z)||f(z)|dz.

(2.15)

Fix k ≥ 1 and let E = {1, . . . ,m}. Observe that

m∏
j=1

|bj(x)− bj(z)| =
m∏
j=1

(|bj(x)− bj,2k+1Q|+ |bj(z)− bj,2k+1Q|)

=
∑
τ⊂E

(∏
µ∈τ
|bµ(x)− bµ,2k+1Q|

)( ∏
ν∈E\τ

|bν(z)− bν,2k+1Q|
)
.
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This together with (2.15) implies that

|T (fχ(2B)c)(x)|

≤ C1

∑
τ⊂E

(∏
µ∈τ
|bµ(x)− bµ,2k+1Q|

)
× 1

|2k+1Q|

∫
2k+1Q\2kQ

|Ω(x− z)|
( ∏
ν∈E\τ

|bν(z)− bν,2k+1Q|
)
|f(z)|dz.

(2.16)

Fix τ ⊂ E. By Lemma 2.1 (i), there exists ε ∈ (0, 1) such that w1+ε ∈ Ap/q′(Rn).

Let t = p((p/q′)′−1)(1+ε)
(p/q′)′(1+ε)−ε . One can easily check that t ∈ (q′, p) and there exists

δ ∈ (1,∞) such that 1/t+ 1/q + 1/δ = 1. By Hölder’s inequality,

1

|2k+1Q|

∫
2k+1Q\2kQ

|Ω(x− z)|
( ∏
ν∈E\τ

|bν(z)− bν,2k+1Q|
)
|f(z)|dz

≤ 1

|2k+1Q|

(∫
2k+1Q\2kQ

|Ω(x− z)|qdz
)1/q(∫

2k+1Q\2kQ
|f(z)|tdz

)1/t

×
(∫

2k+1Q\2kQ

( ∏
ν∈E\τ

|bν(z)− bν,2k+1Q|
)δ
dz
)1/δ

.

(2.17)

By (2.14) and some changes of variables, one has∫
2k+1Q\2kQ

|Ω(x− z)|qdz ≤
∫

2k−1r≤|x−z|∞≤2k+2r

|Ω(x− z)|qdz

≤
∫

2k−1r≤|z|∞≤2k+2r

|Ω(z)|qdz

≤
∫

2k−1r≤|z|≤2k+2
√
nr

|Ω(z)|qdz

≤
∫

Sn−1

|Ω(θ)|qdσ(θ)

∫ 2k+2√nr

2k−1r

un−1du

.n (2kr)n‖Ω‖qLq(Sn−1).

(2.18)

On the other hand, there exists {ri}i∈E\τ ⊂ (1,∞) such that
∑
i∈E\τ 1/ri = 1.

By Hölder’s inequality and a well-known property for ‖b‖BMO(Rn), we obtain(∫
2k+1Q\2kQ

( ∏
ν∈E\τ

|bν(z)− bν,2k+1Q|
)δ
dz
)1/δ

≤
∏

ν∈E\τ

(∫
2k+1Q

|bν(z)− bν,2k+1Q|δrνdz
)1/(δrν)

.m,n
∏

ν∈E\τ

|2k+1Q|1/(δrµ)‖bν‖BMO(Rn)

.m,n |2k+1Q|1/δ
∏

ν∈E\τ

‖bν‖BMO(Rn).

(2.19)

Let s = p/t. One can easily check that (1+ε)
(

1−
(
p
q′

)′)
= 1−s′ and 1

s′t = 1
t −

1
p =
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1
q′ −

1
p

)
1

1+ε . By Hölder’s inequality,(∫
2k+1Q

|f(z)|tdz
)1/t

≤
(∫

2k+1Q

|f(z)|pw(x)dz
)1/p(∫

2k+1Q

w(x)1−s′dz
)1/(s′t)

≤ w(2k+1Q)β/p‖f‖
M̃p,β(w)

(∫
2k+1Q

w(x)1−s′dz
)1/(s′t)

.

