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BEST PROXIMITY POINTS FOR
MULTIVALUED MAPPINGS AND EQUATION

OF MOTION
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Abstract In this manuscript, we compute coincidence point, best proximity
point, and fixed point results for multivalued proximal contractions in the
setup of b−metric spaces using an alternating distance function. Moreover, we
show the corresponding results for single-valued mappings can also be obtained
using generalized proximal contractions. To validate our study, examples are
given for both multivalued and single-valued mappings that strengthen our
main results based on coincidence points. In the end, we apply the obtained
result to show the existence of the solution of a particular type of second-order
boundary value problem describing the equation of motion.
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1. Introduction

Fixed point theory is an essential instrument for solving the equation Γ~ = ~ for
a mapping Γ specified on a subset of a metric space, a simplified linear space, or
a topological vector space. Every mapping does not need to have a fixed point.
Numerous mappings lack fixed points, including nonself-mappings with two disjoint
sets and translation mappings. Also, the fixed point of mappings with strict condi-
tions cannot be located. However, we can approximate the fixed point given certain
conditions. We investigate the approximated fixed points in such cases using the
best approximation theory.

It is always challenging to find the global minima of a function. Analytical meth-
ods are frequently not applicable in such cases, and the use of numerical solution
strategies also becomes hard. Applications of Global minimization problems occurs
in fitting model parameters to experimental data in chemistry, physics, finance,
and engineering. For example, minimize the energy function in case of structure
prediction, minimize the path length in case of traveling salesman problem and elec-
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trical circuit design. Keeping in view the above constraints, it is always interesting
to establish the existence and convergence of the best proximity points and fixed
points as a solution of various minimization problems in optimization theory, as
well as existence solutions to various nonlinear problems, which recently attracted
the attention of many authors; see for instance, [9, 10,22,30–32].

A nonself-mapping Γ : P→ Q may not have a fixed point, an element ~ closer to
Γ~ always proceeds certainly. The best proximity point (BPP) and the best approx-
imation theorem are important from this perspective. The root of a BPP theorem
is a global optimization problem of an empirical component, and indicates the error
involved in the solution of the approximated operator Γ~ = ~. Since, for a nonself-
mapping Γ : P → Q, d(~,Γ~) is at least d(P,Q) for all ~ in P, the BPP theorem
establishes a globally optimal solution of error d(~,Γ~) by constraining an approx-
imate solution ~ of the equation Γ~ = ~ to the condition that d(~,Γ~) =d(P,Q).
In real world, BPP theorems logically follow from fixed point theorems, because the
BPP is a fixed point implicit mapping that represents a self-mapping.

The BPP is a point in a metric space that is “closest” to a contraction mapping
in a certain sense. It is a point whose distance between its image and the point itself
is the shortest among all points in the metric space. This distance is also known
as the proximity function. The concept of BPP is helpful in various mathematical
situations, including showing the existence and uniqueness of fixed points for con-
traction mappings, analyzing iterative technique convergence, and solving various
optimization issues. The BPP is a reference point for determining the behavior
and properties of the mapping under discussion. Many fields of mathematics and
other disciplines, including computer science, engineering, economics, and physics,
have applications for studying BPP and related issues. It provides a theoretical
foundation for analyzing mapping behavior and finding optimal solutions to various
problems.

In 1997, Sadiq Basha et al. [7,8] gave the concept of best proximity pair, Eldred
et al. [12] established a method to find a best proximity point for the mappings
Γ in setting of uniformly convex Banach space. Kikkawa et al. [19] defined some
relationship among Kannan mappings and contractions. Anuradha et al. [3] origi-
nated the concept of proximal pointwise contraction. Suzuki et al. [28] proposed the
idea of property UC, Abkar et al. [1] verified the convergence and presence of best
proximity points for asymptotic cyclic contractions having UC property. In [5, 6]
Basha et al. proved BPP theorems for global optimal approximate solutions, Samet
et al. [26] originated the concept of α−admissible mapping, Jleli et al. [16] initiated
α−proximal admissible mapping. Gabeleh et al. [15] recently proposed the existence
of an optimal approximate solution, known as a best proximity point, for non-self
mappings, which are ordered proximal contractions in a more general scenario with
an ordered structure.

A classical best approximation theorem, due to Fan [13], claims that if P is a
nonempty compact convex subset of a Hausdorff locally convex topological vector
space X with a semi-norm p and Γ : P → X is a continuous mapping, then there
is an element ~ in P satisfying the condition that d(~,Γ~) =d(Γ~,P). Komal et
al. [20] studied the results of generalized Geraghty proximal cyclic contractions
and established coincidence BPP results in the framework of complete metric space,
Latif et al. [21] established partially ordered metric space and developed coincidence
BPP results for zg−weak contractive mappings. Many successive modifications and
different versions of Fan’s theorem have been studied, see eg., [2,23,25]. It is worth
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noting that
Motivated from the work done in preceding analysis, in this article, we obtain

some coincidence BPP results in the b−metric environment. Our results are more
interesting, because we are taking z−type proximal contraction using alternating
distance function φ in the endowed with multivalued mappings, which is a new
development within the current state-of-art. We generate multivalued coincidence
points, single valued coincidence points, and novel BPP results with various corol-
laries. Furthermore, for each outcome, illustrative examples are supplied, making
our findings more transparent and authentic. A physics-related application is also
proposed, making our study worthwhile and useful.

