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DYNAMICAL BEHAVIORS OF A
DISCRETE-TIME PREY-PREDATOR MODEL

WITH HARVESTING EFFECT ON THE
PREDATOR

Zohreh Eskandari1, Parvaiz Ahmad Naik2,† and Mehmet Yavuz3

Abstract This study investigates the dynamics of a discrete-time prey-preda-
tor model with a harvesting effect on the predator. During the analysis of the
bifurcations at the interior fixed point, we find that there are some generic
bifurcations, including fold, flip, Neimark-Sacker, and strong resonance bi-
furcations. Using the normal form theory and the center manifold theorem,
we can characterize these bifurcations. Furthermore, we determine the non-
degeneracy conditions for the computed bifurcations and compute the critical
normal form coefficients. Our analysis of the obtained analytical results as
well as the revealing of more complex dynamical behaviors that cannot be
achieved analytically is carried out using the numerical continuation method
by computing several bifurcation curves emanating from the detected bifurca-
tion points.

Keywords Prey-predator model, Harvest effect, bifurcation, numerical nor-
mal form, critical normal form coefficient.
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1. Introduction

The dynamics of discrete-time models defined by difference equations often exhibit
more complex behaviors compared to continuous-time models. In the field of bio-
logical mathematics, discrete-time models are frequently chosen, particularly when
studying populations with non-overlapping generations (see [16–18, 20, 25, 26, 33,
42, 43]). One of the fundamental structures in population dynamics are the prey-
predator interaction, which was extensively described by pioneers such as Lotka and
Volterra [26,42]. The size of a population can be influenced by various interactions
between species, including predatory, cooperative, mutualistic, and commensalism
interactions. In recent years, there has been a growing body of research focusing
on the impact of harvesting on prey-predator models [1, 8, 15,27].
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Predicting population size requires the use of both discrete-time and continuous-
time models. Discrete-time models have been found to provide more accurate sim-
ulations for non-overlapping generations [3, 4, 6, 7, 24, 29, 44]. Consequently, there
has been significant attention given to the discretization of predator-prey equations
governed by difference equations [14,45,46]. Bifurcation theory has been widely em-
ployed to investigate dynamical systems [5, 9–11, 13, 19, 21–23, 28, 30–32, 34–37, 41].
Specifically, bifurcation analysis for discrete-time populations has been examined in
previous studies [2–4,14,24,29,45]. Sene [39], in their paper, analyzed a fractional-
order chaotic system in the context of the Caputo fractional derivative via bifur-
cation and Lyapunov exponents. They have represented the phase portraits and
observed the influence of the fractional-order on the proposed chaotic system. With
the help of Lyapunov exponents, they have characterized the chaotic and hyper-
chaotic behaviors of the system. Recently Sene [40] presented a new chaotic system
under three fractional operators namely Caputo, Atangana-Baleanu, and Caputo-
Fabrizio derivatives. The calculated Lyapunov exponents for the fractional-order
chaotic systems characterized the behaviors of the dynamics of their considered
fractional-order system. The fractional linear multistep method and the Adams-
Basford method were employed to obtain the phase portraits of the proposed frac-
tional chaotic model.

In this paper, we consider the effects of harvesting on the predator population
within the framework of the Lotka-Volterra approach, as represented by the follow-
ing model: {

dp1
dτ = ap1(1− p1)− cp1p2,
dp2
dτ = bp1p2 − ep2 −Hp2.

(1.1)

Here, p1 and p2 represent the prey and predator populations, respectively. It is
worth noting that the parameters a, b, c, e, and H are all positive.

Subsequently, we focus on a discrete-time version of the system (1.1) using the
forward Euler scheme:{

p1 7→ p1 + h (ap1(1− p1)− cp1p2) ,

p2 7→ p2 + h (bp1p2 − ep2 −Hp2) ,
(1.2)

where the harvesting effect is represented by H.
The main objective of this study is to compute the critical normal form of

one-parameter bifurcation as well as two-parameter bifurcation at the fixed points
of the model using the inner product approach. We aim to investigate codim-1
bifurcations, such as period-doubling and Neimark-Sacker bifurcations, consider-
ing a single free parameter, as well as codim-2 bifurcations, including resonance
1:2, 1:3, and 1:4, by combining two free parameters. In this work, we verify the
non-degeneracy of codim-1 and codim-2 bifurcations for (1.2) using normal form
coefficients. This approach offers the advantage of avoiding direct computation of
the central manifold, conversion of the linear component to the Jordan form, and
significantly reduces computational complexity compared to alternative methods.
Additional information can be found in [4–6,11,30,31].