(2.20)

Since w1+ε ∈ Ap/q′(Rn) and (1 + ε)(1− (p/q′)′) = 1− s′, then∫
2k+1Q

w(z)1−s′dz

=

∫
2k+1Q

w(z)(1+ε)(1−(p/q′)′)dz

≤ [w1+ε]
1

p/q′−1

Ap/q′
|2l+1Q|(p/q

′)′
(∫

2l+1Q

w(x)1+εdx
)−1/(p/q′−1)

.

(2.21)

By Hölder’s inequality, one has

w(2k+1Q) =

∫
2k+1Q

w(x)dx ≤
(∫

2k+1Q

w(x)1+εdx
)1/(1+ε)

|2k+1Q|ε/(1+ε),

which together with (2.21) implies that∫
2k+1Q

w(z)1−s′dz

≤ [w1+ε]
1

p/q′−1

Ap/q′
|2k+1Q|(p/q

′)′
(
|2k+1Q|−εw(2k+1Q)1+ε

)−1/(p/q′−1)

≤ [w1+ε]
1

p/q′−1

Ap/q′
|2k+1Q|(p/q

′)′+ q′ε
p−q′ w(2k+1Q)

− q′
p−q′ (1+ε)

.

(2.22)

Note that 1/(s′t) =
(
1/q′ − 1/p

)
/(1 + ε). Then

q′(1 + ε)

(p− q′)s′t
=

1

p
,

(p/q′)′

s′t
+

q′ε

(p− q′)s′t
=

p+ q′ε

pq′(1 + ε)
.

This together with (2.22) and (2.20) implies that(∫
2k+1Q

|f(z)|tdz
)1/t

.p,q w(2k+1Q)
β
p−

q′(1+ε)
(p−q′)s′t |2k+1Q|

(p/q′)′
s′t + q′ε

(p−q′)s′t ‖f‖
M̃p,β(w)

.p,q w(2k+1Q)
β−1
p |2k+1Q|

p+q′ε
pq′(1+ε) ‖f‖

M̃p,β(w)
.

(2.23)

It follows from (2.17)-(2.19) and (2.23) that

1

|2k+1Q|

∫
2k+1Q\2kQ

|Ω(x− z)|
( ∏
ν∈E\τ

|bν(z)− bν,2k+1Q|
)
|f(z)|dz

≤ 1

|2k+1Q|
(2kr)n/q‖Ω‖Lq(Sn−1)w(2k+1Q)

β−1
p |2k+1Q|

p+q′ε
pq′(1+ε) ‖f‖

M̃p,β(w)

×|2k+1Q|1/δ
∏

ν∈E\τ

‖bν‖BMO(Rn)

.m,n,p,q,Ω
∏

ν∈E\τ

‖bν‖BMO(Rn)w(2k+1Q)
β−1
p ‖f‖

M̃p,β(w)
,

(2.24)
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where in the last inequality of (2.24) we have used − 1
t + p+q′ε

pq′(1+ε) = 0 and 1
q + 1

t + 1
δ =

1. Combining (2.24) with (2.16) implies that

I2 .C1,m,n,p,q,Ω

∑
τ⊂E

∏
ν∈E\τ

‖bν‖BMO(Rn)‖f‖M̃p,β(w)
I3, (2.25)

where

I3 :=
( 1

w(Q)β

∫
Q

( ∞∑
k=1

w(2k+1Q)
β−1
p |
∏
µ∈τ
|bµ(x)− bµ,2k+1Q|

)p
w(x)dx

)1/p

.

By Lemma 2.1 (iv) and Minkowski’s inequality, we have

I3 ≤
( 1

w(Q)

∫
Q

( ∞∑
k=1

(w(2k+1Q)

w(Q)

) β−1
p
∏
µ∈τ
|bµ(x)− bµ,2k+1Q|

)p
w(x)dx

)1/p

≤
∞∑
k=1

γ
− (1−β)(k+1)

p
w

( 1

w(Q)

∫
Q

(∏
µ∈τ
|bµ(x)− bµ,2k+1Q|

)p
w(x)dx

)1/p

.