Let P and Q are two nonempty subsets of a complete b-metric space (X,d),
defined as

P0 = {~ ∈ P : d(~,ð) = d(P,Q) for some ð ∈ Q},
Q0 = {ð ∈ Q : d(~,ð) = d(P,Q) for some ~ ∈ P},

where

d(P,Q) = inf{d(~,ð) : ~ ∈ P,ð ∈ Q}(distance of a set P to a set Q).

2. Preliminaries

We will talk about some key definitions from the literature that are relevant to
our study in this part. The concept of distance was axiomatically established by
Frechet and Haussdorff in the early nineteenth century under the term of metric.
Since then, several authors have worked with it and published numerous results in
the literature.

Definition 2.1. [14] A function d: X × X → R whose range is nonnegative real
numbers is said to be metric if it satisfies the following properties:

1. d(~,ð) ≥ 0,

2. d(~,ð) = 0 if and only if ~ = ð,
3. d(~,ð) =d(ð, ~),

4. d(~,z)+d(z,ð) ≥d(~,ð)

for all ~,ð,z∈ X. Where d is metric on X and the pair (X,d) is called the metric
space. The set X is named as ground set. The points ~,ð,z∈ X are known as the
elements of metric space (X,d). So X will represents the metric space (X,d).

We present some examples from the literature [14] to get into the concept of
distance or metric.

Example 2.1. Consider functions d1, d2, d3 : R× R→ R defined as:

d1(~,ð) = |~− ð| ,
d2(~,ð) =

√
|~− ð| ,

d3(~,ð) =

∣∣∣∣1~ − 1

ð

∣∣∣∣ ,
then d1,d2 are metrics on R and d3 is metric on R\{0}, where R is set of real
numbers.
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Example 2.2. Suppose X1 = (a, b) and X2 = (c, e), for all a, b, c, e ∈ R, then
d(X1,X2) defined as:

d(X1,X2) = |a− c|+ |b− e| ,
is a metric on R2 = X.

Example 2.3. Let X be nonempty set of a metric space (X,d0), where d0 : X×X→
R is a function defined below:

d0(~,ð) =

0, if ~ = ð,

1, if ~ 6= ð,

then d0 is said to be discrete metric space.
In order to extrapolate this concept, metric axioms were modified in a variety

of ways. Among these, the concept of b-metric is crucial. Bakhtin [4] (and sepa-
rately Czerwik [11]) introduced the concept of b-metric spaces and demonstrated
alternative conclusions for the existence of fixed points. The definition of b-metric,
also known as quasi-metric, is provided here for comprehension.

Definition 2.2. [4] Let X be a nonempty set and s ≥ 1 be a given real number.
A function d: X× X→ R+is a b-metric if the following axioms are contended:

1. d(~,ð) ≥ 0,

2. d(~,ð) = 0 if and only if ~ = ð,
3. d(~,ð) =d(ð, ~),

4. s[d(~,ð) + d(ð, z)] ≥ d(~, z)

for all ~,ð, z ∈ X. We call (X,d) to be a b−metric space. Obviously for s ≥ 1,
b−metric space is a generalization of metric space.

Example 2.4. Let X = {0, 1, 2, 3} and d is defined as d(~,ð) = |~− ð|2, where
d: X× X→ R+, then (X,d) is b−metric space for s = 2 ≥ 1.

Definition 2.3. [17] Let (X,d) be a nonempty set associated with a b−metric
space. Suppose ~ ∈ X, and X possesses a sequence {~n} then,

(i) A sequence {~n} converges to ~ iff limn→∞ ~n = ~.
(ii) A sequence {~n} is a Cauchy sequence iff lim

n,m→∞
d(~n, xm) = 0.

(iii) A Cauchy sequence in X is complete ⇐⇒ X is convergent.

(iv) A convergent sequence has a unique limit.

(v) The b−metric associated with (X,d) is not continuous.

(vi) Every subsequence in a Cauchy sequence is convergent.

Definition 2.4. [27] Consider a metric space with a pair of nonempty subsets
(P,Q) [P0 6= φ], then the pair (P,Q) is said to satisfy P−property if

d(~1,ð1) = d(~2,ð2) = d(P,Q)

implies that
d(~1, ~2) = d(ð1,ð2),

where ~1, ~2 ∈ P and ð1,ð2 ∈ Q.
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Definition 2.5. [18] A function φ : (0,+∞) → (0,+∞) is referred to as an
alternating distance function if it meets the following criteria:

(i) φ is continuous and monotonically increasing,

(ii) φ(~) > 0 for all ~ > 0.