2. Fixed points and their stability

In model (1.2), there are three possible fixed points as follows:
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1. The origin fixed point F0
pp = (0, 0).

2. The boundary fixed point F1
pp = (1, 0).

3. The positive fixed point F∗pp =
(
H+e
b ,−a(H−b+e)

bc

)
.

As described in reference [38], each fixed point in system (1.2) is analyzed for its
local stability.

3. Bifurcation analysis

This section explores the dynamics of model (1.2) around the positive fixed point
due to its biological significance. Here, we study the conditions for the existence
of bifurcations as well as the non-degeneracy of those bifurcations. It is necessary
to calculate critical coefficients for the normal forms for the model reduced to the
corresponding center manifold in order to determine the non-degeneracy conditions
for each bifurcation.

3.1. Period-doubling bifurcation

If b = bpd where

bpd =
ha
(
H2h+ 2Heh+ e2h+ 2H + 2 e

)
Hah2 + aeh2 + 4

,

the linear part of model (1.2) at F∗pp is as follows:

L1 =

−Hah
2+aeh2−hH−he+2
hH+he+2 − c(Hah

2+aeh2+4)
a(hH+he+2)

2 (ha−2)(H+e)ha
c(Hah2+aeh2+4) 1

 .

Following are the multipliers of L1:

µ1 = −1, µ2 = −Hah
2 + aeh2 − 3hH − 3he− 2

hH + he+ 2
.

Considering that µ2 6= ±1, the central manifold corresponding to model (1.2) is a
one-dimensional manifold, and model (1.2) is restricted to the central manifold as
follows:

u 7→ −u+ αpdu
3 +O(u4),

where

αpd =
(2 + (H + e)h)2

(
−8 + a (H + e)3 h4 − (H + e)3 h3 + 6 (H + e)2 h2 + (4H + 4 e)h

)
c2

(ha− 2)2 (−4 + a (H + e)h2 + (−4H − 4 e)h) (H + e)2
.

The non-degeneracy condition of the period-doubling bifurcation is αpd 6= 0.
Therefore the following theorem is obtained.

Theorem 3.1. If b = bpd where

bpd =
ha
(
H2h+ 2Heh+ e2h+ 2H + 2 e

)
Hah2 + aeh2 + 4

,

the fixed point F∗pp of model (1.2) tolerates a generic period-doubling bifurcation.
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3.2. Neimark-Sacker bifurcation

If b = bns where

bns =
H h+ e h+ 1

h
,

the linear part of model (1.2) at F∗pp is as follows:

L1 =

−H ah2+a e h2−H h−e h−1
H h+e h+1 − h2c (H+e)

H h+e h+1

a
c 1

 .

Following are the multipliers of L1:

µ1,2 = −1/2
Hah2 + aeh2 − 2Hh− 2 eh− 2

Hh+ eh+ 1
+

i/2
√

∆

Hh+ eh+ 1
,

where

∆ = −h2a
(
H2ah2 + 2Haeh2 + ae2h2 − 4H2h− 8Heh− 4 e2h− 4H − 4 e

)
.

Considering that ∆ > 0, the central manifold corresponding to model (1.2) is a
two-dimensional manifold, and model (1.2) is restricted to the central manifold as
follows:

ω 7→ µ1ω + δnsω
2ω +O(|ω|4), ω ∈ C.

Any time σns = < (µ2δns) 6= 0, we have the generic Neimark-Sacker bifurcation.
Thus we get the following theorem.

Theorem 3.2. If b = bns where

bns =
H h+ e h+ 1

h
,

the fixed point F∗pp of model (1.2) tolerates a generic Neimark-Sacker bifurcation.

3.3. 1:2 resonance bifurcation

If b = br2 and H = Hr2 where

br2 =
a

a h− 4
, Hr2 = −a eh

2 − 4 eh− 4

h (a h− 4)
,

the linear part of model (1.2) at F∗pp is as follows:

L1 =

−3 −4 c
a

a
c 1

 .