One can choose {ti}i∈τ such that ti ∈ (1,∞) and
∑
i∈τ 1/ti = 1. By Hölder’s

inequality, one has( 1

w(Q)

∫
Q

(∏
µ∈τ
|bµ(x)− bµ,2k+1Q|

)p
w(x)dx

)1/p

≤ w(Q)−1/p
∏
µ∈τ

(∫
Q

(
|bµ(x)− bµ,2k+1Q|

)ptµ
w(x)dx

)1/(ptµ)

.

Fix µ ∈ τ . By Minkowski’s inequality, Lemma 2.1(v) and the fact that |bµ,Q −
bµ,2k+1Q| .n (k + 1)‖bµ‖BMO(Rn), we have(∫

Q

|bµ(x)− bµ,2k+1Q|ptµw(x)dx
)1/(ptµ)

≤ w(Q)1/(ptµ)|bµ,Q − bµ,2k+1Q|+
(∫

Q

|bµ(x)− bµ,Q|ptµw(x)dx
)1/(ptµ)

.n,m (k + 1)w(Q)1/(ptµ)‖bµ‖BMO(Rn).

It follows that

I3 .n,m w(Q)−1/p
∞∑
k=1

γ
− (1−β)(k+1)

p
w

∏
µ∈τ

(k + 1)w(Q)1/(ptµ)‖bµ‖BMO(Rn)

.n,m
∏
µ∈τ
‖bµ‖BMO(Rn)

∞∑
k=1

γ
− (1−β)(k+1)

p
w (k + 1)m

.n,m,p,β
∏
µ∈τ
‖bµ‖BMO(Rn).

This together with (2.25) leads to (2.13). This completes the proof of Proposition
2.1.

Remark 2.1. (i) One can easily check that MΩ satisfies (2.7) with m = 0. By
Lemma 2.2 and Proposition 2.1, we see that MΩ is bounded on Mp,β(w) if
Ω ∈ Lq(Sn−1) for some q > 1 satisfying (1.1), q′ < p < ∞, 0 < β < 1 and
w ∈ Ap/q′(Rn).
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(ii) It is clear that TΩ satisfies (2.7) with m = 0. Applying [21, Theorem 2.2.3]
and Proposition 2.1, we see that TΩ is bounded on Mp,β(w) if Ω ∈ Lq(Sn−1)
for some q > 1 satisfying (1.1), q′ < p <∞, 0 ≤ β < 1 and w ∈ Ap/q′(Rn).

(iii) It was shown in [9, Theorem 3] that the maximal singular integral operator

T ∗Ω(f)(x) = sup
ε>0

∣∣∣ ∫
|x−y|≥ε

Ω(x− y)

|x− y|n
f(y)dy

∣∣∣
is bounded on Lp(w) for q′ < p < ∞ and w ∈ Ap/q′(Rn), provided that
b ∈ BMO(Rn) and Ω ∈ Lq(Sn−1) for some q > 1 satisfying (1.1). This together
with Proposition 2.1 implies that T ∗Ω is bounded on Mp,β(w), provided that
b ∈ BMO(Rn), Ω ∈ Lq(Sn−1) for some q > 1 satisfying (1.1), q′ < p < ∞,
0 ≤ β < 1 and w ∈ Ap/q′(Rn).

(iv) It was shown in [21, Theorem 2.4.4] that TΩ,b is bounded on Lp(w) for q′ <
p < ∞ and w ∈ Ap/q′(Rn), provided that b ∈ BMO(Rn) and Ω ∈ Lq(Sn−1)
for some q > 1 satisfying (1.1). One can easily check that TΩ,b satisfies (2.7)
with m = 1. These above facts together with Proposition 2.1 imply that TΩ,b

is bounded on Mp,β(w), provided that b ∈ BMO(Rn), Ω ∈ Lq(Sn−1) for some
q > 1 satisfying (1.1), q′ < p <∞, 0 ≤ β < 1 and w ∈ Ap/q′(Rn).

We now prove Theorem 1.3.