Definition 2.6. [29] Consider a mapping z : R+ → R upholding the following
criteria:

F1: For all ~,ð ∈ R+, z is strictly increasing as well as ~ < ð, z(~) < z(ð),

F2: For every positive sequence {~n}n∈N, lim
n→∞

~n = 0, iff lim
n→∞

z(~n) = −∞,

F3: For lim
~→0+

~kz(~) = 0, there exists k ∈ (0, 1).

Then the map Γ : X→ X on a metric space (X,d) is referred to as z-contraction, if
for any τ ∈ (0,+∞), the following condition is fulfilled:

d(Γ~,Γð) > 0, ⇒ τ + z(d(Γ~,Γð)) ≤ z(d(~,ð)).

Example 2.5. Let z : (0,+∞)→ R, be a function defined by

z(~) = log ~ + ~,

and Γ : X→ X be a mapping defined on complete metric space with metric

d(~,ð) = |~− ð| ,

by Γ(~) = ~
3 . Then, Γ is an z contraction.

Definition 2.7. [24] Consider closed and bounded subsets CB(X) of X, and further
suppose that H be a Pompeiu–Hausdroff metric induced by metric d defined as

H(P,Q) = max{sup
a∈P
D(a,Q), sup

s∈Q
D(b,P)},

for P,Q ⊆ CB(X), where

D(a,Q) = inf{d(a, b) : b ∈ Q},

and throughout the manuscript we will denote

D∗(a, b) = D(a, b)− d(P,Q),

for a ∈ P and b ∈ Q.

3. Coincidence best proximity points

This section is devoted to present some new results concerning multivalued coinci-
dence point, best proximity point and fixed points within the structure of complete
b−metric spaces (X,d).
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Definition 3.1. Let P and Q be nonempty closed subsets of a b−metric space
(X,d). Consider a pair of mappings (g,Γ) where Γ : P → CB(Q) is a multivalued
map and g : P→ P, which satisfies

D(g~,Γ~) = d(P,Q),

then ~ ∈ P is called coincidence BPP of the pair of mappings (g,Γ).

Remark 3.1. The coincidence best proximity point results are the generalization of
BPP results and fixed point results because, if we take g = IP then, every coincidence
BPP become BPP of the mapping Γ, and if this mapping is a self mapping then the
BPP reduces to fixed point.

Definition 3.2. Given Γ : P→ CB(Q) and g : P→ P. The pair (g,Γ) is said to be
a zCP

−proximal contraction if there exists a τ ∈ (0,+∞) such that for all u, v, ~,ð
in P

D (gu,Γ~) = d(P,Q),

D (gv,Γð) = d(P,Q)

implies that
τ + z(φ(H(Γ~,Γð))) ≤ z(φ(N (u, v, ~,ð))),

where

N (u, v, ~,ð) = max{d(gu, gv),
D(gu,Γu)− s d(P,Q)

s
,

D∗(gv,Γu),
D(g~,Γv)− sD(gu,Γv)

s
}.

Definition 3.3. A mapping Γ : P → CB(Q) is said to be zBP
−proximal contrac-

tion if there exists a τ ∈ (0,+∞) such that for all u, v, ~,ð in P,

D (u,Γ~) = d(P,Q),

D (v,Γð) = d(P,Q),

implies that
τ + z (φ(H(Γ~,Γð))) ≤ z (φ(N (u, v, ~,ð))) ,

where

N (u, v, ~,ð) = max
{

d(u, v),
D(u,Γu)− s d(P,Q)

s
,

D∗(v,Γu),
D(~,Γv)− sD(u,Γv)

s

}
.

Remark 3.2. It is worth noting that if we take g = IP (g as an identity mapping on
P), then every zCP

−proximal contraction reduces to a zBP
−proximal contraction.

Theorem 3.1. Let (X, d) be a complete b−metric space with nonempty closed sub-
sets P and Q satisfying the P−property, where A0 is nonempty. Given continuous
mappings Γ : P→ CB(Q), g : P → P with Γ(P0) ⊆ Q0 and P0 ⊆ g(P0), where g is
one-to-one continuous. If the pair (g,Γ) satisfies zCP

−proximal contraction with
alternating distance φ. Then the pair (g,Γ) concedes a coincidence BPP.
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Proof. Let ~0 be an arbitrary element in P0. Since Γ(P0) is contained in Q0 and
P0 is contained in g(P0), there exists an element ~1 in P0 such that

D(g~1,Γ~0) = d(P,Q).