Following are the multipliers of L1:

µ1,2 = −1.
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Considering that µ1,2 = −1, the central manifold corresponding to model (1.2) is a
two-dimensional manifold, and model (1.2) is restricted to the central manifold as
follows: u1

u2

 7→
 −u1 + u2

−u2 + σr2u
3
1 + δr2u

2
1u2

+O
(
‖u‖4

)
, u = (u1, u2)T ,

where

σr2 = −1/8

(
a2 + 16 c2

)
h2 (a h− 2) (a h− 10)

(a h− 4)
2 ,

δr2 = 1/8
h2
(
a4h2 + 32 a2c2h2 + 4 a3h− 96 a c2h− 12 a2 + 256 c2

)
(a h− 4)

2 .

The non-degeneracy conditions of the 1:2 resonance bifurcation, in this case, are as
follows:

1. σr2 6= 0,

2. δr2 6= −3σr2 .

Hence, the next theorem can be stated.

Theorem 3.3. If b = br2 and H = Hr2 where

br2 =
a

a h− 4
, Hr2 = −a eh

2 − 4 eh− 4

h (a h− 4)
,

the fixed point F∗pp of model (1.2) tolerates a 1:2 resonance bifurcation.

3.4. 1:3 resonance bifurcation

If b = br3 and H = Hr3 where

br3 =
a

a h− 3
, Hr3 = −a eh

2 − 3 eh− 3

h (a h− 3)
,

the linear part of model (1.2) at F∗pp is as follows:

L1 =

−2 −3 c
a

a
c 1

 .

Following are the multipliers of L1:

µ1,2 = −1

2
± i
√

3

2
.

Considering that µ1,2 = − 1
2 ± i

√
3

2 , the central manifold corresponding to model
(1.2) is a two-dimensional manifold, and model (1.2) is restricted to the central
manifold as follows:

u 7→ µ1u+ βr3u
2 + σr3u

2u+O(|u|4), u ∈ C,
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where

βr3 =
h c
(
i
√

3− 2 a h+ 3
)

2 a h− 6
,

σr3 = 1/2
c2h2

(
i
√

3a2h2 − 12 i
√

3a h− a2h2 + 15 i
√

3 + 15
)

(a h− 3)
2 .

The non-degeneracy conditions of the 1:3 resonance bifurcation, in this case, are as
follows:

1. βr3 6= 0,

2. <
(
µ2σr3

|βr3 |2
− 1
)
6= 0.

Therefore, we have proved the next theorem.

Theorem 3.4. If b = br3 and H = Hr3 where

br3 =
a

a h− 3
, Hr3 = −a eh

2 − 3 eh− 3

h (a h− 3)
,

the fixed point F∗pp of model (1.2) tolerates a 1:3 resonance bifurcation.

3.5. 1:4 resonance bifurcation

If b = br4 and H = Hr4 where

br4 =
a

ah− 2
, Hr4 = −aeh

2 − 2 eh− 2

h (ah− 2)
,

the linear part of model (1.2) at F∗pp is as follows:

L1 =

−1 −2 c
a

a
c 1

 .

Following are the multipliers of L1:

µ1,2 = ±i.

Considering that µ1,2 = ±i, the central manifold corresponding to model (1.2) is a
two-dimensional manifold, and model (1.2) is restricted to the central manifold as
follows:

u 7→ µ1u+ σr4u
2u+ δr4u

3 +O(|u|4), u ∈ C,

where

σr4 = −3/2
h2c2

(
ia2h2 + 2 a2h2 − 6 ah+ 4− 2 i

)
(ah− 2)

2 ,

δr4 = 1/2
h2c2

(
2 ia2h2 − a2h2 − 4 iah+ 6 ah− 6

)
(ah− 2)

2 .

As long as the following conditions are met, the 1:4 resonance bifurcation is generic:
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1. δr4 6= 0,

2. Ar4 = − i σr4

|δr4 |
6= 0.

So the next theorem is presented.