Proof. [Proof of Theorem 1.3] It was shown in [5] that Vρ(TΩ) is bounded on
Lp(w) for q′ < p < ∞ and w ∈ Ap/q′(Rn). It was also shown in [6, Corollary
1.4] that Vρ(T 1

Ω,b) is bounded on Lp(w) for q′ < p < ∞ and w ∈ Ap/q′(Rn) if
b ∈ BMO(Rn). These together with [6, Theorem 1.1] imply

‖Vρ(T mΩ,~b)(f)‖Lp(w) .n,p,β,m

m∏
j=1

‖bj‖BMO(Rn)‖f‖Lp(w), ∀f ∈ Lp(w).

This proves Theorem 1.3 for the case β = 0. On the other hand, one can check that
Vρ(T mΩ,~b) satisfies (2.7). These together with Proposition 2.1 leads to (1.3).

3. Proof of Theorem 1.2

In this section we prove Theorem 1.2. In order to prove Theorem 1.2, we need the
following proposition, which gives some characterizations that a subset in Mp,β(w)
is a strongly pre-compact set.

Proposition 3.1. ( [19]). Let 1 < p < ∞, 0 ≤ β < 1 and w ∈ Ap(Rn). A subset
F of Mp,β(w) is strongly pre-compact set in Mp,β(w) if F satisfies the following
conditions:

(i) F is bounded, i.e.
sup
f∈F
‖f‖Mp,β(w) <∞;

(ii) F uniformly vanishes as infinity, i.e.

lim
N→+∞

‖fχEN ‖Mp,β(w) = 0, uniformly for all f ∈ F,

where EN = {x ∈ Rn; |x| > N}.
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(iii) F is uniformly translation continuous, i.e.

lim
r→0

sup
h∈B(0,r)

‖f(·+ h)− f(·)‖Mp,β(w) = 0, uniformly for all f ∈ F.

Now we prove Theorem 1.2.

Proof. [Proof of Theorem 1.2] Let ρ, β, p, Ω, w be given as in Theorem 1.2. At
first, we shall prove that if Vρ(T mK,b) is compact for any b ∈ C∞c (Rn), then Vρ(T mK,b)
is compact for any b ∈ CMO(Rn). Actually, for a fixed b ∈ CMO(Rn) and ε ∈ (0, 1),
there exists bε ∈ C∞c (Rn) such that ‖bε − b‖BMO(Rn) < ε. Clearly,

bmε − bm = (bε − b)(bm−1
ε + bm−2

ε b+ · · ·+ bm−1).

For convenience, we set

~b1 = (bε − b,
m−1︷ ︸︸ ︷

bε, · · · , bε),~b2 = ((bε − b,
m−2︷ ︸︸ ︷

bε, · · · , bε, b), · · · ,~bm = ((bε − b,
m−1︷ ︸︸ ︷

b, · · · , b).

It is not difficult to see that

|Vρ(T mK,bε)(f)(x)− Vρ(T mK,b)(f)(x)|

≤ sup
εi↘0

( ∞∑
i=1

∣∣∣ ∫
εi+1<|x−z|≤εi

((bε(x)− bε(z))m − (b(x)− b(z))m)

×K(x, z)f(z)dz
∣∣∣ρ)1/ρ

≤
m∑
j=1

Vρ(T mK,~bj )(f)(x).

Combining this with Theorem 1.3 and Minkowski’s inequality implies that

‖Vρ(T mK,bε)(f)− Vρ(T mK,b)(f)‖Mp,β(w)

≤
m∑
j=1

‖Vρ(T mK,~bj )(f)‖Mp,β(w) .n,p,β ε‖f‖Mp,β(w),

which combining with [29, p. 278, Theorem (iii)] implies that to obtain the com-
pactness for Vρ(T mK,b) with b ∈ CMO(Rn), it suffices to prove the compactness for
Vρ(T mK,b) with b ∈ C∞c (Rn).

In what follows, we let b ∈ C∞c (Rn). We want to show that Vρ(T mK,b) is compact

on Mp,β(w). For any η > 0, we define the function Ωη by

Ωη(z) = Ω(z)
(

1− ϕ
(2

η
|z|
))
.