Again, since Γ~1 is an element of Γ(P0) which is contained in Q0, and P0 is contained
in g(P0), it follows that there is an element ~2 in P0 such that

D(g~2,Γ~1) = d(P,Q).

Similarly, for ~n−1 ∈ P0 with Γ(P0) ⊆ Q0, then there exists ~n ∈ P0 such that

D(g~n,Γ~n−1) = d(P,Q). (3.1)

Having selected {~n} satisfying the condition, there exists an element ~n+1 in P0

satisfying the condition that

D(g~n+1,Γ~n) = d(P,Q), (3.2)

for every positive integer n.
Using P−property, we conclude

d(g~n, g~n+1) = H(Γ~n,Γ~n−1).

Since the pair (g,Γ) is a zCP
−proximal contraction, by using equation (3.1) and

(3.2), we infer

z(φ(d(g~n, g~n+1))) ≤ z(φ(N (~n, ~n+1, ~n−1, ~n)))− τ, (3.3)

where

N (~n, ~n+1, ~n−1, ~n)

= max

 d(g~n, g~n+1), D(g~n,Γ~n)−s d(P,Q)
s

D∗(g~n+1,Γ~n), D(g~n−1,Γ~n+1)−sD(g~n,Γ~n+1)
s

 ,

≤ max

 d(g~n, g~n+1), s[d(g~n,g~n+1)+D(g~n+1,Γ~n)]−s d(P,Q)
s

D(g~n+1,Γ~n)− d(P,Q), s[d(g~n−1,g~n)+D(g~n,Γ~n+1)]−sD(g~n,Γ~n+1)
s


≤ max

d(g~n, g~n+1), s d(g~n,g~n+1)+sd(P,Q)−s d(P,Q)
s

0, s d(g~n−1,g~n)+sD(g~n,Γ~n+1)−sD(g~n,Γ~n+1)
s


≤ max {d(g~n, g~n+1),d(g~n, gxn+1), 0,d(g~n−1, g~n)} ,

which yields

N (~n, ~n+1, ~n−1, ~n) ≤ max {d(g~n, g~n+1),d(g~n−1, g~n)} .

Further, if we choose max {d(g~n−1, g~n),d(g~n, gxn+1),d(g~n+1, g~n+2)} =
d(g~n, g~n+1), then the inequality (3.3) becomes

z(φ(d(g~n, g~n+1))) ≤ z(φ(d(g~n, g~n+1)))− τ
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which is absurd.
Choosing max {d(g~n−1, gxn),d(g~n, g~n+1),d(g~n+1, g~n+2)} = d(g~n−1, g~n),

then the equation (3.3) will be

z(φ(d(g~n, g~n+1))) ≤ z(φ(d(g~n−1, g~n)))− τ. (3.4)

Therefore, we can write

d(g~n, g~n+1) ≤ d(g~n−1, g~n).

Hence, the sequence is a {(g~n, g~n+1)} monotonic non-increasing and bounded
below. Thus, there exists λ ≥ 0 such that

lim
n→∞

d(g~n, g~n+1) = λ ≥ 0. (3.5)

Consider limn→∞d(gxn, g~n+1) = λ > 0 and using the equation ( 3.4),(3.5), we
obtain

z(φ(d(g~n, g~n+1))) ≤ z(φ(d(g~n−2, g~n−1)))− 2τ.

A repeated use of the above argument leads us to

z(φ(d(g~n, g~n+1))) ≤ z(φ(d(g~0, g~1)))− nτ. (3.6)

Inducing limit as n→∞, we arrive at

lim
n→∞

z(φ(d(g~n, g~n+1))) = −∞.

Using the property (F2) of Definition 2.6, we infer

lim
n→∞

φ(d(g~n, g~n+1)) = 0. (3.7)

Now, taking (F3) into account, there exists k ∈ (0, 1), such that

lim
d(g~n,g~n+1)→0

(φ(d(g~n, g~n+1)))kz(φ(d(g~n, g~n+1))) = 0,

lim
n→∞

(φ(d(g~n, g~n+1)))kz(φ(d(g~n, g~n+1))) = 0. (3.8)

Equation (3.6) leads us to

z(φ(d(g~n, g~n+1)))

≤ z(φ(d(g~0, g~1)))− nτ
⇒ (φ(d(g~n, g~n+1)))kz(φ(d(g~n, g~n+1)))−z(φ(d(g~0, g~1)))

≤ −(φ(d(g~n, g~n+1)))knτ.

Assume that βn = φ(d(g~n, g~n+1)), then above inequality becomes

(βn)k(z(βn)−z(β0)) ≤ −(βn)knτ.