Theorem 3.5. If b = br4 and H = Hr4 where

br4 =
a

ah− 2
, Hr4 = −aeh

2 − 2 eh− 2

h (ah− 2)
,

the fixed point F∗pp of model (1.2) tolerates a 1:4 resonance bifurcation.

4. Numerical continuation

To confirm the analytical results, we use MatcontM, which is a toolbox of Mat-
lab and works based on the numerical continuation method, for more detals see
[12, 21, 23]. Here b is considered as free parameter and fixed parameters are as
follows:

a = 5, c = 1, H = 1, h = 0.9, e = 0.2.

A Neimark-Sacker bifurcation occurs for b = bns = 2.311111 at F∗pp =
(0.519231, 2.403846) with the frist Lyapunov coefficient σns = −2.344082. Since
σns < 0, we conclude that the Neimark-Sacker bifurcation is supercritical. This
phenomenon is shown in Fig 1. A period-doubling bifurcation occurs for b = bpd =
1.8772011 at F∗pp = (0.639250, 1.8033752) with αpd = −1.645355. The period dou-
bles when a curve emanates from a period-doubling bifurcation is shown in Fig
3.

Remark 4.1. Fig. 2 illustrates the maximum Lyapunov exponent for b � 2.4,
indicating that chaos exists. Positive Lyapunov exponents are generally considered
to be a sign of chaos.

On the Neimark-Sacker bifurcation curve presented in Fig 4(a) we detected the
following bifurcations:

1. Resonance 1 : 4 bifurcation for a = ar4 = 2.833333 and m = mr4 = 0.9
at F∗pp = (1.5, 2.133333) with Ar4 = −2.117336 + 2.58679 × 10−1 i. Since
|Ar4 | > 1 two-fold curves of the fourth iterate emanate from the R4 point of
model (1.2), see Fig 5.

2. Resonance 1 : 3 bifurcation for a = ar3 = 3.5 and m = mr3 = 4.5 at F∗pp =

(1.5, 8.0) with <
(
µ2σr3

|βr3
|2 − 1

)
= −1.047619.

3. Resonance 1 : 2 bifurcation for a = ar2 = 4.1666667 and m = mr2 = 22.5 at
F∗pp = (1.542.66667, ) with σr2 = 1.684908×10−3 and δr2 = −6.908183×10−3.

On the period-doubling bifurcation curve presented in Fig 4(b) we detected the
following bifurcations:

1. Resonance 1 : 2 bifurcation for a = ar2 = 4.1666667 and m = mr2 = 22.5 at
F∗pp = (1.542.66667, ) with σr2 = 1.684908×10−3 and δr2 = −6.908183×10−3.
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(a) (b)

(c) (d)

Figure 1. Phase portraits of model (1.2). (a) A stable fixed point for b = 2.28. (b) A closed invariant
curve for b = 2.3111111. (c) The broken invariant closed curve for b = 2.4. (d) A chaotic attractor for
b = 2.5.
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Figure 2. The maximum Lyapunov exponent corresponding to Fig. 1.
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5. Discussion and ecological implications

Bifurcations in discrete prey-predator models can have important ecological impli-
cations. These models describe the interactions between a population of prey and
a population of predators, where the prey population is consumed by the predator
population.

The period-doubling bifurcation is a type of bifurcation that can occur in discrete
prey-predator models. It is characterized by the doubling of the period of oscillations
in the population dynamics, which can have important ecological implications.

In ecological terms, the period-doubling bifurcation can lead to an increase in
the amplitude of population cycles, which can result in larger population booms and
busts. This can have significant effects on the stability of the ecosystem, as the larger
fluctuations in population size can lead to increased competition for resources, pre-
dation pressure, and other ecological interactions. In addition, the period-doubling
bifurcation can lead to the emergence of chaotic dynamics in the population cycles,
which can be difficult to predict and manage. Chaotic dynamics can lead to unpre-
dictable changes in the ecosystem, which can make it difficult to develop effective
conservation and management strategies. Overall, the period-doubling bifurcation
in discrete prey-predator models highlights the importance of understanding the
dynamics of populations and their interactions in ecological systems. By studying
these models, we can gain insight into the underlying mechanisms that drive pop-
ulation cycles and other ecological processes, and develop more effective strategies
to promote ecosystem stability and resilience.