It is clear that Ωη ∈ Lq(Sn−1) and Ωη satisfies (1.1). By [30, (3.4)], one has

|Vρ(T mΩη,b)(f)(x)− Vρ(T mΩ,b)(f)(x)| .n (|b(x)|+ ‖b‖L∞(Rn))
m−1ηMΩf(x).

This together with Remark 2.1 (i) implies that

‖Vρ(T mΩη,b)(f)− Vρ(T mΩ,b)(f)‖Mp,β(w) ≤ Cη‖f‖Mp,β(w), ∀f ∈Mp,β(w). (3.1)
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By (3.1) and [29, p. 278, Theorem (iii)], to prove the compactness for Vρ(T mΩ,b), it
suffices to prove the compactness for Vρ(T mΩη,b) when η > 0 is small enough. For
β > 0, let

F := {Vρ(T mΩη,b)(f) : ‖f‖Mp,β(w) ≤ 1}.

To prove the compactness for Vρ(T mΩ,b), it is enough to show that F satisfies the
conditions (i)-(iii) of Proposition 3.1 when η > 0 is small enough. Let η ∈ (0, 1).
By Theorem 1.1 and (3.1), we have

‖Vρ(T mΩη,b)(f)‖Mp,β(w)

≤ ‖Vρ(T mΩη,b)(f)− Vρ(T mΩ,b)(f)‖Mp,β(w) + ‖Vρ(T mΩ,b)(f)‖Mp,β(w)

≤ C‖f‖Mp,β(w) ≤ C,

when ‖f‖Mp,β(w) ≤ 1. This yields that F satisfies Proposition 3.1 (i).

Let b be supported in a ball B = B(0, r). Fix f ∈Mp,β(Rn) with ‖f‖Mp,β(Rn) ≤
1 and EN := {x ∈ Rn : |x| > N} with N ≥ max{nr, 1}. By (2.1) and a change of
variable, we have

Vρ(T mΩη,b)(f)(x)

≤
∫
Rn
|(b(x)− b(z))mf(z)| |Ωη(x− z)|

|x− z|n
dz

.n (|b(x)|+ ‖b‖L∞(Rn))
m

∫
|z|≤r,|x−z|≤ η2

|f(z)| |Ω(x− z)|
|x− z|n

dz

.n ((N − 1)r)−n(|b(x)|+ ‖b‖L∞(Rn))
m

∫
|x−z|≤ η2

|f(z)||Ω(x− z)|dz

.n ((N − 1)r)−n
(η

2

)n
(|b(x)|+ ‖b‖L∞(Rn))

mMΩf(x),

(3.2)

when x ∈ EN . By (3.2) and Remark 2.1 (i), one has

‖TmΩη,b(f)χEN ‖Mp,β(w) .n,m ((N − 1)r)−n
(η

2

)n
‖b‖mL∞(Rn)‖f‖Mp,β(w), (3.3)

which implies that F satisfies Proposition 3.1 (ii).
Finally, we verify the condition (iii) of Proposition 3.1. It suffices to show that

for any ε ∈ (0, 1/4), there exist a small number η > 0, δ > 0 and γ > 0 such that

‖Vρ(T mΩη,b)(f)(·+ h)− Vρ(T mΩη,b)(f)(·)‖Mp,β(w) ≤ C(ε+ εγ) (3.4)

when |h| < δ. We set η = ε, δ = ε
16e
−1/ε and let |h| < δ. It is clear that |h| < ε

16

and |h|η < ε. By the definition of Vρ(T mΩ,b), we have

|Vρ(T mΩη,b)(f)(x+ h)− Vρ(T mΩη,b)(f)(x)|

≤ sup
εi↘0

( ∞∑
i=1

∣∣∣ ∫
εi+1<|x+h−y|≤εi

(b(x+ h)− b(y))m
Ωη(x+ h− y)

|x+ h− y|n
f(y)dy

−
∫
εi+1<|x−y|≤εi

(b(x)− b(y))m
Ωη(x− y)

|x− y|n
f(y)dy

∣∣∣ρ)1/ρ

≤ J1f(x) + J2f(x) + J3f(x).