By using equation (3.7) and (3.8) and taking lim
n→∞

, we get

lim
n→∞

(βn)k(z(βn)−z(β0)) ≤ lim
n→∞

−(βn)knτ ≤ 0.
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The above inequality can be put as

lim
n→∞

n(βn)k = 0. (3.9)

Utilizing (3.9), for given ε > 0, there exists n1 ∈ N such that∣∣n(βn)k − 0
∣∣ < ε, for all n ≥ n1,∣∣n(βn)k

∣∣ < ε,

(βn) <
ε

n
1
k

.

In order to authenticate {g~n} is a Cauchy sequence within the setting of complete
b−metric space, we have, for all n, p ∈ N

φ(d(g~n+p, gxn))

≤ sφ(d(g~n+p, g~n+1)) + bβn

≤ s2φ(d(g~n+p, g~n+2)) + s2βn+1 + bβn

≤ s3φ(d(g~n+p, g~n+3)) + s3βn+2 + s2βn+1 + bβn

...

≤ sp−1βn+p−1 + sp−1βn+p−2 + . . .+ s2βn+1 + bβn

≤ spβn+p−1 + sp−1βn+p−2 + . . .+ s2βn+1 + bβn

=
1

sn−1
[sn+p−1βn+p−1 + sn+p−2βn+p−2 + . . .+ sn+1βn+1 + snβn]

=
1

sn−1

n+p−1∑
i=n

siβi ≤
1

sn−1

∞∑
i=n

si
ε

i
1
k

.

Hence for all n ≥ n1, p ∈ N and k ∈ (0, 1) the above inequality reduces to

φ(d(g~n+p, gxn)) ≤ 1

sn−1

∞∑
i=n

si
ε

i
1
k

.

Consequently, by P−series test, the series
∞∑
i=n

si ε
i
1
k

is convergent for 1
k > 1. Hence,

the Cauchy sequence {g~n} is convergent in a complete b−metric space (X,d).

Furthermore, assume that {g~n} converges to ~∗ in P0 ⊆ P (the fact that the
set P is closed), which encourages that the sequence {~n} ⊆ P0, since ~n → ~∗. As
(g,Γ) is a pair of continuous mapping, which shows that

D(g~∗,Γ~∗) = d(P,Q).

Thus, ~∗ is a coincidence point of the pair of mapping (g,Γ).
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Example 3.1. Consider X = {0, 1, 2, 3, 4, 5} and d: X× X → [0,∞) be defined by
the following:

d 0 1 2 3 4 5

0 0 3 4 2 6 7

1 3 0 5 8 2 6

2 4 5 0 7 8 2

3 2 8 7 0 3 4

4 6 2 8 3 0 5

5 7 6 2 4 5 0

Clearly, (X,d) is a complete b−metric space. Assuming that P = {0, 1, 2} and
Q = {3, 4, 5} are nonempty closed subsets of b−metric space (X,d). After, simple
calculation, d(P,Q) = 2, and the property P is satisfied, where P0 = P, Q0 = Q
and s ≥ 9.

Define Γ : P→ CB(Q) as follows

Γ~ =

4, if ~ = {0, 1},

{3, 5}, if ~ = 2,

and g : P→ P is defined by the following

g~ =


0, if ~ = 2,

1, if ~ = 1,

2, if ~ = 0.

Clearly, Γ(P0) ⊆ Q0 and g(P0) ⊆ P0. The pair (g,Γ) satisfies zCP
−proximal con-

traction
τ + z(φ(H(Γ~,Γð))) ≤ z(φ(N (u, v, ~,ð))), (3.10)

for all u, v, ~,ð ∈ P. Since,

D(g1,Γ0) = d(P,Q),

D(g0,Γ2) = d(P,Q),

where u = 1, v = 0, ~ = 0 and ð = 2. With simple calculations, we arrive at

H(Γ0,Γ2) = H(4, {3, 5}) = 3,

and

N (1, 0, 0, 2) = max

 d(g1, g0), D(g1,Γ1)−9(2)
9 ,

D∗(g0,Γ1), D(g0,Γ0)−9D(g1,Γ0)
9


= max

 d(1, 2), D(1,4)−18
9

D∗(2, 4), D(2,4)−9D(1,4)
9 .
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= max

(
5,−16

9
, 6,−10

9

)
= 6.

Taking z(β) = log β + β, φ = 2t and τ = 1, we obtain

φ(H(Γ~,Γð)) = 6, φ(N (u, v, ~,ð)) = 12.

Hence the inequality (3.10) becomes

τ + z(6) ≤ z(12).

This confirms that all the conditions of the Theorem 3.1 are contended, and 1 and
2 are the coincidence points of the pair of mapping (g,Γ).

Corollary 3.1. Let P and Q are the nonempty closed subsets of a complete b-
metric space (X,d) satisfying the P−property, where A0 is nonempty. A continuous
mappings Γ : P → CB(Q) with Γ(P0) ⊆ Q0. Further, if the mapping Γ satisfies
zBP

−proximal contraction with alternating distance φ. Then Γ concedes a BPP.