The Neimark-Sacker bifurcation is a type of bifurcation that can occur in discrete
prey-predator models. It is characterized by the emergence of a stable limit cycle
in the population dynamics, which can have important ecological implications.

In ecological terms, the Neimark-Sacker bifurcation can lead to the emergence
of regular oscillations in the population cycles. These regular oscillations can have
significant effects on the stability of the ecosystem, as they can lead to predictable
changes in population dynamics. This can make it easier to develop effective con-
servation and management strategies, as managers can anticipate when population
sizes will rise and fall. The Neimark-Sacker bifurcation can also lead to the emer-
gence of complex patterns in population dynamics. This can have significant effects
on the stability of the ecosystem, as the complex patterns can make it more difficult
to predict changes in population sizes. This can make it more challenging to develop
effective conservation and management strategies. Overall, the Neimark-Sacker bi-
furcation in discrete prey-predator models highlights the importance of understand-
ing the dynamics of populations and their interactions in ecological systems. By
studying these models, we can gain insight into the underlying mechanisms that
drive population cycles and other ecological processes, and develop more effective
strategies to promote ecosystem stability and resilience.

The Strong resonance bifurcation is a type of bifurcation that can occur in
discrete prey-predator models. It is characterized by the emergence of periodic or
chaotic population dynamics, which can have important ecological implications.

In ecological terms, the Strong resonance bifurcation can lead to the emergence
of large-amplitude population cycles, which can result in more severe boom-and-
bust cycles in the ecosystem. This can have significant effects on the stability of the
ecosystem, as the larger fluctuations in population size can lead to increased com-
petition for resources, predation pressure, and other ecological interactions. The
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Strong resonances bifurcation can also lead to the emergence of chaotic dynamics
in the population cycles. Chaotic dynamics can lead to unpredictable changes in
the ecosystem, which can make it difficult to develop effective conservation and
management strategies. In addition, the presence of chaotic dynamics can lead to
the emergence of unstable equilibria or the disappearance of equilibria, which can
result in the extinction of one or both populations. Overall, the Strong resonance
bifurcation in discrete prey-predator models highlights the importance of under-
standing the dynamics of populations and their interactions in ecological systems.
By studying these models, we can gain insight into the underlying mechanisms that
drive population cycles and other ecological processes, and develop more effective
strategies to promote ecosystem stability and resilience.

6. Concluding remarks

In this article, we have extensively investigated a predator-prey model that in-
corporates the harvesting effect on the predator population. Our focus has been
on studying the dynamics of the model around the positive fixed point, which
holds considerable biological significance. Through our analysis, we have identified
the conditions for the existence of various bifurcations and established the non-
degeneracy of these bifurcations.

To determine the non-degeneracy conditions for each bifurcation, we calculated
critical coefficients of the normal forms, specifically reducing the model to the cor-
responding center manifold. Our examination has enabled us to explore the occur-
rence of flip, Neimark-Sacker, and strong resonance 1:2, 1:3, and 1:4 bifurcations.

Additionally, by illustrating the curves associated with each bifurcation, we have
observed a consistent agreement between our numerical simulations and the ana-
lytical results. This congruence provides further validation and confidence in the
accuracy of our findings.

In conclusion, our study has contributed to a deeper understanding of the dy-
namics of predator-prey models with harvesting effects. The significant outcome of
our research lies in the identification and analysis of various bifurcation phenomena
exhibited by the model. These findings shed light on the complex dynamics that
can arise in real-world ecological systems.

Looking ahead, there are several promising directions for future research in this
domain. Firstly, it would be valuable to extend our analysis to more complex ecolog-
ical models that incorporate additional factors such as spatial dynamics or multiple
predator-prey interactions. Furthermore, exploring the impact of alternative har-
vesting strategies and management approaches on the stability and sustainability of
predator-prey systems could yield important insights for ecological conservation and
resource management practices. Lastly, investigate the implications of our findings
in practical applications, such as designing effective strategies for controlling inva-
sive species or optimizing fisheries management, holds great potential for further
advancements in the field.

By addressing the significant outcomes of our study and providing detailed fu-
ture research directions, our conclusion serves to summarize the key findings of our
research while also highlighting the potential for further exploration and application
in the field of predator-prey dynamics.
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