(3.5)
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where

J1f(x) := sup
εi↘0

( ∞∑
i=1

∣∣∣ ∫
εi+1<|x−y|≤εi

((b(x+ h)− b(y))m − (b(x)− b(y))m)

×Ωη(x− y)

|x− y|n
f(y)dy

∣∣∣ρ)1/ρ

,

J2f(x) := sup
εi↘0

( ∞∑
i=1

∣∣∣ ∫
εi+1<|x−y|≤εi

(b(x+ h)− b(y))m

×
(Ωη(x+ h− y)

|x+ h− y|n
− Ωη(x− y)

|x− y|n
)
f(y)dy

∣∣∣ρ)1/ρ

,

J3f(x) := sup
εi↘0

( ∞∑
i=1

∣∣∣ ∫
Rn

(b(x+ h)− b(y))m
Ωη(x+ h− y)

|x+ h− y|n
f(y)

×(χεi+1<|x+h−y|≤εi(y)− χεi+1<|x−y|≤εi(y))dy
∣∣∣ρ)1/ρ

.

For J1f . It was shown in [30] (see [30, (3.12)]) that

J1f(x) .m,n,b |h|
m∑
j=0

|b(x)|j
(m−1∑
µ=0

Vρ(TΩ)(bµf)(x) +MΩf(x)
)
. (3.6)

This together with the boundedness part of Theorem 1.1, Remark 2.1 (i) and
Minkowski’s inequality implies that

‖J1f‖Mp,β(w) .m,n,b |h|
(m−1∑
µ=0

‖Vρ(TΩ)(bµf)‖Mp,β(w) + ‖MΩf‖Mp,β(w)

)
.m,n,b,p,β |h|.

(3.7)

For J2f . By (2.1), Lemma 2.4 and a change of variables, one has

J2f(x) ≤ sup
εi↘0

( ∞∑
i=1

∣∣∣ ∫
εi+1<|x−y|≤εi

(b(x+ h)− b(y))

×
(Ωη(x+ h− y)

|x+ h− y|n
− Ωη(x− y)

|x− y|n
)
f(y)χ|x−y|> η

4
(y)dy

∣∣∣ρ)1/ρ

(3.8)

≤(|b(x+ h)|+ ‖b‖L∞(Rn))

×
∫
|x−y|> η

4

∣∣∣Ωη(x− y + h)

|x− y + h|n
− Ωη(x− y)

|x− y|n
∣∣∣|f(y)|dy

≤C(|b(x+ h)|+ ‖b‖L∞(Rn))(1 + F (q))η(M(|f |q
′
)(x))1/q′ .

Note that p > q′ and w ∈ Ap/q′(Rn). By the Mp/q′,β(w) boundedness for M , we
get

‖(M(|f |q
′
))1/q′‖Mp,β(w) = ‖M(|f |q

′
)‖1/q

′

Mp/q′,β(w)
= ‖|f |q

′
‖1/q

′

Mp/q′,β(w)
= ‖f‖Mp,β(w).

This together with (3.8) leads to

‖J2f‖Mp,β(w) ≤ C‖b‖mL∞(Rn)η‖f‖Mp,β(w) .m,b,f ε. (3.9)
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It remains to estimate J3f . By Lemma 2.1 (ii), there exists ε ∈ (0, 1) such that
w ∈ Ap/q′−ε(Rn). Let s = p

p−ε . It is clear that s < q because of p > q′. Moreover,

ε = p/s′. It was proved in [30] (see [30, (3.22)]) that

J3f(x) .n,s (|b(x+ h)|+ ‖b‖L∞(Rn))
m|h|1/s

′

×
(∫
|y|≥ η4

|Ωη(y + h)f(x− y)|s

|y|n+s−1
dy
)1/s

.
(3.10)

By Hölder’s inequality, one finds∫
|y|≥ η4

|Ωη(y + h)f(x− y)|s

|y|n+s−1
dy

≤
∞∑
j=0

∫
2j−2η≤|y|≤2j−1η

|Ωη(y + h)f(x− y)|s

|y|n+s−1
dy

≤
∞∑
j=0

(∫
2j−2η≤|y|≤2j−1η

|f(x− y)|s(q/s)
′
dy
)1/(q/s)′

×
(∫

2j−2η≤|y|≤2j−1η

|Ωη(y + h)|q

|y|(n+s−1)q/s
dy
)s/q

.