Proof. If we take identity mapping g = IP (g) is identity on P, then the rest of
the proof lies on the similar lines as in the Theorem 3.1.

Note that, If we take P = Q = X in Theorem 3.1, we derive the following results.

Corollary 3.2. Let Γ : X → CB(X) be a multivalued mapping on a complete
b-metric space satisfying τzBp−proximal contraction with alternating distance φ.
Then, there exists a fixed point of the mapping Γ.

Example 3.2. Let (X,d) be a complete b−metric space (s = 2), where X =
{1, 2, 3, 4}, and d: X× X→ [0,∞) is defined by the following:

d(~,ð) =

 0, if ~ = ð,

|~− ð|2, otherwise.

Define a multivalued map Γ : X→ CB(X) as follows:

Γ~ =

1, if ~ = {1, 2, 3},

{2, 3}, if ~ = 4.

We show that the mapping Γ satisfies zBp−proximal contraction

τ + z(φ(H(Γ~,Γð))) ≤ z(φ(N (~,ð))), (3.11)

for all ~,ð ∈ X.
Taking z(β) = log β + β, φ = 2t and τ = 1, we have following cases:

Case (i). If ~ = 2 and ð = 4, we obtain

H(Γ2,Γ4) = 1 and N (2, 4) = 9.

Now, φ(H(Γ~,Γð)) = 2 and φ(N (~,ð)) = 18, inequality (3.11) reduces to

τ + z(2) ≤ z(18).
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Case (ii). If ~ = 3 and ð = 4 then, H(Γ3,Γ4) = 1 and N (3, 4) = 9, and we obtain,

φ(H(Γ~,Γð)) = 2 and φ(N (~,ð)) = 18.
Consequently, (3.11) becomes

τ + z(2) ≤ z(18).

Hence, all the conditions of the Corollary 3.2 are met, and 1 is the fixed point of
the multivalued mapping Γ.

Corollary 3.3. If b = 1 with all the conditions utilized in Theorem 3.1, then we
can obtain coincidence BPP in the setting of metric space.

Corollary 3.4. If b = 1 with all the assumptions incorporated in Theorem 3.1,
then we can acquire BPP in the environment of metric space.

4. Related results in single valued mappings

This portion is devoted to discuss some coincidence BPP results using single valued
mappings within the b−metric framework.

Definition 4.1. A pair of mappings (g,Γ), where Γ : P→ Q and g : P→ P is said
to be a τzCp

−proximal contraction, if there exists τ ∈ (0,+∞) such that,

d (gu,Γ~) = d(P,Q),

d (gv,Γð) = d(P,Q)

implies that
τ + z(φ(d(Γ~,Γð))) ≤ z(φ(N (u, v, ~,ð))),

where

N (u, v, ~,ð) = max{d(gu, gv),
d(gu,Γu)− s d(P,Q)

s
,

d∗(gv,Γu),
d(g~,Γv)− s d(gu,Γv)

s
}.

for all u, v, ~,ð in P.

Definition 4.2. A mapping Γ : P→ Q is said to be (τ −z)BP
−proximal contrac-

tion, if there exists some τ ∈ (0,+∞) such that,

d (u,Γ~) = d(P,Q),

d (v,Γð) = d(P,Q)

implies that
τ + z(φ(d(Γ~,Γð))) ≤ z(φ(N (u, v, ~,ð))),

where

N (u, v, ~,ð) = max{d(u, v),
d(u,Γu)− s d(P,Q)

s
,

D∗(v,Γu),
d(~,Γv)− s d(u,Γv)

s
},

for all u, v, ~,ð in P.
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Note that, if we take g = IP (g as an identical mapping on P), then all
τzCp

−proximal contractions will shrink to τzQp
− proximal contraction.

Theorem 4.1. Let Γ : P → Q, g : P → P be mappings, where P and Q are
nonempty closed subset of a complete b−metric space (X,d) satisfying the P-property
with Γ(P0) ⊆ Q0 and P0 ⊆ g(P0). If (g,Γ) is a pair of continuous mappings, where
g is one-to-one mapping satisfying τzCp−proximal contraction with alternating dis-
tance φ. Then, (g,Γ) concedes a coincidence point.

Proof. Because any single valued mapping is a multi valued mapping, the remain-
der of the proof is identical to Theorem 3.1.

Example 4.1. Let X = {11, 12, 13, 14, 15, 16} and consider a complete b−metric
space (X,d), where d: X× X→ [0,∞) is defined by the following:

d(~,ð) =

0, if ~ = ð,

|~− ð|2, otherwise.

Suppose that P = {11, 13, 15} and Q = {12, 14, 16} are nonempty closed sub-
sets of b−metric space (X,d). After simple calculation d(P,Q) = 1, satisfies the
P−property, where P0 = P, Q0 = Q and s ≥ 5. A mapping Γ : P→ Q such that

Γ~ =

12, if ~ = {11, 13},

14, if ~ = 15,

and g : P→ P

g~ =


11, if ~ = 11,

13, if ~ = 15,

15, if ~ = 13.

Clearly, Γ(P0) ⊆ Q0 and g(P0) ⊆ P0. Now, the pair (g,Γ) satisfies τzCp
−proximal

contraction

τ + z(φ(d(Γ~,Γy))) ≤ z(φ(N (u, v, ~,ð))), (4.1)

for all u, v, ~,ð ∈ P. Since,

d(g11,Γ13) = d(P,Q),

d(g13,Γ15) = d(P,Q),

where u = 11, v = 13, ~ = 13 and ð = 15. With basic analysis, we obtain

d(Γ13,Γ15) = d(12, 14) = 4,

and

M(11, 13, 13, 15) = max

 d(g11, g13), d(g11,Γ11)−5(1)
5 ,

d∗(g13,Γ11), d(g13,Γ13)−5d(g11,Γ13)
5
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= max

 d(11, 15), d(11,12)−5
5

d∗(15, 12), d(15,12)−5d(11,12)
5 .


= max

(
16,−4

5
, 8,

4

5

)
= 16.

Next, consider a function z as follows

z(β) = log β + β.

For φ = 2t and τ = 1, we conclude φ(d(Γ~,Γð)) = 8, φ(N(u, v, ~,ð)) = 32.
The inequality (4.1) turn to

τ + z(16) ≤ z(32).

Hence, all the criteria of the Theorem 4.1 are fulfilled and 11 is the coincidence
point of (g,Γ).

Corollary 4.1. Let Γ : P → Q be a mapping, where P and Q are nonempty
closed subsets of a complete b−metric space (X,d) satisfying the P−property with
Γ(P0) ⊆ Q0. If a continuous mappings Γ satisfies τzBp

−proximal contraction with
alternating distance φ. Then, Γ concedes a BPP.

Proof. If we take identical mapping g = IP (g is identity on P), the rest of the
proof is similar as of Theorem 3.1.

Corollary 4.2. If b = 1 with all the conditions utilized in Theorem 4.1, then we
can obtain coincidence BPP in the setting of metric space.

Corollary 4.3. If b = 1 with all the assumptions incorporated in Corollary 4.1,
then we can acquire BPP in the environment of metric space.

5. Fixed point results

In this section, we obtain fixed point result, if we take P = Q = X in Theorem
4.1. The following definition is handy in achieving such a novel convergence result
(Theorem 5.1).

Definition 5.1. A mapping Γ : X→ X is said to be (τ −z)FP
contraction, if there

exists a there exists a τ ∈ (0,+∞) such that,

τ + z(φ(d(Γ~,Γð))) ≤ z(φ(N (~,ð))),

where

N (~,ð) = max{d(~,ð),
d(~,Γ~)

s
,d(ð,Γ~),−d(~,Γð)},

for all ~,ð in X.

Theorem 5.1. Let Γ : X→ X be a single valued mapping on a complete b−metric
space satisfying τzFP

−proximal contraction with alternating distance φ. Then, Γ
concedes a fixed point.
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Proof. Taking P = Q = X, the proof follows due to Theorem 4.1.

Example 5.1. If we take all the conditions of the Example 3.2 and define a mapping
Γ : X→ X such that

Γ~ =

1, if ~ = {1, 2, 3},

2, if ~ = 4.

To show that the mapping Γ satisfies τzFp
−proximal contraction

τ + z(φ(d(Γ~,Γð))) ≤ z(φ(N (~,ð))), (5.1)

for all ~,ð ∈ X.
We consider the following cases with z(β) = log β + β

Case (i). If ~ = 2 and ð = 4 then, d(Γ2,Γ4) = 1 and N (2, 4) = 9.

Case (ii). If ~ = 3 and ð = 4 then, d(Γ3,Γ4) = 1 and N (3, 4) = 9.
Now, choosing φ = 2t and τ = 1, we get φ(d(Γ~,Γð)) = 2, φ(N (~,ð)) = 18,

consequently (5.1) becomes
τ + z(2) ≤ z(18).

Hence, all the assumptions of Theorem 5.1 are fulfilled, and Γ concedes 1 as the
fixed point.

Corollary 5.1. If b = 1 with all the conditions utilized in Theorem 5.1, then we
obtain coincidence BPP in the setting of metric space.

6. An application to the equation of motion

Let a class of all real-valued continuous functions on [0, 1] be denoted by X (that
is, X = C[[0, 1],R]). Consider the b-metric d: X× X→ R defined by the following:

d(~,ð) = sup
f∈[0,1]

|~(f)− ð(f)|2 ,

for all ~,ð ∈ X and f ∈ [a, b].
Clearly, (X,d) is complete b−metric space for with s = 2.