(3.11)

Observe that (∫
2j−2η≤|y|≤2j−1η

|f(x− y)|s(q/s)
′
dy
)1/(q/s)′

≤ (2j−1η)n(1−s/q)(M(|f |sq/(q−s))(x))1−s/q.

(3.12)

On the other hand, note that |y| ≥ |y + h| − |h| ≥ 3
8 |y + h| when |h| ≤ η

8 and
|y + h| ≥ η

2 . Then we have∫
2j−2η≤|y|≤2j−1η

|Ωη(y + h)|q

|y|(n+s−1)q/s
dy

≤
∫

2j−2η≤|y|≤2j−1η,|y+h|≥ η2

|Ω(y + h)|q′

|y|(n+s−1)q/s
dy

≤ C
∫

2j−2η≤|y|≤2j−1η,|y+h|≥ η2

|Ω(y + h)|q

|y + h|(n+s−1)q/s
dy

≤ C
∫

2j−3η≤|y+h|≤2jη

|Ω(y + h)|q

|y + h|(n+s−1)q/s
dy

≤ C
∫

2j−3η≤|z|≤2jη

|Ω(z)|q

|z|(n+s−1)q/s
dz

≤ C‖Ω‖qLq(Sn−1)

∫ 2jη

2j−3η

rn−(n+s−1)q/s−1dr

≤ C‖Ω‖qLq(Sn−1)(2
jη)n−(n+s−1)q/s.

(3.13)

It follows from (3.11)-(3.13) that∫
|y|≥ η4

|Ωη(y + h)f(x− y)|s

|y|n+s−1
dy

≤ C‖Ω‖sLq(Sn−1)(M(|f |sq/(q−s))(x))1−s/q
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×
∞∑
j=0

(2j−1η)n(1−s/q)(2jη)ns/q−(n+s−1)

≤ C‖Ω‖sLq(Sn−1)(M(|f |sq/(q−s))(x))1−s/q
∞∑
j=0

(2j−1η)−s+1

≤ C‖Ω‖sLq(Sn−1)η
−s+1(M(|f |sq/(q−s))(x))1−s/q. (3.14)

In light of (3.10) and (3.14) we would have

J3f(x) .n,s,Ω (|b(x+h)|+‖b‖L∞(Rn))
m
( |h|
η

)1/s′

(M(|f |sq/(q−s))(x))1/s−1/q. (3.15)

Note that w ∈ Ap/q′−p/s′(Rn). By the Mp/q′−p/s′,β(w) bounds for M , we see that

‖(M(|f |sq/(q−s)))1/s−1/q‖Mp,β(w) = ‖M(|f |sq/(q−s))‖1/s−1/q

Mp/q′−p/s′,β(w)

= ‖|f |sq/(q−s)‖1/s−1/q

Mp/q′−p/s′,β(w)

= ‖f‖Mp,β(w),

which together with (3.15) implies that

‖J3f‖Mp,β(w) .m,n,s,Ω,b
( |h|
η

)1/s′

‖f‖Mp,β(w) .m,n,s,Ω,q,b,f ε
1/s′ . (3.16)

It follows from (3.5), (3.7), (3.9) and (3.16) that

‖Vρ(T mΩη,b)(f)(·+ h)− Vρ(T mΩη,b)(f)(·)‖Mp,β(w) .m,n,b,s,p,q,β (ε+ ε1/s
′
).

This leads to (3.4) and finishes the proof of Theorem 1.2.
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