Problem Statement: A particle of mass m is at rest at ~ = 0, f = 0. A force
L starts activity on it in a particular direction such that its velocity immediately
jumps from 0 to 1 after f = 0. Find the position of the particle at time f.
The corresponding motion of the particle is governed by the following second order
differential equation. m d2~

df2 = L(f, ~(f)),

~(0) = 0, ~′(0) = 1,
(6.1)

for all f ∈ [0, 1] and L : [0, 1]×R→ R, is a continuous function. We are interested
in finding the solution of the equation (6.1), which tells us the nature of the motion
of the particle, i.e., how the particle moves.

The Green’s function of the problem defined in (6.1) is equivalent to:

Ġ(f, s) =

f ; 1 ≥ s ≥ f ≥ 0,

2 f−s ; 1 ≥ f ≥ s ≥ 0.
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We now prove the existence of a solution of the second order differential equation
(6.1).

Theorem 6.1. Suppose for the mappings L : [0, 1] × R→ R and φ : R × R→ R,
the following axioms are contended:

1. |L(f, a)− L(f, b)| ≤ sup
a,b∈[0,1]

|a− b| , for all f ∈ [0, 1] with φ(a, b) ≥ 0.

2. For all f ∈ [0, 1] and ~0 ∈ X,

φ(Γ~0(f),Γ~0(f)) ≥ 0,

where Γ : X→ X. Then second order differential equation (6.1) governing the
equation of motion of a particle has a solution in X.

Proof. We note that the solution of (6.1) is equivalent to finding the solution of
the following integral equation

~(f) =

∫ 1

0

Ġ(f, s)L(s, ~(s))ds, f ∈ [0, 1]. (6.2)

Integral equation (6.2) is equivalent to the second order IVP (6.1) which is con-
structed with the help of Green’s function Ġ(f, s).

We define a self-map Γ : X→ X by the following

Γ~(f) =

∫ 1

0

Ġ(f, s)L(s, ~(s))ds.

We have,

|Γ~(f)− Γð(f)| =
∣∣∣∣∫ 1

0

Ġ(f, s)L(s, ~(s))−
∫ 1

0

Ġ(f, s)L(s,ð(s))

∣∣∣∣
=

∫ 1

0

Ġ(f, s) |L(s, ~(s))− L(s,ð(s))| ds

≤
∫ 1

0

Ġ(f, s) sup
f∈[0,1]

|~(s)− ð(s)| ds

≤ sup
f∈[0,1]

|~(f)− ð(f)|
∫ 1

0

Ġ(f, s)ds.

This implies that

sup
f∈[0,1]

|Γ~(f)− Γð(f)|2 ≤ sup
f∈[0,1]

|~(f)− ð(f)|2 sup
f∈[0,1]

{∫ 1

0

Ġ(f, s)ds

}2

.

Observe that
∫ 1

0
Ġ(f, s)ds = 1−f2

2 , for all f ∈ [0, 1], we infer

sup
f∈[0,1]

{∫ 1

0

Ġ(f, s)ds

}2

=
1

4
.

This corresponds to saying

sup
f∈[0,1]

|Γ~(f)− Γð(f)|2 ≤ 1

4
sup

f∈[0,1]

|~(f)− ð(f)|2 .
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Inducing logarithm, we obtain

log 4 + log (d(Γ~,Γð)) ≤ log (d(~,ð)) .

Now, we consider the function z : [0,∞)→ R defined by z(~) = log ~, we get

log 4 + z (d(Γ~,Γð)) ≤ z (d(~,ð)) . (6.3)

Taking log 4 = τ > o, (6.3) can be put as

τ + z (d(Γ~,Γð)) ≤ z (N (~,ð)) .

Noting that φ > 0 is continuous and monotonically increasing, we can write

τ + z (φd(Γ~,Γð)) ≤ z (φN (~,ð)) .

Thus, all the conditions of Theorem 5.1 are satisfied. Hence, Γ concedes a
fixed point, endorsing that the second order differential equation (6.1) governing
the equation of motion has a solution.

Conclusion

Using the alternating distance function φ, we studied the presence of coincidence
point outcomes via the multivalued notion over b−metric space. Furthermore, ex-
amples for multivalued coincidence points, single-valued coincidence points, and
fixed point outcomes are provided to enhance our primary results. Finally, we used
the acquired result to demonstrate the existence of a solution to a particular form of
second-order boundary value problem expressing the equation of motion. The find-
ings have practical and theoretical implications for academics working on fixed point
theory applications and scientists dealing with mechanical and industrial issues.

Open Questions.

1. Under what conditions we can obtain coincidence best proximity results for
multivalued mappings within the context of b-metric like space?

2. Can we drive best proximity points under the same constraints without taking
into account the altering distance functions?

3. Can we obtain Theorem 3.1 and Theorem 4.1 for Kannan or Reich type map-
pings with applications?
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